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Abstract: Deep learning is currently the mainstream method of object detection. Faster region-based
convolutional neural network (Faster R-CNN) has a pivotal position in deep learning. It has
impressive detection effects in ordinary scenes. However, under special conditions, there can still be
unsatisfactory detection performance, such as the object having problems like occlusion, deformation,
or small size. This paper proposes a novel and improved algorithm based on the Faster R-CNN
framework combined with the Faster R-CNN algorithm with skip pooling and fusion of contextual
information. This algorithm can improve the detection performance under special conditions on
the basis of Faster R-CNN. The improvement mainly has three parts: The first part adds a context
information feature extraction model after the conv5_3 of the convolutional layer; the second part adds
skip pooling so that the former can fully obtain the contextual information of the object, especially for
situations where the object is occluded and deformed; and the third part replaces the region proposal
network (RPN) with a more efficient guided anchor RPN (GA-RPN), which can maintain the recall
rate while improving the detection performance. The latter can obtain more detailed information
from different feature layers of the deep neural network algorithm, and is especially aimed at scenes
with small objects. Compared with Faster R-CNN, you only look once series (such as: YOLOv3),
single shot detector (such as: SSD512), and other object detection algorithms, the algorithm proposed
in this paper has an average improvement of 6.857% on the mean average precision (mAP) evaluation
index while maintaining a certain recall rate. This strongly proves that the proposed method has
higher detection rate and detection efficiency in this case.
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1. Introduction

With the vigorous development of deep learning, object detection technology has received
extensive attention and many scholars have conducted in-depth research. Object detection algorithms
include frame difference [1], background subtraction [2], optical flow [3], and Hough transform [4]
methods. These are commonly used as traditional object detection methods, and they have many
limitations in the process of detecting objects [5]; for example, the classification is too narrow, the
application scenarios are limited to simple backgrounds, too much manual intervention is required to
obtain features, or autonomy cannot be achieved. They also have serious shortcomings in robustness,
which leads to problems such as poor generalization ability and poor detection results. Traditional
object detection algorithms can no longer meet the application requirements of industrial and military
fields, and object detection based on deep learning has thus become a popular research direction for
many scholars around the world.
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Object detection algorithms based on deep learning are basically not restricted by the application
scenario; they can realize autonomous learning and have good detection performance [6]. At present,
object detection algorithms based on deep learning tend to be relatively mature and can have better
detection performance in specific scenes, such as pedestrian detection [7], face detection [8], etc.
These algorithms can be widely used in intelligent monitoring systems [9], intelligent transportation
systems [10], military object detection [11], medical object detection [12], etc. However, there is more
room for optimization in more special scenes [13], such as the problems of occlusion, too small scale,
deformation, and camouflage of the object in the image. For example, problems exist in how the object
can be accurately and quickly captured by part of the feature information when it is partially occluded
and how it can be selected and located from the limited feature information when its scale is too small.

It is also worth mentioning the problem of generating more suitable anchors in object detection.
An anchor is often used as a benchmark frame for classification and regression in object detection.
Most of the commonly used anchoring methods cannot cover the object area well due to their fixed
shape. In order to ensure a high recall rate, an excessively large number of anchors is required, which
will result in too many negative samples in the range enclosed by the anchors. The general anchor
generation method will have such problems, resulting in poor detection performance.

In order to deal with the above problems, this paper proposes an improved algorithm based
on faster region-based convolutional neural network (R-CNN), with higher detection performance.
It uses the guided anchor method [14] to replace the previous region proposal network (RPN), selective
search [15], and other candidate region methods. On this basis, the context feature is also used to
obtain the network module [16] to solve the problem of object occlusion. The skip pooling method [17]
is used for multi-feature fusion of different deep neural network algorithms to solve the problem of
small object scale, so as to optimize the detection performance of Faster R-CNN in complex scenes.

This paper proposes a Faster R-CNN algorithm combined with skip pooling and fusion of
contextual information. This method can provide detection and classification accuracy comparable to
the latest methods. The main contributions of this paper are summarized as follows:

• A new RPN algorithm is used, guided anchor RPN (GA-RPN), which predicts the position and
shape of the anchor to generate a sparse anchor that can tightly surround the object and fit the
object shape. This method can reduce the calculation time while maintaining a high recall rate.

• A context information feature extraction network fused with contextual information is used.
The network can provide the contextual information of a partially occluded object for the proposed
method and use the contextual information around the object as the information reference for the
object’s own feature detection.

• In order to solve the problem of less feature information from smaller objects in a single feature
layer, this paper proposes skip pooling, which combines the features of multiple feature layers,
greatly improving the expression ability of features, and is suitable for small object detection.

The organization of the rest of this paper is as follows: Section 2 is about related work. Section 3 is
a detailed discussion of the proposed method, which includes two parts, the context feature extracted
model, and the multi-layer feature fusion. Section 4 analyzes the experimental results. Finally,
conclusions and future work are presented in Section 5.

