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Abstract: Myelodysplastic syndromes (MDS) are acquired clonal stem cell disorders exhibiting
ineffective hematopoiesis, dysplastic cell morphology in the bone marrow, and peripheral cytopenia at
early stages; while advanced stages carry a high risk for transformation into acute myeloid leukemia
(AML). Genetic alterations are integral to the pathogenesis of MDS. However, it remains unclear
how these genetic changes in hematopoietic stem and progenitor cells (HSPCs) occur, and how they
confer an expansion advantage to the clones carrying them. Recently, inflammatory processes and
changes in cellular metabolism of HSPCs and the surrounding bone marrow microenvironment have
been associated with an age-related dysfunction of HSPCs and the emergence of genetic aberrations
related to clonal hematopoiesis of indeterminate potential (CHIP). The present review highlights
the involvement of metabolic and inflammatory pathways in the regulation of HSPC and niche cell
function in MDS in comparison to healthy state and discusses how such pathways may be amenable
to therapeutic interventions.
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1. Introduction

Myelodysplastic syndromes (MDS) are a heterogeneous group of acquired clonal
stem cell disorders that have an increased prevalence in the aging population with an
incidence of 40–50/100,000 inhabitants in patients aged ≥70 years [1]. Patients are primarily
affected by cytopenia-related symptoms, such as fatigue due to anemia and bleeding due
to thrombocytopenia or neutropenia-related infections. In approximately 30% of MDS
cases, the disease progresses to acute myeloid leukemia (AML) [2]. Currently, only limited
treatment options are available, and only five drugs are approved in Europe (erythropoietin,
luspatercept, the iron chelator deferasirox, the immunomodulatory drug lenalidomide, and
the hypomethylating agent azacytidine). The only curative therapy for MDS is allogeneic
hematopoietic stem cell (HSC) transplantation [3]. Clonal hematopoiesis of indeterminate
potential (CHIP) is a condition related to MDS. It is defined as the age-related accumulation
of somatic mutations in HSPCs that are usually linked to myeloid malignancies, such as
MDS, yet these patients do not have symptoms or cytopenia; however, CHIP enhances the
risk of myeloid malignancies [4,5].

During the last years, alterations in cellular metabolism have been implicated both in
cancer development and in the maintenance of a tumor-promoting microenvironment in
several malignancies [6–8]. In this context, mitochondria are the central hub of metabolic
cell regulation, hosting the tricarboxylic acid cycle (TCA) and oxidative phosphorylation
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(OXPHOS) [9]. Indeed, the cellular metabolism of HSPCs is integral to the regulation of fate
decisions, including self-renewal versus cell differentiation [10], which are tightly balanced
under normal conditions. Similarly, cell metabolism may orchestrate the hematopoietic
response to stress conditions (such as infection or inflammation) [10]. This inflammatory
adaptation of HSPCs is also relevant in non-hematologic diseases, e.g., chronic inflamma-
tory pathologies, and may potentially link inflammatory comorbidities to hematopoietic
malignancies [11–13].

HSC maintenance and function are supported by the hematopoietic niche [14], which
contains extracellular matrix and cellular components, including mesenchymal stromal
cells (MSCs), osteoprogenitors, endothelial cells, macrophages, adipocytes, and osteo-
clasts [14–16]; these components regulate HSPC function via direct cellular interactions
or paracrine secretion of cytokines and other factors. The niche is also able to adapt to
inflammatory signaling, such as through the upregulation of osteoclastogenesis, which may
result in increased bone resorption, and the promotion of cells of the monocytic lineage to
produce higher levels of pro-inflammatory cytokines [11].

Increasing evidence suggests that inflammatory and metabolic dysregulation of HSPCs
and niche cells may contribute to MDS pathogenesis. In this review, we will therefore dis-
cuss recent findings regarding metabolic changes and their association with inflammatory
processes in the context of MDS as opposed to the healthy state. We also provide possible
implications for potential therapeutic targets.

