. . 4
micromachines ﬂw\p\py
Va

Article
Smart Tactile Sensing Systems Based on Embedded
CNN Implementations

Mohamad Alameh 1@, Yahya Abbass (9, Ali Ibrahim 2*{© and Maurizio Valle !

1 Department of Electrical, Electronic and Telecommunication Engineering and Naval Architecture

(DITEN)-University of Genoa, via Opera Pia 11a, 16145 Genova, Italy; Mohamad.Alameh@edu.unige.it (M.A.);
Yahya.Abbass@edu.unige.it (Y.A.); Maurizio.Valle@unige.it (M.V.)

Department of Electrical and Electronics Engineering, Lebanese International University (LIU),

Beirut 1105, Lebanon

* Correspondence: Ali.Ibrahim@edu.unige.it; Tel.:+39-3279364917

check for
Received: 1 December 2019; Accepted: 15 January 2020; Published: 18 January 2020 updates

Abstract: Embedding machine learning methods into the data decoding units may enable the
extraction of complex information making the tactile sensing systems intelligent. This paper presents
and compares the implementations of a convolutional neural network model for tactile data decoding
on various hardware platforms. Experimental results show comparable classification accuracy
of 90.88% for Model 3, overcoming similar state-of-the-art solutions in terms of time inference.
The proposed implementation achieves a time inference of 1.2 ms while consuming around 900 pJ.
Such an embedded implementation of intelligent tactile data decoding algorithms enables tactile
sensing systems in different application domains such as robotics and prosthetic devices.

Keywords: tactile sensing systems; embedding intelligence; convolutional neural network

1. Introduction

Embedding intelligence near the sensor location may enable tactile sensing systems to be
incorporated in many application domains such as prosthetics, robotics, and the Internet of Things.
Tactile sensing systems are composed of three main parts, as shown in Figure 1. The distributed tactile
sensors are in charge of converting the mechanical stimuli applied on their surface into electrical
signals. Tactile sensors could be made from different materials, e.g., capacitive, piezoelectric, and
piezoresistive materials [1]; they should be able to enable capabilities similar to what happens on the
human skin such as normal and shear force detection, vibration detection, softness, texture, shapes,
etc. The readout electronics interface with the sensor arrays by acquiring and digitizing the electrical
signals to be then processed by the digital tactile data processing unit [2].

Readout Tactile Data
Electronics Decoding

Figure 1. Block diagram of the tactile sensing system.

Distributed
Tactile
Sensors

Decoding tactile information concerns different kinds of tasks, which could be categorized as:
simple or complex processing depending on the algorithm’s complexity. For simple processing,
an example of the information retrieved is temperature, the intensity of the contact force, and contact
location, direction, and distribution. Concerning complex processing, more intelligent tasks are
expected such as patterns, textures, and roughness classification or touch modalities” discrimination.
Employing the complex processing approach enables intelligence in tactile sensing systems. It is

Micromachines 2020, 11, 103; d0i:10.3390/mi11010103 www.mdpi.com/journal /micromachines

http://www.mdpi.com/journal/micromachines
http://www.mdpi.com
https://orcid.org/0000-0002-6345-8313
https://orcid.org/0000-0002-9225-8900
https://orcid.org/0000-0001-7872-0794
https://orcid.org/0000-0002-7366-6060
http://dx.doi.org/10.3390/mi11010103
http://www.mdpi.com/journal/micromachines
https://www.mdpi.com/2072-666X/11/1/103?type=check_update&version=2

Micromachines 2020, 11, 103 20f12

achieved by applying sophisticated and complex data decoding algorithms able to extract the
meaningful information from sensors. Machine learning (ML) has emerged as an efficient method
in many fields and in everyday tasks in smartphones and electronic systems. ML is a powerful
learning from examples paradigm used to address classification and regression problems. In particular,
Convolutional (CNN) and Deep Neural Networks (DNN) have recently proven their effectiveness
when applied to image recognition and tactile data decoding [3]. Many recent research works have
focused on the development of ML algorithms for tactile sensing systems [4]. However, embedding
machine learning algorithms on hardware platforms near the sensors location is challenging due to
the complexity such algorithms impose in terms of time latency and energy consumption. Our main
goal is to achieve a tactile sensing system able to perform smart tasks. This system is intended to
be portable/wearable, for which the energy budget is limited. Moreover, for the target applications,
i.e., robotics and prosthetics, being lightweight is a critical constraint limiting the hardware and
battery size.

In this perspective, this paper presents the implementation of CNN algorithms on different
hardware platforms. The main contribution of this paper may be summarized as follows:

¢ It proposes an optimized CNN model, adopted from Gandarias et al.’s research [5], based on
reduced data, which demonstrates the ability to provide comparable results in terms of accuracy,
i.e., 90.88%, with reduced hardware complexity.

* It presents efficient implementations of the CNN model on different hardware platforms for
embedded tactile data processing. The proposed implementations achieve a time inference
of 1.2 ms while consuming around 900 pJ. The work demonstrates its suitability for real-time
embedded tactile sensing systems.

e Itraises a discussion about integrating intelligence into tactile sensing systems and how it enables
tactile sensing systems in different application domains.