2. Related Work

Object detection algorithms are mainly traditional or based on deep learning. Currently, algorithms
based on deep learning are widely used in various fields as a mainstream method of object detection.
In the process of object detection, there can be many uncertain factors, such as too-small object scale,
rotated object, etc. In addition, the object is usually affected by factors such as illumination and
occlusion, which makes the detection algorithm difficult. In order to improve the generalization ability
of the algorithm, researchers need to make appropriate modifications and improvements according to
the specific situation.
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For example, for the object rotation problem, a simple but effective method was proposed in [18]
to train rotation-invariant and Fisher discriminative CNN models to further boost object detection
performance. For the object occlusion problem, a simple but effective framework was developed
in [19] for camouflaged object detection (COD), termed search identification network, which can help
facilitate future research on COD. This paper focuses on the problem of too-small object scale and
partial occlusion. The network framework of object detection affects the detection process. The main
purpose of optimization for this framework is to avoid redundant and missed detection. Therefore,
the framework structure usually determines the detection performance. The current object detection
algorithm framework based on deep learning includes a two-stage algorithm represented by the
R-CNN series and the one-stage algorithm represented by you only look once (YOLO) and single shot
detector (SSD) series. The main difference between the two is that the two-stage algorithm needs to
generate a large number of preselected boxes that may contain objects, and then perform fine-grained
object detection. The object detection framework requires a preselected box algorithm.

The pioneering work of the two-stage algorithm for object detection began with R-CNN [20],
which includes three modules: region proposal, vector transformation, and classification. SSP-net [21]
optimizes R-CNN in many aspects and improves detection performance. Fast R-CNN [22] combines
the essence of R-CNN and SPP-net, and introduces a multi-task loss function, which makes the training
and testing of the entire network very convenient. Faster R-CNN [23] uses RPN to replace the selective
search module in Fast R-CNN, and RPN shares functions with Fast R-CNN. This greatly improves the
time and accuracy of object detection.

Other object detection frameworks do not require the process of generating candidate boxes.
The one-stage algorithm can directly extract features from the network to predict object classification
and location. The OverFeat method [24] classifies the detection area by sliding windows with different
proportions at each feature point of the topmost feature layer. The YOLO method [25] classifies and
locates objects in one step, and directly returns the position and category of the bounding box in the
output layer. The SSD method [26] uses convolutional kernels on feature maps to predict the class and
coordinate offsets of a series of default bounding boxes.

Whether it is a one-stage or two-stage algorithm, they both use anchors extensively. Usually
the former uses RPN to generate anchors, and the latter directly classifies and regresses anchors.
Therefore, the number and shape of anchors greatly affect the performance of the object detection
algorithm. Wang et al. [14] proposed an anchor that can generate sparse and arbitrary shapes through
image features, which can reduce the number of anchors and optimize their shape while ensuring a
certain recall rate. Cheng et al. [27] proposed a proposal generation method, which can generate more
proposals that have higher intersection over union (IoU) with ground truth boxes than those obtained
by greedy search approaches, which can better envelop entire objects. Zhang et al. [28] proposed a
fast matching algorithm that robustly matches region proposals with massive exemplars in terms
of appearance and spatial context, and can robustly handle noisy localizations of image exemplars.
Compared with two-stage algorithms in terms of detection speed, one-stage algorithms are faster, but
in terms of detection accuracy, the popular version of the former is better than the latter.

The accuracy of detection and classification in the object detection process usually depends on the
feature expression of the detection object, which includes two aspects: the feature expression of the
area where the detection object belongs, and the feature expression outside the detection area, which
involves the fusion of contextual information. Whether or not the object can be characterized well, this
tests the detection performance of the algorithm. However, small object detection has problems, such
as blurred images, low information, and easy misjudgment. Therefore, the feature expression of small
object detection is particularly important. Because the RGB color space is unstable and unreliable,
manual features that improve detection efficiency by transforming the original image features [29]
were widely used in the initial stage of object detection. Due to the large amount of hand-made feature
data and the lack of high-level semantic expression capability, it was gradually replaced by related
deep learning technologies.
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The R-CNN method [6] uses trained CNNs to classify the object area and then judges whether
it belongs to the object or background area. Faster R-CNN [9] uses a VGG16-based network
as a feature extraction network and has obtained very good results. Since many methods only
focus on detecting the object itself [30,31], the relationship between the object and its surrounding
environment is often ignored, and this information is usually helpful for the correct judgment of the
detection algorithm. Context-based object detection was summarized, experimented on, and analyzed
in [32]. They concluded that the combination of contextual information and object detection can
improve detection performance. The proposed inside-outside network (ION) [17] combines contextual
information with regions of interest. It uses skip pooling and contextual information with spatial
recurrent neural networks, which can detect small and occluded objects. In [33], a multi-scale spatial
context was attached to a region-based CNN model to extract the relationship between the object
and the background. Multi-scale context was used in [34] to attach to the detection function and
improve the detection performance. These methods achieved good results in the performance of object
detection, such as accuracy and speed.