2. Metabolic Changes in the HSPC Pool

HSCs are at the top of the hierarchical system of hematopoiesis and are characterized
by their ability to proliferate without lineage commitment (termed self-renewal) and to
differentiate into different blood cell types (pluripotency) [17]. HSCs can thereby replenish
the hematopoietic system with mature differentiated blood cells throughout life, while the
quiescent HSC pool is also maintained throughout life.

In response to different demands of the organism (such as infection, blood loss,
acute inflammatory conditions, and other stress conditions), HSCs typically exit their
quiescence and undergo proliferation and differentiation; this process is termed demand,
stress, or emergency hematopoiesis [18]. The different HSC and HSPC functional states
are associated with distinct metabolic demands and metabolic states [19]. The metabolic
plasticity of HSPCs, as illustrated by the switch between glycolysis and mitochondrial
OXPHOS, helps them cope with these demand-driven needs [19]. Notably, cells can adapt
the quantity and activity of their mitochondria in response to their needs, which are also
defined by environmental cues [20]. In the steady state, HSCs are quiescent, with reduced
cellular turnover and low energy demands. Energy is primarily derived from glycolysis,
whereas mitochondrial activity is relatively low [19]. In addition, the suppression of
mitochondrial respiration further promotes the quiescent state along with self-renewal and
a low susceptibility to cytotoxic and genotoxic stress [21]. In contrast, HSC proliferation
and differentiation require a high-energy input; this is ensured by a metabolic shift from a
predominantly glycolysis-based metabolism to mitochondrial metabolism, which results in
higher energy generation. To this end, the adaptation of mitochondrial biogenesis, which
is associated with enhanced NADH levels, the upregulation of TCA cycle enzymes, and
the downregulation of glycolytic enzymes are required [22]. These adaptations result in an
increased oxygen consumption rate and lower lactate levels [23]. In contrast, mitochondrial
respiration is impaired by a deficiency of mitochondrial subunits, e.g., the mitochondrial
complex III subunit Rieske iron-sulfur protein (RISP) [24] or mitochondrial enzymes, such
as protein tyrosine phosphatase mitochondrial 1 (PTPMT1) [25]; the deficiency of the
aforementioned factors inhibits HSC differentiation.

In addition to mitochondrial respiration, other metabolic pathways are involved in
HSC differentiation and proliferation. When HSCs leave the quiescence state, they undergo
symmetric or asymmetric division. While symmetric division results in two identical
daughter cells with the same fate, asymmetric division produces one daughter cell that
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has the potential to differentiate and another daughter cell that still exhibits stem cell
properties, e.g., self-renewal [26]. Inhibition of fatty acid oxidation (FAO) leads to an
inability of HSCs to undergo asymmetric division [27]. Interestingly, specific metabolic
molecules contribute to HSC lineage commitment. Some examples are molecules involved
in glutamine transport and metabolism, which are essential prerequisites for erythroid
differentiation, as short hairpin RNA (shRNA)-mediated knockdown of the ASCT2 gene,
which encodes a glutamine transporter, leads to myelomonocytic differentiation [28].
Another example is the accumulation of cholesterol in the cell membrane resulting from
deficiency in cholesterol export systems, which enhances HSPC proliferation and myeloid
differentiation by increased cell-surface expression of the common beta-chain of the receptor
for IL-3 and GM-CSF [29].

Metabolic Changes and Their Association with Genetic and Epigenetic Alterations in MDS