The remainder of this paper is organized as follows: Section 2 reports the state-of-the-art, showing
the recent embedded CNN implementations. In Section 3, we illustrate the experimental setup and
methodology. In Section 4, the hardware implementation is explained. The results and discussion are
presented in Section 5, followed by the conclusions in Section 6.

2. State-of-the-Art

Different works have addressed the tactile data classification problem, using different methods
including, but not limited to, machine learning and deep learning [6—10]. While most of the work
done was focused on the methodology itself, few works addressed the implementation on embedded
platforms where the real application should reside. Gandarias et al. [11] used two approaches to classify
eight objects: finger, hand, arm, pen, scissors, pliers, sticky tape, and Allen key, using a 28 x 50 tactile
sensory array attached to a robotic arm, the first approach using the Speeded-Up Robust Features
(SURF) descriptor, while the second a pre-trained AlexNet CNN for feature extraction, with a Support
Vector Machine (SVM) classifier for both approaches. In Yuan et al.’s research [12], a CNN was also
used for active tactile clothing perception, to classify clothes grasped by a robotic arm equipped with a
tactile sensor that output a large RGB pressure map. Based on different textile properties: thickness,
smoothness, textile type, washing method, softness, stretchiness, durability, woolen, and wind proof.
Each property held two or more labels, e.g., the thickness can be a number from 04, and the employed
model for textile classification was VGG-19 pretrained on ImageNet [13]. In Rouhafzay et al. [14],
a combination of virtual tactile sensors and visual guidance was employed to distinguish eight classes
of simulated objects; the tactile sensor size was 32 x 32, and the input size of the neural network was
32 x 32 x 32, which was a sequence of tactile sensor images. Abderrahmane et al. [15] introduced
a zero-shot object recognition framework, to identify previously unknown objects based on haptic
feedback. They used BioTac sensors, and two CNNs were employed: one for visual data (input size:
224 x 224 x 30) and the other for tactile data (32 x 30). They overcame the results of SVM in a previous

Micromachines 2020, 11, 103 3o0f12

work [16]. In Alameh et al.’s research [3], transfer learning was used to classify touch modalities
obtained through a small 4 x 4 piezoresistive sensory array, by transforming tensorial data into images
and then using different CNN models trained on ImageNet [13]. In Gandarias et al.’s research [5], they
used a light CNN based (only three convolutional layers inside) on AlexNet, to identify 22 objects
using their pressure map, collected from a 28 x 50 tactile sensory array. Other works include those
in [17-19].

While all these previous works were not implemented in an embedded environment, we can
find few others targeting an embedded implementation for tactile sensing applications. The need for
embedded implementation arises from the need to have low power, small form factor electronics to
process the tactile information, especially in prosthetic applications [20]. Osta et al. [21] demonstrated
an energy efficient system for binary touch modality classification, based on SVM and implemented on
a custom hardware architecture. The energy per inference was 81 m]J, and the inference time was 3.3 s.
Ibrahim et al. [22] presented a real-time implementation on FPGA for touch modality classification.
Using SVM, they achieved a 350 ms inference time and a 945 m] inference energy for three class
classification, as well as 970 ms/6.01] for a five class classification.

3. Experimental Setup and Methodology

3.1. Dataset

Targeting the classification of tactile data, the use of the dataset collected in [5] was considered.
Tactile data were collected by a high resolution (1400 pressure taxels) tactile array, which was attached
to the 6 DOF robotic arm AUBO Our-i5 [5]. A set of piezoresistive tactile sensors was distributed with
a density of 27.6 taxels/cm?, forming a matrix of 28 rows by 50 columns. The dataset was composed of
pressure images that presented the compliance of 22 objects with the tactile sensors. These images were
divided into 22 classes labeled as adhesive, Allen key, arm, ball, bottle, box, branch, cable, cable pipe,
caliper, can, finger, hand, highlighter pen, key, pen, pliers, rock, rubber, scissors, sticky tape, and tube.
Figure 2 shows an example of the tactile images of three objects used for the training of the CNN model.
Each taxel in the tactile array presents a pixel in the pressure image; thus, each pressure image is
28 x 50 x 3 in size. Therefore, the color of the pixel presents the pressure applied at the corresponding
taxel. The minimum pressure is presented by black color, and the maximum pressure is presented by
red color. Pressure images were then transformed into grayscale images (image size = 28 x 50 x 1),
forming the tactile dataset.

Scissors Tape Pen

7

£

Visual images

|

Pressure images

Tactile dataset * . .

Figure 2. Examples of visual (top) vs. pressure (middle) vs. tactile images (bottom) of common objects.