Recently, more studies have improved object detection algorithms by using multi-layer and
multi-scale representation methods. Compared with using only one layer of deep convolution features,
multi-layer and multi-scale feature fusion methods can achieve richer feature expression [35–38].
A three-layer deep convolution feature in ResNet-50 was used in [39] for small object detection in
optical remote sensing images. A feature pyramid network (FPN) was proposed in [40], which used
a multi-scale feature fusion method that combined semantic information and location information,
greatly improving the performance of object detection, especially for small objects. A backbone network
specifically for small object detection was proposed in [41]. This network was an improved algorithm
based on the ResNet-50 network, and its detection accuracy was several percentage points higher.
Multi-scale and multi-level deep feature information of a fully convolutional neural network was used
in [38], which provided more semantic information. Skip layer connection was used to extract features
in [42]. The information obtained was especially important for small objects. The results showed that
multi-scale representation can improve small object detection.

3. SC-Faster R-CNN

Faster R-CNN has significant detection performance for object detection in general scenes, but
usually the detected objects in such scenes have problems such as occlusion, deformation, and large
scale. In scenes where these special problems exist, the detection performance of Faster R-CNN
has greater limitations. The SC-Faster R-CNN algorithm proposed in this paper effectively solves
such problems.

The deep network algorithm is based on Faster R-CNN as the framework. The structural
framework of SC-Faster R-CNN is shown in Figure 1, and its operation process is as follows:

1. Skip pooling operations are performed on multiple feature layers. Through GA-RPN processing
of conv3_3, conv4_3, and conv5_3 multi-feature layers to obtain the feature map mapped to the
region of interest (ROI), the size of the mapped area is adjusted to the same size sections, then
the max pooling operation is performed on each section, so that fixed-size feature maps can be
obtained from ROIs of different sizes.

2. The feature maps are linearly combined by L2 normalize. Because the features between dimensions
have certain differences in position and value, L2 normalize can improve the accuracy of the model
and make features of the same type in different dimensions have a certain degree of similarity.

3. By using the concat [43] method and 1x1 conv processing, the feature map after ROI mapping is
shaped and dimension reduced. The ROI in the processed image will generate a feature vector of
a fixed size.

4. The feature vectors are input to the classifier through the fully connected layer to classify
the features.
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Figure 1. Structural framework of SC-Faster region-based convolutional neural network (R-CNN).
The method is the Faster R-CNN framework combined with skip pooling and fusion of
contextual information.

3.1. Context Feature Extracted Model

Occlusion is currently a problem that needs to be solved urgently in object detection, because after
the object is occluded, its feature information will be greatly reduced, and this will have an effect on
the occluded object, making it extremely difficult to detect and easy to be misrecognized [44]. In view
of this situation, this paper proposes a feature extraction model based on contextual information.
Before introducing the model, a more important theoretical method used by the model is introduced,
recurrent neural network (RNN) [45].

From Figure 2, we can see that the recurrent neural network maps all directional features into
a two-dimensional vector space. The directions of some of the upper left and lower left features are
very close, so the two vectors representing them are very close in the vector space. The upper right
and lower left direction features are quite different, and the distance between them is much larger
compared to the vectors in the other directions. In this way, by comparing the distance between vectors,
a representation of semantic information can be obtained.
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Figure 2. Schematic of recurrent neural network based on directional characteristics in texture features.

We placed one-way moving RNNs in the last layer of the fifth convolutional layer based on
VGG-16 (i.e., conv5_3), as shown in Figure 3. Generally, RNNs will have a certain input loss in each
step of the operation, but important details in the image will still learn the feature information well
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and then output the feature map with contextual information after updating the hidden layer state
information. The specific operation is to place the RNNs along the horizontal and vertical directions of
the output image of conv5_3, so it can be considered that the RNNs move in four directions on the
image: up, down, left, and right. Since initializing the recursive weight matrix as an identity matrix
can greatly optimize model training and facilitates good performance in modeling the dependencies
of further layers, RNNs adopt the nonlinear method of recursive weight matrix and use it in each
step. The image generated in this way has the same size as the output image of conv5_3. In order to
strengthen the learning of feature information but also reduce the input loss due to RNN operations,
experiments have shown that RNNs can obtain better feature learning results through three types of
recursive contextual information learning. This paper uses this structure because it is easy to achieve
parallelization, which is conducive to improving network performance.
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In order to initialize the weight identity matrix for RNNs, the activation function uses the rectified
linear unit (ReLU) function, which can improve the training speed. Le et al. [46] called the motion
module composed of ReLU and RNNs as “IRNNs”. There are four IRNNs moving in different
directions on the image being operated, and all the IRNNs can obtain information characteristics in the
corresponding direction. From the structure diagram of the contextual feature extraction model, it
can be seen that before each IRNN operation, it must be filtered by a 1 × 1 shared convolution kernel.
The shared convolution kernel can work in different directions, and it can ensure accuracy. In the
case of reducing redundant convolution kernels, in the process of sharing, the deviation of each layer
will be transmitted with the shared convolution kernel, which helps the effective convergence of the
function. The output of IRNNs is based on cascading calculations of the hidden states in different
directions at each spatial position.