Clonal changes in the HSC compartment are a key event in the development of
myeloid malignancies, as somatic mutations have been identified in up to 90% of MDS
patients [30]. No MDS-defining mutation has been reported, but rather a subset of re-
currently mutated genes. Nevertheless, the way in which mutations in different genes,
encoding unrelated proteins may lead to similar clinical features, is debatable. One possible
explanation may be the convergence of various genetic events in cases of similar metabolic
alterations. As such, the aberrant hypoxia-independent expression of hypoxia inducible
factor 1α (HIF1α) has been described to occur in at least five common MDS-related muta-
tions (involving the genes Dnmt3a, Tet2, Asxl1, Runx1, and Mll1) [31]. This transcription
factor is essential for the hypoxic response and HSC regulation and correlates with poor
overall survival and disease progression in patients with MDS [32]. In genetically modified
mice with an MDS phenotype, the metabolic reprogramming of HSCs involves an increase
in extramitochondrial glucose catabolism despite adequate oxygen availability (aerobic
glycolysis), which is known as the Warburg effect, a common metabolic pathway in cancer
cells. This results in the activation of HIF1α through different intermediate metabolites of
the TCA cycle, while mitochondrial biogenesis is suppressed [33], thus coupling genetic
events to metabolic changes [31]. Notably, not only has the direct effect of HIF1α on HSCs
been described, but indirect effects of HIF1α may occur through niche cell signaling (see
Section 3, [34]).

Somatic mutations in genes encoding epigenetic regulators represent some of the most
frequent mutations observed in MDS [30]. Epigenetic changes result in post-translational
modification of DNA and histones. One of the most important epigenetic alterations in
myelodysplastic syndromes is modification of DNA methylation, which can be targeted by
hypomethylating agents, such as azacytidine [35]. Epigenetic modifications are regulated
by metabolites, such as acetyl-coenzyme A (CoA), S-adenosylmethionine, α-ketoglutarate
(α-KG), 2-hydroxyglutarate (2-HG), and butyrate, which act as substrates, cofactors, or
antagonists in this context [36]. For example, excessive glycolysis coupled with defective
OXPHOS and increased reductive carboxylation of glutamine in MDS is associated with
elevated levels of the oncometabolite 2-HG [37] (Figure 1). This effect is particularly
prominent in IDH1-mutated MDS and AML, where the defective IDH1 enzyme results
in a very high accumulation of 2-HG rather than α-KG [38]. Recently, published data in
mice have shown that 2-HG inhibits oxoglutarate dehydrogenase activity and reduces
succinyl-CoA production, which leads to attenuation of heme biosynthesis and ineffective
erythropoiesis [39].
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Figure 1. Metabolic changes in myelodysplastic syndromes (MDS). Patients with MDS clinically demonstrate the propen-
sity to develop cardio-metabolic disturbances, such as cardiovascular disorders and iron overload. Various cellular and 
molecular mechanisms are responsible for the metabolic changes in these patients. Whereas the healthy hematopoietic 
stem cells (HSC) preferentially engage in glycolysis for their self-renewal, differentiation to mature blood cells is linked 
with oxidative phosphorylation (OXPHOS). MDS HSC increase the level of aerobic glycolysis and fatty acid oxidation 
(FAO). At least in part, epigenetic regulators, such as TET2, and metabolic enzymes, such as IDH1/2, regulate the shift in 
metabolic pathways; for example, the oncometabolite 2-hydroxyglutarate (2-HG) accumulates in IDH1/2 mutated cells. 
Regulation of such metabolic pathways may be involved in the ineffective erythropoiesis in MDS. Furthermore, the dete-
rioration of MSC function in aging patients, accompanied by decreased glycolysis and increased OXPHOS, is associated 
with increased production of ROS by MSC, which are, in turn, capable of modifying proteins, lipids, and DNA in both 
MSC and HSC, leading to further expansion of the malignant clone. A possible role of bacterial metabolites from the gut 
microbiome in the maintenance of chronic inflammation and related metabolic changes in the bone marrow niche is con-
ceivable. 