Micromachines 2020, 11, 103 40f12

3.2. Tested Model

Due to computational and memory limitations in the embedded application, a light CNN model
was required to perform classification tasks with high accuracy and fewer parameters. In this work,
we chose to use one of the models implemented in [5] as a base model to classify the objects in the
aforementioned dataset. Among all the implemented networks, we chose to use the custom network
TacNet4 because it was the best network that fit the embedded application (fewer parameters with
high accuracy [5]). The model was based on AlexNet, which is usually used in computer vision
for object classification [23]. The network was composed of 3 Convolutional layers (Convl, Conv2,
and Conv3) with filters sizes (5 x 5, 8), (3 x 3, 16), and (3 x 3, 32) respectively. Each convolutional
layer was followed by a Batch Normalization (BaN), Activation (ReLU), and Maxpooling (Maxpool)
layer, respectively, where all pooling layers used 2 x 2 maxpooling with a stride of two. A Fully
Connected layer (FC = [fc4]) with 22 neurons followed by a softmax layer were used to classify the
input tactile data and give the likelihood of belonging to each class (object). The input shape of the
model was configured to the size of the collected tactile data. Figure 3 shows the detailed structure of
the network used.

FC4,22

j

I \ 0 \o

: i E\ TCJ; :\ D ? ;

I D o) > .
I o, g Z

| |) 8 % = b 8 j %* g g || Object

' Al & U Label

1 | 1B 2 o) 2 o)

| | X X X

| I 10 m a2

| I

\ /

E

—

Softmax

Figure 3. Architecture of the tested model. BaN, Batch Normalization.

The network was implemented in MATLAB R2019b using the Neural Network Toolbox. A total of
1100 tactile images were used to train the model. The learning process was implemented in MATLAB
by dividing the tactile data into three sets: training, validation, and test sets.

When having an adequate dataset, the validation set is expected to be a good statistical
representation of the entire dataset. If not, the results of the training procedure highly depend
on how the dataset is divided.

To avoid this, In this work, we used the cross-validation method. The data were partitioned into
five folds, and each fold was divided into training, validation, and test sets. The training set formed
80% of the dataset, and the validation and test sets formed 10% each. This process was then repeated
five times until all the folds were used, without having common elements across all folds for the
validation and test sets, as shown in Figure 4.

For each training process, the training set was composed of 880 images, 40 images for each
label, whilst each of the validation and test sets was composed of 110 images. Training the model
from scratch required a large dataset to achieve high accuracy. For that reason, data augmentation
techniques, i.e., flipping, rotation, and translation in the X and Y axis, were applied to the dataset.
Hence, the amount of tactile data available for training and validation was increased to 5280 and 660,
respectively. The performance of the implemented model was evaluated based on the recognition rates

Micromachines 2020, 11, 103 50f12

achieved in a classification experiment of the test set composed of 110 original images (objects) from
22 classes.

Fold 1
ﬁ — Accuracy 1
Fold 2
ﬁ — Accuracy 2
Dataset Fold 3
IR - e
M —— Accuracy 3 Accuracy
Training Training = 80% Dataset Fold 4
H — Accuracy 4
Testing | Testing = 10% Dataset Fold 5
Validation | Validation = 10% Dataset H — Accuracy 5

Figure 4. Visual representation of the training, test, and validation split using cross-validation.

For embedded applications, with computational, memory, and energy constraints, it is necessary
to decrease the number of trainable parameters in the CNN model. In this work, we chose to decrease
the number of parameters of the trained model by decreasing the input image size (i.e., lower resolution
images); an example is shown in Figure 5. For that reason, several experiments were performed to
choose the smaller size of the input data, keeping the same classification accuracy. The input shapes
were chosen in a way that each shape resulted in a reduction of the number of parameters.

\-"'I I \ '/

28 x50 26 x 47 28 x40 28 %32 24 x 32

Figure 5. Example of an image resized for the sticky tape object; the red canvas is shown for illustration,
which signifies the original image size (28 x 50).

Table 1 shows how the number of parameters of the layers depended on the input shape.
The change in the input shape affected only the number of parameters of the fully connected layer.
This was due to the fact that the number of parameters in the convolutional layer depended only
on the size and number of the filters assigned for each layer (((width of the filter x height of the
filter) + 1) x No. of filters), while in the FC layer, the number of parameters ((No. of neurons in the
FClayer x No. of neurons in the previous layer) + 1) was affected by the size of the input image and
the output layer. The performance of the model was studied with five different input shapes, as shown
in Table 1. This resulted in five different models with different input shapes, each one trained from
scratch 5 times (one time per fold), which output 25 trained NNs. Figure 6 shows the training and
validation accuracy over epochs, for the first three models among the five models. The figure shows
that the accuracy achieved by the three models was close to 100%. Each model was evaluated with
MATLAB by running a classification task on the test set.

Micromachines 2020, 11, 103 6 of 12

Table 1. Distribution of the number of parameters on the models’ layers.