When IRNNs move from left to right or top to bottom in the image, each time an input is consumed,
a hidden unit is updated and an output is generated at the same time. In this way, it expands in four
directions from left to right, right to left, top to bottom, and bottom to top. In order to realize the
function of IRNNs as efficiently as possible, the internal IRNNs are split and calculated during the
operation. The formula of IRNNs for different directions in the process of moving is

f derc
i, j ← max

(
Wderc

f f f derc
i, j−1 + f derc

i, j , 0
)

(1)

where derc represents the four motion directions of IRNNs (up, down, left, and right); Wderc
f f and

f derc
i, j−1 represent the weight of the hidden state in the corresponding direction and the input from 1× 1

convolution to the hidden layer, respectively. In order to simplify the calculation, set Wderc
f f as the

identity matrix, so that Formula (1) is equivalent to an accumulator:

f derc
i, j ← max

(
f derc
i, j−1 + f derc

i, j , 0
)
. (2)

3.2. GA-RPN

Anchors are widely used in object detection based on deep learning as a mechanism for generating
object region proposals. The number and shape of anchors greatly affect the performance of the
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object detection algorithm. Since the commonly used anchors have a limited aspect ratio, in order
to maintain a high recall rate, more anchors need to be generated, which is not only inefficient but
also leads to decreased detection accuracy, because most of the area surrounded by the anchor frame
is background. Therefore, an anchor generation strategy that can effectively reduce the number of
anchors and tightly surround the object without manual intervention will have great significance for
optimizing the performance of object detection.

In this paper, we utilized the guided anchor method instead of the RPN in Faster R-CNN to
generate anchors with no redundancy and suitable size. In the guided anchor method, first, we used
four parameters (x, y, w, h) to describe an anchor, where (x, y) represents the coordinates and w and h
represent the width and height, respectively, of the anchor. Therefore, the distribution probability of
the anchor on image I can be expressed by the formula

p(x, y, w, h
∣∣∣I) = p(x, y

∣∣∣I)p(w, h
∣∣∣x, y, I). (3)

As can be seen from the formula, the probability distribution of the anchor is decomposed into
two conditional probability distributions, that of the anchor center point on a given feature map and
that of the shape after the image feature and the center point. These two probabilities respectively
indicate that the object may have a certain area and the shape of the object has a close relationship with
its position.

According to the distribution probability formula of the anchor on image I, Wang et al. [14]
designed an anchor generation module that uses two branches to predict the position and shape of
the anchor. For example, in the skip pooling branch in this paper, we first used the anchor position
prediction branch to generate a probability distribution map in feature map F1, which indicates the
possible position of the object in the image. Similarly, the shape predicts the shape of the branch
position. The results generated by these two prediction branches are combined, and then the most
likely object position and corresponding shape are selected through a preset threshold.

3.2.1. Position Prediction of Anchor

As shown in Figure 4, the size of the probability distribution map generated by the anchor position
prediction branch is the same as the input feature map F1. The area of the entire feature map is divided
into an object center area, a peripheral area, and an ignored area through the position probability
distribution map. The main idea is to set a small piece of ground truth boxing center corresponding to
the area on F1 as a positive sample during the training process, and set the threshold for the remaining
areas to mark the ignore area or peripheral area according to the distance from the center. Through
such position prediction, part of the area can be screened out as the candidate center position of the
anchor, so that the number of anchors is greatly reduced while still maintaining the same recall rate.
When doing inference, because there is no need to consider the excluded area, masked convolution can
be used instead of ordinary convolution, so that calculations can be performed only where there is an
anchor, thereby speeding up the calculation.

3.2.2. Shape Prediction of Anchor

The purpose of the shape prediction branch is to predict the best length and width given the
anchor center point, which is a regression problem. According to the usual practice, first calculate the
object, that is, the optimal w and h of the anchor at the center point, and then use losses such as L1, L2,
or Smooth L1 to supervise. The length and width of the object are not easy to calculate, and it will be
more difficult to implement, so we directly use IoU as supervision to learn w and h.



Sensors 2020, 20, 5490 8 of 20
Sensors 2020, 20, x FOR PEER REVIEW 8 of 21 

 

 
Figure 4. Architecture of guided anchor, based on anchor generation module with two branches to 
predict the anchor location and shape. Feature adaption module is applied to the feature map to make 
the new feature map aware of anchor shapes. 

3.2.2. Shape Prediction of Anchor 

The purpose of the shape prediction branch is to predict the best length and width given the 
anchor center point, which is a regression problem. According to the usual practice, first calculate the 
object, that is, the optimal w and h of the anchor at the center point, and then use losses such as L1, 
L2, or Smooth L1 to supervise. The length and width of the object are not easy to calculate, and it will 
be more difficult to implement, so we directly use IoU as supervision to learn w and h. 