The interactions between metabolism and epigenetic regulators are supposed to be 
bidirectional, and epigenetic modifications then drive metabolic changes and thus disease 
progression. Although data on metabolism in MDS are scarce, a recent publication de-
scribed two different metabolomic profiles that can be used to differentiate myeloid cells 
of untreated MDS patients depending on the blast cell count, which indicates metabolic 
plasticity during disease evolution [40]. Although the Warburg effect has been detected 
in groups with <5% and >5% blasts, the metabolic outcomes of these groups were substan-
tially different. In the group with a lower blast count, the accumulation of glycolytic me-
tabolites was detected, whereas the group with a higher blast count demonstrated im-
proved functioning of the electron transport chain, thus compensating for Warburg effect 
disruption [40]. This resembles the former conclusion that leukemic stem cells engage 
preferentially in oxidative phosphorylation, while healthy quiescent HSCs depend on gly-
colysis for energy production [41]. Altered lipid metabolism appears to be a prominent 
feature of the MDS phenotype, as indicated by extreme upregulation of phospholipids in 
the high blast count group, thereby providing a possible link to the risk of disease pro-
gression toward AML [40]. The breakdown of lipids, termed fatty acid β-oxidation (FAO), 
is increased in myeloid malignancies associated with enhanced autophagy, which, in turn, 

Figure 1. Metabolic changes in myelodysplastic syndromes (MDS). Patients with MDS clinically demonstrate the propensity
to develop cardio-metabolic disturbances, such as cardiovascular disorders and iron overload. Various cellular and
molecular mechanisms are responsible for the metabolic changes in these patients. Whereas the healthy hematopoietic stem
cells (HSC) preferentially engage in glycolysis for their self-renewal, differentiation to mature blood cells is linked with
oxidative phosphorylation (OXPHOS). MDS HSC increase the level of aerobic glycolysis and fatty acid oxidation (FAO). At
least in part, epigenetic regulators, such as TET2, and metabolic enzymes, such as IDH1/2, regulate the shift in metabolic
pathways; for example, the oncometabolite 2-hydroxyglutarate (2-HG) accumulates in IDH1/2 mutated cells. Regulation
of such metabolic pathways may be involved in the ineffective erythropoiesis in MDS. Furthermore, the deterioration of
MSC function in aging patients, accompanied by decreased glycolysis and increased OXPHOS, is associated with increased
production of ROS by MSC, which are, in turn, capable of modifying proteins, lipids, and DNA in both MSC and HSC,
leading to further expansion of the malignant clone. A possible role of bacterial metabolites from the gut microbiome in the
maintenance of chronic inflammation and related metabolic changes in the bone marrow niche is conceivable.

The interactions between metabolism and epigenetic regulators are supposed to be
bidirectional, and epigenetic modifications then drive metabolic changes and thus disease
progression. Although data on metabolism in MDS are scarce, a recent publication de-
scribed two different metabolomic profiles that can be used to differentiate myeloid cells
of untreated MDS patients depending on the blast cell count, which indicates metabolic
plasticity during disease evolution [40]. Although the Warburg effect has been detected
in groups with <5% and >5% blasts, the metabolic outcomes of these groups were sub-
stantially different. In the group with a lower blast count, the accumulation of glycolytic
metabolites was detected, whereas the group with a higher blast count demonstrated im-
proved functioning of the electron transport chain, thus compensating for Warburg effect
disruption [40]. This resembles the former conclusion that leukemic stem cells engage
preferentially in oxidative phosphorylation, while healthy quiescent HSCs depend on
glycolysis for energy production [41]. Altered lipid metabolism appears to be a prominent
feature of the MDS phenotype, as indicated by extreme upregulation of phospholipids in
the high blast count group, thereby providing a possible link to the risk of disease progres-
sion toward AML [40]. The breakdown of lipids, termed fatty acid β-oxidation (FAO), is
increased in myeloid malignancies associated with enhanced autophagy, which, in turn,
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also supports OXPHOS specifically in malignant cells but not in normal cells; this leads
to proliferation and growth of malignant clones [42]. Thus, pharmacological modulation
of FAO, e.g., with the reversible FAO inhibitor malonyl-CoA, is considered a potential
therapeutic intervention to modulate malignant cell fate and, possibly, to influence normal
hematopoiesis [43].