Layers Modell Model2 Model3 Model4 Model5
(28 x 50) (26 x 47) (28 x 40) (28 x 32) (24 X 32)

Convl 208 208 208 208 208
BaN1 16 16 16 16 16
Conv2 1168 1168 1168 1168 1168
BaN2 32 32 32 32 32
Conv3 4640 4640 4640 4640 4640
BaN3 64 64 64 64 64
FC 19,734 16,918 14,102 11,286 8470

Total 25,862 23,046 20,230 17,414 14,598

1004 FETPRPTY 100 4
A oo 0, ‘7“0 L2 Ad 2 Ad]
90 4 .I':i'l‘.\lll‘l"ll N 90
At
80 l: 80+ f :
- 70 -/ - 704 l?
ol 4 w
- 60 4 ,; > J ;
o I 8 |
§ 5074 § 01
I ‘
du : dol E
304 304 .
| - Validation (Model 1) —=— Training (Model 1)
21 ‘\‘,’ +— Validation (Model 2) 201 *— Training (Model 2)
104 s~ Validation (Model 3 0 -+ Training (Model 3)
R 1]
0 0 . . . : v ; .
0 % m 1™ M 2 R
Epochs Epochs
(2) (b)

Figure 6. Learning accuracy for the 3 configurations of the TactNet4model: (a) training; (b) validation.

Figure 7 shows the change in the number of trainable parameters and the average classification
accuracy, with respect to the change in the input shape, as well as the FLOPs. The classification
accuracy presented the average test accuracy among the five folds. The figure shows that it was
possible to decrease the input size from 28 x 50 x 1 to 26 x 47 x 1 or to 28 x 40 x 1 and achieve an
increase in the classification accuracy from 90.70% to 91.98% and 90.88%, respectively. Decreasing
the input size of the model resulted in a drop in the trainable parameters from 25,862 to 23,046
and 20,230 parameters, respectively, for the aforementioned models. This decrease in the number
of parameters would also induce a decrease of the number of Floating Point Operations (FLOPs),
as shown in Figure 7; the average ratio of the decrease in the number of parameters with respect
to the decrease in the number of FLOPs was 1/44 i.e., with each decrease in number of parameters,
there was a 44 times decrease of the FLOPs. The number of FLOPS in Figure 7 corresponds to the
convolutional layers only, where most of the FLOPs were, and these FLOPs were calculated according
to the following formula [24]: FLOPs = n x m x k, where n is the number of kernels, k is the size of
the kernel (width X height x depth), and m the size of output feature map (width x height), while the
depth in the kernel size corresponds to the depth of the input feature map.

Micromachines 2020, 11, 103 7 of 12

100 4 ~ 33000 1.6M
1 90.7 91.98 90.88 890 L
- - _
90 n l_\\%y_gf//,. I 30000 | 1 am
80 4 250x10* L 27000
1 T 230x10* L 24000 [12M
70 4 * . I
] \ \2702 104 N
604 1.10x10° *\. x 21000 L 10M
1 9.91x10° *\1—.74“0* L 18000
50 -~ ’ 4t I 800.0k
] 8.69x10° 146310 [15000
40 L
1 6.95x10° * 12000 [600.0k
30 o
| —®— Average Accuracy (%) 5.96x10% | 9009 | 400.0k
204 —e@— Number of parameters L 6000
104 —*—FLOPs [3000 [2000k
0 T T T . T 0 L 0.0
Model 1 Model 2 Model 3 Model 4 Model 5

Figure 7. Comparison of the performance, number of trainable parameters, and FLOPS in the
convolutional layers.

4. Embedded Hardware Implementations

The models obtained from MATLAB were converted to Open Neural Network Exchange (ONNX)
format [25]. ONNX provides an open source format for Al models, both deep learning and traditional
ML, which enables the inter-operability between different frameworks. Figure 8 shows how the
CNN model was converted into different formats for different hardware platforms. Figure 7 shows
the number of trainable parameters and the corresponding accuracy for each model. It is clearly
shown that all models preserved comparable accuracy, but the best were the first three, i.e., Model 1,
Model 2, and Model 3. However, since Model 2 and Model 3 demonstrated a reduced number of
training parameters and accordingly a reduced number of operations (FLOPS), they were selected for
the hardware implementation. This choice was based on the fact that reducing FLOPS reduced the
inference time and power consumption.

ONNX File
(.onnx)

!

}

OpenVINO Model
Optimizer

ONNX to TensorFlow
converter

TensorFlow
frozen graph
(-pb)

|TensorF10w Lite| | TensorRT |

(&) 1

f TFLite graph {

Intel Movidius NCS2 - Raspberry Pid NVIDIA Jetston TX?2

Figure 8. Implementation flow.

Micromachines 2020, 11, 103 8 of 12

The reason behind the selection of hardware platforms was as follows:

1. The custom architecture targeting the embedded implementation of neural networks, e.g.,
Movidius NCS2.

2. The high usability of ARM processors in embedded architectures, e.g., Raspberry Pi 4.

3. The high performance architecture, designed for parallel processing in general, and also optimized
for embedded applications: e.g., NVidia Jetson TX2.