Previously, IoU was used to directly calculate the anchor and all ground truth, but the current 
w and h are uncertain, so they cannot be calculated according to the conventional algorithm. To solve 
this problem, refer to [14], which defines the IoU between a variable anchor 

( ){ }0 0  ,  ,  ,    0,    0|wha x y w h w h= > >  and a ground truth bounding box ( )  ,  ,  ,  g g g ggt x y w h=  

as follows, denoted as vIoU: 

0, 0
,  ( ) ( , )wh normal wh

w h
vIoU a gt max IoU a gt

> >
= . (4) 

Since the parameters in the formula are all variables, the calculation of ( ),whvIoU a gt  is 
complicated and it is difficult to realize effective operation in the end-to-end network, so an 
approximate substitution method is adopted to solve this problem. The approximate replacement 
method is to match the anchor with the specific gt according to the sampled w and h, and then use 
the bounded IoU loss as the loss of this branch. 

1 11 ,( ( )) (1 , ) ( )g g
shape

g g

w hw hL L min L min
w w h h

= − + −  (5) 

Here, (w, h) and (wg, hg) represent the shape of the predicted anchor and the corresponding 
ground-truth bounding box, and L1 is the smooth L1 loss. 

3.2.3. Anchor-Guided Feature Adaptation 

In different positions of conv in the same layer, the receptive field of the feature is the same. In 
the original RPN, both represent anchors of the same shape, but now each anchor has its own unique 
shape and size, which does not match the feature particularly well. In addition, for the original feature 
map, it does not know the shape of the anchor or the branch prediction, but the subsequent 

proposal

1x1

1x1 shape

location

1x1

Anchor generation

Feature adaption

offset field

anchors

F1
NT

Figure 4. Architecture of guided anchor, based on anchor generation module with two branches to
predict the anchor location and shape. Feature adaption module is applied to the feature map to make
the new feature map aware of anchor shapes.

Previously, IoU was used to directly calculate the anchor and all ground truth, but the
current w and h are uncertain, so they cannot be calculated according to the conventional
algorithm. To solve this problem, refer to [14], which defines the IoU between a variable anchor
awh =

{
(x0, y0, w, h)

∣∣∣w > 0, h > 0
}

and a ground truth bounding box gt =
(
xg, yg, wg, hg

)
as

follows, denoted as vIoU:

vIoU(awh, gt) = max
w>0,h>0

IoUnormal(awh, gt). (4)

Since the parameters in the formula are all variables, the calculation of vIoU(awh, gt) is complicated
and it is difficult to realize effective operation in the end-to-end network, so an approximate substitution
method is adopted to solve this problem. The approximate replacement method is to match the anchor
with the specific gt according to the sampled w and h, and then use the bounded IoU loss as the loss of
this branch.

Lshape = L1(1−min(
w
wg

,
wg

w
)) + L1(1−min(

h
hg

,
hg

h
)) (5)

Here, (w, h) and (wg, hg) represent the shape of the predicted anchor and the corresponding
ground-truth bounding box, and L1 is the smooth L1 loss.

3.2.3. Anchor-Guided Feature Adaptation

In different positions of conv in the same layer, the receptive field of the feature is the same. In the
original RPN, both represent anchors of the same shape, but now each anchor has its own unique shape
and size, which does not match the feature particularly well. In addition, for the original feature map,
it does not know the shape of the anchor or the branch prediction, but the subsequent classification
and regression are based on the predicted anchor, and errors may occur. So, a feature adaption module
was added to solve this problem.

This module directly integrates the shape information of the anchor into the feature map, so
that the newly obtained feature map can adapt to the shape of each position anchor. Using a 3 × 3
deformable convolution to correct the original feature map, the offset of the deformable convolution is
obtained through a 1 × 1 conv through the w and h of the anchor. Through this operation, the purpose
of making the effective range of the feature closer to the shape of the anchor is achieved, and different
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positions of the same conv can also represent anchors of different shapes and sizes. The formula of
feature adaption is as follows:

f ′i = NT( fi, wi, hi) (6)

where fi is the feature at the ith location, (wi, hi) is the corresponding anchor shape, and NT represents
a 3 × 3 deformable convolutional layer.

3.3. Multi-Layer Feature Fusion

The deep neural network algorithm is currently the mainstream method in the field of object
detection. It extracts and classifies features in an image through autonomous learning during the
training process and finally achieves the effect of object detection. The network structure in deep
neural network algorithms is usually divided into shallow and deep networks. The characteristics
of shallow network are that it has a relatively small receptive field and a strong ability to represent
detailed geometric information. Although the resolution is high, its ability to represent semantic
information is very weak [47]. The characteristics of the deep network are that it has a relatively large
receptive field and a strong ability to represent semantic information, but the resolution of its feature
map is low, and details of spatial geometric feature are lacking [48]. Usually objects of different scales
are stored in the scene of object detection at the same time. In order to be able to detect large and
small objects at the same time, it is necessary to use the small receptive field network to obtain feature
information for small objects and the large receptive field network to process large objects. Therefore,
this paper uses a multi-layer feature fusion method to solve this problem.