3. Metabolic Pathways in Non-Hematopoietic Cells of the MDS Niche and Beyond

The hematopoietic niche is a key player that supports and regulates hematopoiesis by
producing various cytokines and chemokines, secreting extracellular matrix components,
and maintaining direct cell–cell interactions [14]. MSCs are one of the most important
cellular players in the hematopoietic niche, as they have the potential to differentiate
into cells of the adipogenic, osteogenic, or chondrogenic lineage [44]. In vivo, MSCs use
glycolysis as the primary metabolic pathway and sustain “young” mitochondria through
intensive autophagy and mitophagy [45]. One explanation for the utilization of glycolysis
despite its reduced ATP production is the benefit of the protective effect of antioxidants
from the pentose phosphate pathway [46]. MSCs may alter their metabolism in aging or
disease. As such, MSCs derived from obese patients contain more defective mitochondria
and exhibit reduced levels of glycolysis [47]. Similarly, MSCs of elderly individuals,
especially those with atherosclerosis, favor OXPHOS, which leads to the accumulation of
reactive oxygen species (ROS) [48,49]. Preference for OXPHOS is also observed in cells of
mesenchymal origin after treatment with the hormone erythropoietin [50–52], which is
elevated in a portion of MDS patients and is associated with worse prognosis with regard
to transfusion frequency [53]. Of note, recent data demonstrate the increased propensity
of highly purified MSCs from MDS patients to differentiate towards adipocytes [54],
resembling bone marrow changes in obesity and aging [55]. Although these data for MDS
are not unanimous [56], the increased adipogenic differentiation of MSCs and consequent
support of leukemic progenitor cells are hallmarks of the related myeloid malignancy,
AML [57].

However, metabolic processes in MDS MSCs have not been sufficiently investigated
thus far, because in vitro research on MSC metabolism is biased by the high concentration
of nutrients and growth factors in the culture medium. While low-passage MSCs maintain
aerobic glycolysis as their primary metabolic pathway [58,59], their prolonged expansion
leads to a switch towards OXPHOS [60,61]. To avoid such effects, modifications of culture
conditions were proposed, such as induction of hypoxia [62,63] or usage of a HIF1α
stabilizer (e.g., deferoxamine) [64], which prevents MSC senescence induced in cell culture
by sustaining glycolysis and inhibiting OXPHOS.

Besides MSCs, several other cell types are hematopoietic niche components. As an
example, endothelial cells line blood vessels and regulate the egress of mature blood cells
from the bone marrow to the bloodstream. Dysfunction of endothelial cells and enhanced
bone marrow vascularization are described in MDS [65]. The aberrant expression of HIF1α
in endothelial cells represents a potential target for drugs such as lenalidomide, which
has been found to have strong inhibitory effects on HIF1α expression besides its known
anti-angiogenic effects [66].

3.1. Inflammation in the Bone Marrow (BM) Niche

BM niche cells contribute to the regulation of the hematopoietic response during high
demand circumstances, such as inflammatory or infectious events [12]. Through paracrine
secretion of cytokines and growth factors (such as G-CSF, IFNs, IL-6, IL-1, TGFβ, and
TNFα), as well as direct interactions between niche cells and HSCs, the BM niche promotes
the exit of HSCs from a quiescent state so that they can expand and differentiate into
mature myeloid cells [12,67].

Similar to the metabolic plasticity of HSCs, immune cells (such as macrophages,
neutrophils, and lymphocytes) also have different metabolic requirements depending on
their function and differentiation. Equivalent to cancer cells, rapid expansion of immune
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cells requires a switch to glycolytic metabolism. Glycolytic reprogramming depends on
activation of several enzymes, such as mTOR kinase, which is the primary regulator that
promotes the entry of myeloid and lymphoid cells into a pro-inflammatory state [68–70].
In general, aerobic glycolysis is mainly used by cells with inflammatory activity and a
high demand for proliferation, whereas cells with immunoregulatory or anti-inflammatory
functions that are involved in cell repair primarily use FAO and the TCA cycle [71]. This
metabolic adaptation according to phenotype is particularly evident in macrophages,
which can be classified into two types: the highly glycolytic M1 type, which produce
pro-inflammatory cytokines and ROS, and the anti-inflammatory M2 type, which primarily
rely on FAO metabolism and OXPHOS, ensuring energy fuels during long-lasting repair
processes [72].