4. The support for the execution of pretrained neural network models coming from different
platforms without retraining.

4.1. Movidius Neural Compute Stick 2

Movidius Neural Compute Stick 2 (NCS2) is a hardware accelerator designed by Intel for
on-chip neural network inference, especially CNNs, equipped with the Intel Movidius MyriadX
Vision Processing Unit (VPU). It contains 16 SHAVE (Streaming Hybrid Architecture Vector Engine)
cores [26] and a dedicated hardware neural network accelerator. It requires a host to flash the neural
network, as well as to feed it with data and invoke the inference to get the results back via the USB 3.0
port. The host can be a Linux, Windows, or Mac based machine. To achieve these tasks, Intel provides
OpenVINO: Open Visual Inference and Neural network Optimization Toolkit, a cross platform toolkit
that enables deep learning inference and easy heterogeneous execution across multiple Intel® hardware
(VPU, GPU, CPU, FPGA). The optimizations offered by OpenVINO are: batch normalization and scale
shift, linear operation merge and linear operation fusion. The details were mentioned in [27].

4.2, Jetson TX2

NVidia’s Jetson TX2 [28] is a power efficient embedded AI computing device, designed mainly
for edge Al, and belongs to the Pascal™ family of GPUs, loaded with 8 GB of memory, 59.7 GB/s
of memory bandwidth, and 8 GB of RAM. In this experiment, we used TensorFlow (TF) [29] for
the inference, as well as NVidia TensorRT [30] under Ubuntu OS. TF is an open source end-to-end
machine learning platform, while TensorRT is a platform for high performance deep learning inference
dedicated to NVidia hardware. It includes a deep learning inference optimizer and a runtime that
delivers low latency and high throughput for deep learning inference applications.

As an optimization for TensorFlow, TensorFlow Lite (TFLite) [31] is an open source deep learning
framework for on device inference. The same TensorFlow model can be converted into the TFLite
model. To perform an inference with a TFLite model, the TFLite interpreter is required, which
uses a static graph ordering and a custom (less dynamic) memory allocator to ensure minimal load,
initialization, and execution latency [31], also reducing the weights’ precision, e.g., floating point vs.
fixed point precision, without affecting the accuracy.

4.3. ARM

As for the implementation on the ARM architecture, we used Raspberry Pi 4, equipped with a
Quad core Cortex-A72 (ARM v8) 64-bit System on Chip (SoC) @ 1.5 GHz and 4 GB RAM. For the
inference on this hardware, we used the TFLite runtime library, under the Ubuntu OS.

For all the mentioned platforms, both power consumption and inference time were calculated.
The inference time was calculated by averaging 110 inferences, which corresponded to the test set size.
As for the power consumption, two methods were used:

1. the provided APIs in Jetson TX2, which provided readings about voltage, power, and input
current to the GPU.

2. the external USB multimeter, connected in serial to the power source for both Raspberry Pi and
the Movidius NCS2.

Micromachines 2020, 11, 103 90f12

5. Results and Discussion

In this work, we achieved a better accuracy in tactile data classification using CNN compared
to the original model obtained in [5], even by resizing the input, therefore decreasing the number of
trainable parameters. The chosen models reduced the number of trainable parameters by a maximum
of 21.77% of the original trainable parameters and also increased the accuracy by a maximum of 1.28%,
noting that Model 5 (24 x 32 x 1) with 0.8% less accuracy than the original model had 42% fewer
trainable parameters. Choosing the right model depended on the implementation, i.e., a trade-off
between accuracy and hardware complexity should take place: if the best accuracy was targeted, then
Model 2 should be selected; while the choice of Model 3 would be when less hardware complexity was
needed, accepting a small accuracy degradation. Reducing the input size while still keeping the same
or even better accuracy could be explained in three points:

1. The random initialization of the weights may lead in different runs to different accuracy results,
e.g., 10 different runs for training Fold 4 of Model 2 with the same hyperparameters gave different
results, as shown in Table 2, which shows an average of 94.36% and a standard deviation of 1.904%.

2. Random selection of batch data and data shuffling would affect also the update of the weights
and make them different from one training to another.

3. The feature extraction process achieved by CNN was error resilient [32]. A CNN could still extract
features even with some manipulation of the input image. This was one of the reasons for data
augmentation [33] when training neural networks, which was to let the neural network learn the
features even from augmented images (scaled, rotated, flipped, etc.), instead of learning only the
samples in the original dataset. In our case, the features were still detectable even after image
resizing, as shown in Figure 5.

Table 2. Accuracy results for 10 runs on Model 2, Fold 4.

Trials Accuracy (%)

96.36
92.73
94.55
91.82
97.27
93.64
92.73
95.45
96.36
92.73
Average + Stdev ~ 94.36 + 1.904%

O O I ONUT = WN -

—_
o

According to Tables 3 and 4, the smallest power consumption and inference time were obtained
using TensorRT under Jetson TX2, which was 153 mW dynamic power within 5.29 ms as the inference
time, implying 0.809 x 10 ~3 Joules of dynamic energy (see Table 5). The most dynamic energy
consumption was for the Intel Movidius NCS2, 1.9 ms x 800 mW = 1.52 x 10 ~3 Joules. Regarding
the power consumption, since the neural network used was small compared to the hardware capacity,
the power consumption was almost the same for the three models, noting that the accuracy on the
USB power meter was on the 10 mW scale, so that a difference of less than 10 mW between two
measurements could not be detected using this instrument.

Micromachines 2020, 11, 103 10 of 12

Table 3. Comparison of the inference time between models.