The fusion of features of different dimensions is actually the superposition of information on
the input data, which can enrich the information and improve the performance of the model [49].
For feature fusion that is directly added, the premise is that the dimensions are the same. If the
dimensions of the initial features are not the same, then the features of different dimensions need
to be linearly combined. The original features are projected to the same dimensional space, then
feature fusion is performed. Because the dimensions of feature layers in this paper are different, it
is necessary to linearly combine the features of the different dimensions of each layer before feature
fusion. The linear combination method used in this paper is L2 normalize [50].

The main idea of normalization is to calculate the p-norm [51] for each sample, then divide
each element in the sample by the norm. The result of this processing is to make the p-norm of each
processed sample equal to 1. The formula is defined as

||X||p =
(
(x1)

p + (x2)
p + · · ·+ (xn)

p
) 1

p . (7)

The loss function of L2 regularization is

L(ω) = LD(ω) +
λ
2n

n∑
i=1

ω2
i . (8)

The gradient of the loss function L (ω) is calculated by

∂L(ω)
∂ω

=
∂LD(ω)

∂ω
+ λω. (9)

The parameter ω is updated to become

ω′ = ω− η
∂L(ω)
∂ω

= ω

(
1−

ηλ

n

)
−
∂LD(ω)

∂ω
(10)

where LD(ω) represents the sum of squares of the difference between the object value and the predicted
value; λ

2n
∑n

i=1 ω
2
i represents a penalty item; n is the number of object categories in the feature layer;
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and λ, ωi, and i are the weight coefficient, the weight coefficient of various objects, and the index
of a certain category of objects, respectively. According to ω′, we know that the parameters after
regularization update are one more ηλ

n ω than those without updates. When ω′ tends toward 0, the
speed of parameter decrease becomes very slow. Therefore, the parameters can be reduced to a small
range, so that the cosine similarity of two vectors can be obtained, and the features of different layers
can be projected to the same dimensional space. This facilitates better feature fusion for subsequent
feature maps of different scales from the same figure.

4. Analysis of Experimental Results

In order to reflect the high detection performance of SC-Faster R-CNN, first, it should be reflected
in the improved module based on Faster R-CNN, which has relatively obvious improvement in the
detection performance of certain features of the object. Therefore, it is necessary to start the experiment
of the influence of the improved module on the performance of the entire network one by one, that
is, the ablation experiment of the proposed method. Then, SC-Faster R-CNN is compared with
Faster R-CNN and other related algorithms in the same field. Through such a series of comparative
experiments, we can evaluate the comprehensive performance of SC-Faster R-CNN in the object
detection process. We evaluated the detection performance of these algorithms on the PASCAL VOC
2007 and 2012 datasets for experimental verification. Three experiments were done: selection of the
number of groups of IRNNs and the feature layers, ablation of SC-Faster R-CNN, and comparison
experiment of SC-Faster R-CNN with other algorithms.

4.1. Experimental Platform Construction

The experimental implementation platform of this paper is 64-bit Ubuntu 16.04 LTS based on a Dell
Precision R7910 (AWR7910) graphics workstation, the processor is Intel Xeon e5-2603 v2 (1.8 gHz/10 M),
and Quadro K620 GPU is used for accelerated calculation. As a framework for deep neural network
algorithm training, Pytorch takes into account the calculation speed and modularity. Training in the
Pytorch framework has faster computing speed thanks to its support for parallel computing on CPU
and GPU.

4.1.1. Network Training Parameter Settings

The initial learning rate of the training model was 0.01, the optimization method used stochastic
gradient descent, the gamma value was 0.1, the momentum was 0.9, the weight decay was 0.005, the
maximum number of iterations was 80,000, the learning rate for the first 20,000 times was 0.01, and the
learning rate for the next 60,000 times was 0.001.

4.1.2. Dataset

The experiment was carried out on the benchmark PASCAL VOC detection dataset, which includes
the PASCAL VOC 2007 and 2012 datasets (represented as 07 + 12). These two datasets have 9963
and 23,080 images for the object detection task, respectively, including 116,492 test images. The test
images contain 39,482 objects. During the experiment, 16,551 images from the 2007 and 2012 train + val
datasets were used for training, and 4952 images from the 2007 test dataset were used for testing.