Chronic inflammation of the bone marrow has been implicated in the development
and progression of myeloid malignancies [73]. Especially in the early disease stages of
MDS, an aberrant innate immune response might contribute to progression and mainte-
nance of malignant clones. Indeed, inflammatory mediators, such as the danger-associated
molecular pattern molecules S100A8 and S100A9, and pro-inflammatory cytokines, in-
cluding IL-1β, IL-6, TNFα, and IFN-γ, are elevated in low-risk MDS [74]. The alarmin
S100A9 protein serves as a key driver of the NLRP3 inflammasome complex; this medi-
ates pyroptosis, a form of inflammatory cell death of HSCs [75] that promotes the MDS
phenotype. S100A9 triggers the inflammasome by activating TLR4-mediated downstream
signaling, including nuclear factor kappa B (NF-κB)-dependent transcription and secretion
of pro-inflammatory cytokines. Furthermore, S100A9 modulates the metabolic features of
HSCs through activation of NADPH oxidase and increased levels of ROS, which initiate
cation influx [76]. Moreover, S100A8/S100A9 stimulates IL-1β production in adipose tissue
macrophages, which, in turn, leads to stimulation of myelopoiesis in the bone marrow [77],
thereby connecting hematopoiesis with adipose tissue inflammation in obesity.

Increasing evidence indicates a linkage among dysregulated metabolism, inflamma-
tion, and clonal hematopoiesis [78]. For instance, Tet2-deficiency in mouse HSPCs and
TET2-mutant human HSPCs are associated with a clonal advantage in an inflammatory
milieu [79]. The TET2 protein plays a role as an epigenetic regulator in myeloid differentia-
tion and further inhibits expression of inflammatory factors, such as IL-6 [80]. Therefore,
TET2 mutations, which are increasingly detected in aging population [81], lead to the
expansion of clonal hematopoiesis, particularly due to the development of resistance in the
inflammatory micro-milieu produced by these clones. In Tet2-deficient mice, inflammatory
macrophages express high levels of IL-1β, which leads to intensive monocyte recruitment
and accelerates atherosclerosis development [82,83]. In humans, whole exome sequencing
has demonstrated similar results and has shown that the presence of clonal hematopoiesis
is associated with an elevated risk of cardiovascular disease [84].

Taken together, the combination of dysregulated metabolism and pro-inflammatory
alterations generates a complex immunometabolic network in the bone marrow, which
contributes to the pathogenesis of CHIP and MDS [10,18].

3.2. Iron Overload and Its Effect on Niche Metabolism in MDS

Iron overload (IO) is considered a hallmark of MDS (Figure 1) due to ineffective
erythropoiesis and the need for chronic transfusions, which are a mainstay of supportive
care [85]. It is difficult to distinguish age- or lifestyle-related metabolic changes in patients
with MDS from those induced by iron overload; an additive effect may be assumed.
However, a bidirectional effect is also conceivable. IO in the context of MDS may predispose
an individual to the development of metabolic syndrome; the latter may contribute to the
persistence of systemic inflammation and the propagation of malignant clones in the bone
marrow niche.

At the molecular level, IO is associated with a reduction in the ATP/AMP ratio in
mononuclear cells in MDS compared with age-matched healthy controls, which indicates
an altered energy balance [86]. This reduction originates from a progressive inefficiency of
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OXPHOS, which is characterized by an increase in oxygen consumption and a decrease in
ATP generation. Such uncoupled respiration leads not only to decreased energy production
but also to increased production of ROS, which can then modify proteins, lipids, and DNA
to promote genetic instability and further propagation of mutated clones [87].