Platform Inference Time (ms)
Hardware Software Model1l Model2 Model3
Jetson TX2 TensorRT 5.5597 5.2905 5.919

TF 6.2943 5.4691 5.946

TFLite 1.3384 1.2181 1.2445

Core i7 MATLAB 3.245 2.6139 2.4715
Movidius NCS2 OpenVINO 1.9 1.9 1.86
Raspberry Pi4 TFLite 1.615 1.473 1.21

Table 4. Power consumption.

Platform Current (mA) Voltage (V) Consumed Power (mW)
Hardware Software Static Total Static Total Dynamic
Jetson TensorRT 8 16 19.072 152 305 153
TF 8 16 19.072 152 305 153
Movidius NCS2 OpenVINO - 160 5 - 800 800
Raspberry Pi4 TFLite 560 700 5 2800 3500 700

Table 5. Energy consumption.

Platform Energy Consumption (uJ)
Hardware Software Modell Model2 Model3
Jetson TX2 TensorRT 850.6341 809.4465 905.607
TF 963.0279 836.7723 909.738

Movidius NCS2 Open VINO 1520 1520 1488

Raspberry Pi4 TFLite 1130.5 1031.1 847

6. Conclusions

This paper presented the implementation of a smart tactile sensing system based on an embedded
CNN approach. The proposed model optimized a state-of-the-art model proposed in [5] by reducing
the input data size. The experimental results were comparable in terms of accuracy after reducing
the size from (28 x 50) to (26 x 47) and (28 x 40). The hardware implementation on different
hardware platforms, namely Movidius NCS2, NVidia’s Jetson TX2, and Cortex-A72 (ARM v8), was
provided. The proposed models showed better performance on hardware platforms when time
inference was compared. Power consumption was also measured and compared among different
platforms. Targeting portable tactile sensing systems, the proposed work demonstrated the feasibility
of integrating machine learning methods on a hardware platform to enable intelligence for such
a system. This may pave the way for smart tactile sensing systems to be applied in prosthetics
and robotics.

Author Contributions: Conceptualization, A.I; methodology, M.A. and A.L; software, M.A. and Y.A; validation,
A.L; investigation, M.A. and Y.A.; data curation, M.A. and Y.A ; writing, original draft preparation, Y.A., M.A., and
A.L; writing, review and editing, A.I. and M.V,; visualization, Y.A.; supervision, A.I. and M.V,; funding acquisition,
M.V. All authors read and agreed to the published version of the manuscript.

Funding: The authors acknowledge financial support from Compagnia di San Paolo, Grant Number 2017.0559,
ID ROL19795.

Acknowledgments: The authors would like to thank the NVidia corporation for the donation of the Jetson TX2
development kit.

Conflicts of Interest: The authors declare no conflict of interest.

Micromachines 2020, 11, 103 11 of 12

Abbreviations

The following abbreviations are used in this manuscript:

CNN Convolutional Neural Network
DCNN Deep Convolutional Neural Network

SVM
ML

Support Vector Machine
Machine Learning

FPGA Field-Pogrammable Gate Array

References

1.

10.

11.

12.

13.
14.

15.

Ibrahim, A.; Pinna, L.; Seminara, L.; Valle, M. Achievements and Open Issues Toward Embedding Tactile
Sensing and Interpretation into Electronic Skin Systems. In Material-Integrated Intelligent Systems-Technology
and Applications; John Wiley & Sons, Ltd.: WeinHeim, Germany, 1 December 2017; Chapter 23, pp. 571-5%4.
doi:10.1002/9783527679249.ch23. [CrossRef]

Saleh, M.; Abbass, Y.; Ibrahim, A.; Valle, M. Experimental assessment of the interface electronic system
for PVDF-based piezoelectric tactile sensors. Sensors 2019, 19, 4437. do0i:10.3390/s19204437. [CrossRef]
[PubMed]

Alameh, M.; Ibrahim, A.; Valle, M.; Moser, G. DCNN for Tactile Sensory Data Classification based on
Transfer Learning. In Proceedings of the 2019 15th Conference on Ph.D Research in Microelectronics and
Electronics (PRIME), Lausanne, Switzerland, 15-18 July 2019; pp. 237-240. do0i:10.1109/prime.2019.8787748.
[CrossRef]

Luo, S.; Bimbo,].; Dahiya, R.; Liu, H. Robotic tactile perception of object properties: A review. Mechatronics
2017, 48, 54-67. d0i:10.1016/j.mechatronics.2017.11.002. [CrossRef]

Gandarias,].M.; Garcia-Cerezo, A.]J.; Gomez-de Gabriel,] M. CNN-Based Methods for Object Recognition
With High-Resolution Tactile Sensors. IEEE Sens. J. 2019, 19, 6872-6882. d0i:10.1109/jsen.2019.2912968.
[CrossRef]

Cheng, G.; Dean-Leon, E.; Bergner, F,; Olvera,].R.G.; Leboutet, Q.; Mittendorfer, P. A Comprehensive
Realization of Robot Skin: Sensors, Sensing, Control, and Applications. Proc. IEEE 2019, 107, 2034-2051.
doi:10.1109/JPROC.2019.2933348. [CrossRef]