4.1.3. Evaluation Index and Loss Function

In order to evaluate the detection performance of deep neural network algorithms, this paper
uses several evaluation indicators: precision, recall rate, intersection over union (IoU), mean precision
(mP), and mean average precision (mAP). The evaluation standard judges the pros and cons of the
corresponding attribute according to the value of the evaluation index. In these evaluation indices, the
larger the value, the better the corresponding attribute. The formulas for accuracy, recall, IoU, and
mAP are defined as follows:
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Precision:
Precision =

TP + TN

TP + TN + FP + FN
× 100% (11)

Recall:
Recall =

TP

TP + TN
× 100% (12)

IoU:
IoU =

GT ∩DR
GT ∪DR

× 100% (13)

mAP:

mAP =
N∑

k=1

P(k)∆r(k) (14)

where TP, TN, FP, and FN are real objects predicted as real objects, false objects predicted as real objects,
real objects predicted as false objects, and false objects predicted as false objects, respectively; GT is
the ground truth of object boxes; DR is the test result; N is the number of figures in the test set; P(k)
represents the value of precision when k figures can be recognized; and ∆r(k) represents the change of
the recall value when the number of recognized figures changes from k − 1 to k.

For the images in the training dataset, the model will aim to minimize the joint loss during the
training process and fine-tune the network parameters. The loss function is defined as

L =
1

Nc

∑
k

Lc
(
Pk, P∗k

)
+
λ

Nr
P∗kLt

(
tk, t∗k

)
(15)

where L, Lc, and Lt are the joint loss, classification loss, and regression loss of the border; Nc and Nr are
the number of categories and boxes; λ and k represent the weight coefficient and the selected anchor
box index; Pk and P∗k represent the probability that candidate box k is the object, the value of the label
(if the candidate box is a positive label, P∗k = 1, otherwise P∗k = 0); t∗k is the predicted offset of the anchor
box; and t∗k is the offset between the anchor box and the actual object box.

4.2. Parameter Selection Experiment of Detection Algorithms

Before conducting comparative experiments on multiple object detection algorithms, first we
discuss the context feature extraction module and skip pooling method.

For the context feature extraction module, the number of groups of RNNs will affect the detection
performance and efficiency of the network. In order to effectively carry out comparative experiments,
the impact of the number of groups of RNNs on the detection performance has to be considered.
In order to facilitate the experiment, for the training framework we chose RS-Faster R-CNN, for
which the detection performance is evaluated by adjusting the number of IRNN groups to select the
optimal number.

As shown in Table 1, the number of IRNNs in the experiment ranged from 1 to 5. In order to
obtain the optimal context feature extraction module, the evaluation standard was mAP. It can be
seen that when the number of IRNNs increases from 1 to 3, the value of mAP increases significantly,
and the data become flatter when it reaches 4 and 5. In order to ensure the detection accuracy of the
object detection algorithm while considering the calculation efficiency, the number of IRRN groups
was selected as 3.
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Table 1. Influence of number of IRNNs groups in context feature extraction module on object
detection accuracy.

mAP (%)
Time
(sec)

Number of IRNNs

1 2 3 4 5

70.5 0.58
√

72.2 0.71
√ √

76.7 0.79
√ √ √

76.9 0.84
√ √ √ √

77.1 1.63
√ √ √ √ √

For the selection of multi-layer features in the skip pooling method, it is necessary to discuss which
feature layers should be selected and the effect of post-processing them on the detection performance
of SC-Faster R-CNN. This paper discusses the feature layers that may become skip pooling operations
one by one, as shown in Table 2. It can be seen that the presence or absence of L2 normalize has a great
impact on the accuracy of detection. If there is no L2 normalize processing, the accuracy will decrease
rapidly as feature layers increase. Through the L2 + 1 × 1 item in the last three rows of the “Merge
features using” column, it can be found that the feature layer of skip pooling operation includes either
C2 or both C1 and C2, which slightly promotes accuracy. Compared to C3 + C4 + C5+context, it brings
a lot of calculation to the deep neural network algorithm. Based on this situation, C3 + C4 + C5+context
was chosen as the feature layer of skip pooling operation.

Table 2. Effect of combining features from different layers on detection accuracy.

ROI Pooling From Merge Features Using

C1 C2 C3 C4 C5 Context
1 × 1 L2 + 1 × 1

mAP Time mAP Time
√

68.4 0.72 s 70.9 0.73 s
√ √

66.1 0.76 s 73.8 0.76 s
√ √ √

62.5 0.80 s 75.3 0.79 s
√ √ √ √

58.6 0.82 s 77.8 0.81 s
√ √ √ √ √

52.7 0.91 s 78.0 0.88 s
√ √ √ √ √ √

44.3 1.45 s 78.4 1.17 s

4.3. Ablation Experiment of SC-Faster R-CNN

In order to evaluate whether the context feature extraction module and skip pooling method were
added to the improved Faster R-CNN and how the detection performance is affected, the ablation
experiment on SC-Faster R-CNN was conducted. First, the network after removing the module on the
framework is referred to as RC-Faster R-CNN; the network without the skip pooling method on the
framework is referred to as RS-Faster R-CNN; and SC-Faster R*-CNN recommends reducing GA-RPN
to RPN for the proposed method. Then, the object detection performance of RC-Faster CNN (RC-FR),
RS-Faster R-CNN (RS-FR), SC-Faster R*-CNN (SC-FR*), and SC-Faster R-CNN (SC-FR) was compared
with Faster R-CNN (FR).