Aberrant HIF1α signaling may couple the effect of IO on HSCs and niche cells in
MDS. Overexpression of HIF1α in malignant myeloid cell lines attenuates the damage of
erythroid progenitors induced by ROS due to the IO [88]. On the contrary, HIF1α elevation
in MSCs leads to increased apoptosis in parallel with high ROS levels and elevation of
MSC-secreted cytokines that are involved in the pathogenesis of MDS (e.g., IL-6, IL-8,
TGFβ, and VEGF) [89]. Stabilization of HIF1α in MSCs prevents osteogenic differentiation
and therefore alters the function of these cells and, in parallel, reduces mitochondrial
biogenesis [34]. Further investigation of the role of HIF1α in the MDS micro-milieu is
required, as various HIF inhibitors are currently being tested for different hematological
and oncological disorders [90].

IO also contributes to cardiovascular pathology in MDS [91]. Over the last years,
clonal hematopoiesis has been considered a distinct risk factor for the development of car-
diovascular disorders, such as ischemic heart disease [84]. However, as an MDS-associated
factor, IO can aggravate or even trigger atherosclerosis-like changes, including vascular
impairment, inflammation, ROS production, and LDL oxidation, through the multifactorial
pro-atherogenic action of non-transferrin-bound iron (NTBI) [92].

3.3. Relationship between the Microbiome and Metabolic Changes in the BM

The influence of the gut microbiota composition on hematopoiesis in the reactive
state and hematologic malignancies has been proposed over the last 10 years [93]. An
impairment in HSPC function and hematopoiesis leading to microbiome depletion has
been demonstrated in mice treated with broad-spectrum antibiotics [94]. Importantly, in
this mouse model, HSC cell cycle activity was suppressed and was accompanied by a mat-
uration block in the final stages of granulocyte development, which resembles ineffective
hematopoiesis in MDS [94].

A clear association between microbial evasion and pre-leukemic myeloproliferation
has been shown in Tet2-deficient mice [95]. On one hand, these mice display increased in-
testinal permeability accompanied by the presence of Lactobacillus in the blood stream with
consequent induction of systemic inflammation and IL-6 elevation; on the other hand, ex-
cessive myeloproliferation and extramedullary hematopoiesis resemble the clinical features
of chronic myelomonocytic leukemia (CMML) [95,96]. Supporting this association, the use
of germ-free mice or antibiotic treatment inhibited the growth of Tet2-deficient myeloid and
lymphoid tumor cells in vivo and decreased inflammatory TNFα signaling in Tet2 knock-
out mice [97]. Taken together, the shifts in the bacterial composition that occur in MDS,
especially decreased microbial diversity, may conceivably lead to the suppression of normal
hematopoiesis and therefore could contribute to the pathophysiology of cytopenia [94]. In
addition, alterations in the microbiome may promote the emergence of malignant clones
through inflammatory signaling, at least when certain molecular aberrations, such as TET2
mutations, are present [95].

Although the gut microbiota of MDS patients has not yet been characterized, there
is already evidence of its composition in the closely related myeloid neoplasm of AML.
Decreased microbial diversity in AML patients predicts the development of infection and
systemic inflammation during treatment [98–100], and conversely, the risk of developing
secondary AML is significantly higher in individuals with prior infection and antibiotic
use, which results in changes in microbial distribution [101]. The most abundant bacte-
rial phyla in treatment-naïve AML patients without antibiotic exposure were Firmicutes
(mostly Gram-positive bacteria including Clostridia, and Bacilli, which are able to regulate
cholesterol homeostasis [102]), Bacteroidetes (produce succinic acid, acetic acid, and in
some cases propionic acid, as major end products), Proteobacteria (including pathogenic
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Gram-negative bacteria, such as Escherichia, Salmonella, and Vibrio, among others), Verru-
comicrobia, and Spirochaetes [103].