Martinez-Hernandez, U.; Dodd, T.J.; Prescott, T.J. Feeling the Shape: Active Exploration Behaviors for
Object Recognition With a Robotic Hand. IEEE Trans. Syst. Man Cybern. Syst. 2018, 48, 2339-2348.
doi:10.1109/TSMC.2017.2732952. [CrossRef]

Zou, L,; Ge, C.; Wang, Z; Cretu, E.; Li, X. Novel tactile sensor technology and smart tactile sensing systems:
A review. Sensors 2017, 17, 2653. [CrossRef] [PubMed]

Li, R.; Adelson, E.H. Sensing and Recognizing Surface Textures Using a GelSight Sensor. In Proceedings of
the 2013 IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, 23-28 June 2013;
IEEE: Portland, OR, USA, 2013; pp. 1241-1247. doi:10.1109/CVPR.2013.164. [CrossRef]

Schmitz, A.; Bansho, Y.; Noda, K.; Iwata, H.; Ogata, T.; Sugano, S. Tactile object recognition using deep
learning and dropout. In Proceedings of the 2014 IEEE-RAS International Conference on Humanoid Robots,
Madrid, Spain, 18-20 November 2014; pp. 1044-1050. doi:10.1109/HUMANOIDS.2014.7041493. [CrossRef]
Gandarias, J.M.; Gomez-de Gabriel,].M.; Garcia-Cerezo, A. Human and object recognition with a
high-resolution tactile sensor. In Proceedings of the 2017 IEEE SENSORS, Glasgow, UK, 29 October-1
November 2017; IEEE: Glasgow, 2017; pp. 1-3. [CrossRef]

Yuan, W.; Mo, Y.; Wang, S.; Adelson, E. Active Clothing Material Perception using Tactile Sensing and Deep
Learning. arXiv 2017, arXiv:1711.00574.

ImageNet. Available online: http:/ /www.image-net.org (accessed on 20 November 2019).

Rouhafzay, G.; Cretu, A M. An Application of Deep Learning to Tactile Data for Object Recognition under
Visual Guidance. Sensors 2019, 19, 1534. do0i:10.3390/s19071534. [CrossRef] [PubMed]

Abderrahmane, Z.; Ganesh, G.; Crosnier, A.; Cherubini, A. Visuo-Tactile Recognition of Daily-Life Objects
Never Seen or Touched Before. In Proceedings of the 2018 IEEE 15th International Conference on Control,
Automation, Robotics and Vision (ICARCV), Singapore, 18-21 November 2018; pp. 1765-1770.

http://xxx.lanl.gov/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/9783527679249.ch23
http://xxx.lanl.gov/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/9783527679249.ch23
https://doi.org/10.1002/9783527679249.ch23
http://dx.doi.org/10.1002/9783527679249.ch23
https://doi.org/10.3390/s19204437
http://dx.doi.org/10.3390/s19204437
http://www.ncbi.nlm.nih.gov/pubmed/31614960
https://doi.org/10.1109/prime.2019.8787748
http://dx.doi.org/10.1109/prime.2019.8787748
https://doi.org/https://doi.org/10.1016/j.mechatronics.2017.11.002
http://dx.doi.org/10.1016/j.mechatronics.2017.11.002
https://doi.org/10.1109/jsen.2019.2912968
http://dx.doi.org/10.1109/JSEN.2019.2912968
https://doi.org/10.1109/JPROC.2019.2933348
http://dx.doi.org/10.1109/JPROC.2019.2933348
https://doi.org/10.1109/TSMC.2017.2732952
http://dx.doi.org/10.1109/TSMC.2017.2732952
http://dx.doi.org/10.3390/s17112653
http://www.ncbi.nlm.nih.gov/pubmed/29149080
https://doi.org/10.1109/CVPR.2013.164
http://dx.doi.org/10.1109/CVPR.2013.164
https://doi.org/10.1109/HUMANOIDS.2014.7041493
http://dx.doi.org/10.1109/HUMANOIDS.2014.7041493
http://dx.doi.org/10.1109/ICSENS.2017.8234203
http://www.image-net.org
https://doi.org/10.3390/s19071534
http://dx.doi.org/10.3390/s19071534
http://www.ncbi.nlm.nih.gov/pubmed/30934907

Micromachines 2020, 11, 103 12 of 12

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.
32.

33.

Abderrahmane, Z.; Ganesh, G.; Crosnier, A.; Cherubini, A. Haptic Zero-Shot Learning: Recognition of objects
never touched before. Robot. Auton. Syst. 2018, 105, 11-25. doi:10.1016/j.robot.2018.03.002. [CrossRef]

Li, J.; Dong, S.; Adelson, E. Slip detection with combined tactile and visual information. In Proceedings
of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, QLD, Australia,
21-25 May 2018; pp. 7772-7777.

Wu, H,; Jiang, D.; Gao, H. Tactile motion recognition with convolutional neural networks. In Proceedings
of the 2017 IEEE/RS]J International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC,
Canada, 24-28 September 2017; pp. 1572-1577.

Kwiatkowski, J.; Cockburn, D.; Duchaine, V. Grasp stability assessment through the fusion of proprioception
and tactile signals using convolutional neural networks. In Proceedings of the 2017 IEEE/RS] International
Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 24-28 September 2017; IEEE:
Vancouver, BC, Canada, 2017; pp. 286-292. do0i:10.1109/IR0S.2017.8202170. [CrossRef]

Fares, H.; Seminara, L.; Ibrahim, A.; Franceschi, M.; Pinna, L.; Valle, M.; Dosen, S.; Farina, D. Distributed
Sensing and Stimulation Systems for Sense of Touch Restoration in Prosthetics. In Proceedings of the 2017
New Generation of CAS (NGCAS), Genova, Italy, 6-9 September 2017; pp. 177-180. [CrossRef]

Osta, M,; Ibrahim, A.; Magno, M.; Eggimann, M.; Pullini, A.; Gastaldo, P.; Valle, M. An Energy Efficient
System for Touch Modality Classification in Electronic Skin Applications. In Proceedings of the 2019 IEEE
International Symposium on Circuits and Systems (ISCAS), Sapporo, Japan, 26-29 May 2019; pp. 1-4.
Ibrahim, A.; Gastaldo, P.; Chible, H.; Valle, M. Real-time digital signal processing based on FPGAs for
electronic skin implementation. Sensors 2017, 17, 558. [CrossRef] [PubMed]

Jansen, K.; Zhang, H. Scheduling malleable tasks.May 23, 2018 In Handbook of Approximation Algorithms
and Metaheuristics; Chapman and Hall/CRC: New York, NY, USA, 15 May 2007; pp. 45-1-45-16.
doi:10.1201/9781420010749. [CrossRef]

Lu, Z; Rallapalli, S.; Chan, K.; La Porta, T. Modeling the resource requirements of convolutional neural
networks on mobile devices. In Proceedings of the MM 2017—Proceedings of the 2017 ACM Multimedia
Conference, Mountain View, CA, USA, 23-27 October 2017; pp. 1663-1671, doi:10.1145/3123266.3123389.
[CrossRef]

Open Neural Network Exchange. Available online: https://github.com/onnx/onnx/ (accessed on
20 November 2019).

Intel Movidius NCS2. Available online: https://software.intel.com/en-us/neural-compute-stick
(accessed on 20 November 2019).

OpenVino Model Optimization Techniques. Available online: https://docs.openvinotoolkit.org/latest/
_docs_MO_DG_prepare_model_Model_Optimization_Techniques.html (accessed on 20 November 2019).
NVIDIA Jetson Modules and Developer Kits for Embedde Systems Development. Available online: https:
//www.nvidia.com/en-us/autonomous-machines/embedded-systems (accessed on 20 November 2019).
TensorFlow. Available online: https:/ /www.tensorflow.org (accessed on 20 November 2019).

NVIDIA TensorRT. Available online: https:/ /developer.nvidia.com/tensorrt (accessed on 20 November 2019).
TensorFlow Lite. Available online: https://www.tensorflow.org/lite (accessed on 20 November 2019).
Hanif, M.A.; Hafiz, R.; Shafique, M. Error resilience analysis for systematically employing approximate computing
in convolutional neural networks. In Proceedings of the 2018 Design, Automation Test in Europe Conference
Exhibition (DATE), Dresden, Germany, 19-23 March 2018; pp. 913-916. [CrossRef]

Perez, L.; Wang, J. The Effectiveness of Data Augmentation in Image Classification using Deep Learning.
arXiv 2017, arXiv: 1712.04621.

@ © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).

https://doi.org/https://doi.org/10.1016/j.robot.2018.03.002
http://dx.doi.org/10.1016/j.robot.2018.03.002
https://doi.org/10.1109/IROS.2017.8202170
http://dx.doi.org/10.1109/IROS.2017.8202170
http://dx.doi.org/10.1109/NGCAS.2017.54
http://dx.doi.org/10.3390/s17030558
http://www.ncbi.nlm.nih.gov/pubmed/28287448
https://doi.org/10.1201/9781420010749
http://dx.doi.org/10.1201/9781420010749.
https://doi.org/10.1145/3123266.3123389
http://dx.doi.org/10.1145/3123266.3123389
https://github.com/onnx/onnx/
https://software.intel.com/en-us/neural-compute-stick
https://docs.openvinotoolkit.org/latest/_docs_MO_DG_prepare_model_Model_Optimization_Techniques.html
https://docs.openvinotoolkit.org/latest/_docs_MO_DG_prepare_model_Model_Optimization_Techniques.html
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems
https://www.tensorflow.org
https://developer.nvidia.com/tensorrt
https://www.tensorflow.org/lite
http://dx.doi.org/10.23919/DATE.2018.8342139
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	State-of-the-Art
	Experimental Setup and Methodology
	Dataset
	Tested Model

	Embedded Hardware Implementations
	Movidius Neural Compute Stick 2
	Jetson TX2
	ARM

	Results and Discussion
	Conclusions
	References