Taken together, the published data serve as a basis for considering microbiome changes
as relevant players in the pathogenesis of MDS. Whether specific microorganisms or a
general imbalance in gut microflora induce nonspecific inflammation to support malignant
hematopoiesis remains to be determined. Therefore, host–microbial symbiosis represents
an attractive research area that can improve our understanding of MDS pathogenesis and
identify potential treatment options.

4. Summary and Outlook: Clinical and Therapeutic Aspects of Metabolic Changes in
MDS Patients

Systemic metabolic changes that result in an elevated risk for cardiovascular diseases
are epidemiologically and pathogenetically associated with a higher risk of developing
clonal myeloid disorders, such as MDS [104]. Both cardiovascular and clonal hematological
diseases are increasingly detected in the elderly population and are linked to age-related
inflammatory processes.

At the cellular level, altered metabolic pathways in malignant cells lead to a survival
advantage and expansion of malignant clones [78]. It is assumed that the surrounding
bone marrow microenvironment adapts to new conditions based on its needs toward a
pro-inflammatory milieu, which supports malignant clones [12]. The key regulators of
associated metabolic pathways are also considered potential therapeutic targets in various
malignant disorders [105], including myeloid malignancies [106].

A good example of a metabolically oriented MDS therapy is iron chelation, the primary
effect of which was originally attributed to reduction in iron overload with consequent
reduction in ROS and the pathological effects thereof on hematopoiesis. However, it has
been shown that iron depletion exerts direct metabolic effects through improvement in
insulin resistance in patients with hyperferritinemia [107]. According to retrospective
analyses, iron chelation also delayed cardiac events in transfusion-dependent patients
with MDS [108], whereas the randomized prospective TELESTO trial demonstrated that
adverse events, including cardiac dysfunction, occurred approximately one year later in
patients treated with iron chelation compared with placebo [91]. At the molecular level,
iron chelators can directly improve the ATP/AMP ratio to partially restore mitochondrial
function and reduce the malondialdehyde (MDA) level [86]. Therefore, manipulation of
iron metabolic pathways represents a metabolism-modulating therapy in MDS patients.

Similarly, changes in metabolic activity are observed in the treatment of leukemia
patients with the oral BCL-2 inhibitor venetoclax combined with demethylating agents.
This combination, which is currently under investigation for MDS (e.g., clinical trials
NCT04401748 and NCT04550442), eradicates leukemic stem cells by disrupting the TCA
cycle [109] and decreasing amino acid uptake, which results in suppressed OXPHOS ac-
tivity [110]. Other mutation-based therapies, specifically ivosidenib (IDH1 inhibitor) and
enasidenib (IDH2 inhibitor), are the first FDA-approved drugs that target metabolism in
AML patients, as they induce durable remissions by reducing the levels of the oncometabo-
lite 2-HG [111,112], which leads to a differentiation blockade of AML cells [113].

Another intervention based on dietary caloric restriction has become increasingly
recognized as a supportive therapeutic approach for various malignancies [114]. Di-
etary interventions lead to improvement in insulin sensitivity in nondiabetic individuals,
whereas phosphatidylcholine and proline concentrations represent important predictors
of response [115]. Hormonal changes induced by fasting might be of special interest in
MDS [116,117], because changes in adiponectin, leptin, insulin, and IGF1 levels influence
the apoptosis rate of HSCs in the bone marrow [116]. The potential of caloric restriction to
reduce inflammation and its positive influence on the gut microbiome [118] suggest that
this approach is worth exploring in MDS.

In addition to therapeutic approaches, understanding the MDS metabolome may also
have prognostic implications. Recently, a panel including 15 metabolism-related genes was
established and was determined to have better prognostic capability compared with the
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traditional international prognostic scoring system (IPSS) [119]. Whether this gene-based
prognostic model will be applicable in clinical practice remains unclear.

Taken together, considering MDS a disease with specific metabolic changes supports
both the identification of modes of action of already approved drugs and opens a wide
field of potential novel targets for interference. Further clarification of the distinct role of
the bone marrow microenvironment in the metabolic regulation of MDS clones will lead to
novel treatment strategies for this malignancy.
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