Table 3 shows the main performance parameters of the five deep neural networks in ablation
experiments. By analyzing the values of mAP, it can be found that based on the method proposed in
this paper, the effect of the context feature extraction module and skip pooling method acting alone on
the 07 + 12 dataset is slightly better than the detection effect of Faster R-CNN. The time consumption
of RS-Faster R-CNN and RC-Faster R-CNN in a figure is slightly larger than Faster R-CNN, however,
the detection accuracy is superior. It is worth noting that after the regional recommendation method is
changed from RPN to GA-RPN, the detection accuracy and operation speed of the proposed method in
this paper are improved. In terms of test time, SC-Faster R-CNN is not only faster than Faster R-CNN,
but also it has great advantages in detection performance improvement.
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Table 3. Main performance parameters in ablation process of SC-Faster R-CNN.

Method Train mAP (%) Time (sec)

FR 07 + 12 70.8 2.2
RS-FR 07 + 12 73.2 1.1
RC-FR 07 + 12 71.7 0.6
SC-FR* 07 + 12 75.8 2.9
SC-FR 07 + 12 77.6 0.8

Figure 5 shows part of the experimental test results, which can be found intuitively by combining
the test results in Table 3. RS-Faster R-CNN and RC-Faster R-CNN under different scales and degrees of
occlusion and using different detection algorithms have their own outstanding detection performance
for certain features. Combining the evaluation parameter mAP (%) and the test time, it can be found
that Faster R-CNN has greatly improved detection performance after adding the context feature
extraction module and skip pooling method. Therefore, the detection performance of these five
detection algorithms under different conditions can be ranked:

(1) Comparison of detection accuracy:

• When detecting small objects:

SC− FR > SC− FR∗ > RC− FR > RS− FR > FR

• When part of the object is occluded:

SC− FR > SC− FR∗ > RS− FR > RC− FR > FR

(2) Comparison of detection efficiency:

FR > RC− FR > RS− FR > SC− FR > SC− FR∗

4.4. Comparative Experiment of Multiple Detection Algorithms

In this section, we present comparison experiments on the detection performance of the five
networks: SC-Faster R-CNN with Faster R-CNN [23], Multi-Scale CNN(MS-CNN) [52], HyperNet [42],
SSD512 [26], and YOLOv3 [53]. The comparison experiment mainly focuses on the detection accuracy
and calculation efficiency of each algorithm.

4.4.1. Accuracy

Table 4 shows the detection results of different networks on the 07 + 12 dataset and ranks
the detection accuracy according to the magnitude of the mAP value in the table: SC-Faster
R-CNN > SSD512 > MS-CNN > HyperNet > YOLOv3 > Faster R-CNN. Some examples of detection
effects for different networks are depicted in Figure 6 for the 07 + 12 dataset.
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Table 4. Result of PASCAL VOC 2007 test set (%). Training data: 07 + 12: VOC 2007 and 2012 train + val.

Method Train mAP Aero Bike Bird Boat Bottles Bus Bar Bat Chair Bow Table Dog Horse mbike Person Plant Sheep Sofa Train TV

Faster
R-CNN 07 + 12 70.8 83.1 71.8 73.2 53.5 54.4 77.3 72.8 88.4 49.2 72.7 66.1 85.4 80.3 79.6 74 43.2 78.8 67.4 81.5 63.4

MS-CNN 07 + 12 73.2 79.8 78.6 74.7 59.1 54.8 77.2 73.6 90.3 61.3 77.3 65.7 81.2 84.7 83.6 76.9 50.7 72.6 67.5 83.4 70.9
HyperNet 07 + 12 71.2 81.7 70.4 67.2 55.7 51.7 78.6 79.9 88.9 52.4 74.3 63.6 84.3 81.7 80.7 79.1 47.3 71.2 64.2 80.2 71.7
YOLOv3 07 + 12 72.0 80.4 75.3 70.9 56.8 53.3 79.6 75.7 86.7 58.8 75.6 60.9 79.4 82.6 81.5 79.3 52.3 71.5 65.6 84.8 68.9
SSD512 07 + 12 74.2 84.8 73.5 74.3 57.3 57.6 80.5 74.8 89.5 60.2 82.1 68.4 86.3 84.5 81.4 77.6 49.3 82.4 66.5 79.7 72.8

SC-Faster
R-CNN 07 + 12 77.6 86.5 82.4 76.4 61.4 60.5 86.5 76.2 92.1 64.5 83.6 69.3 90.1 89.4 88.5 79.2 58.2 79.1 70.2 85.6 72.7
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Figure 7, with an mP evaluation index, shows the detection of small, medium, and large objects
in the test set of the 07 + 12 dataset by various detection algorithms, that is, the detection results of
different types and scale objects in the test set by each detection algorithm. Figure 7, especially Figure 7a,
shows HyperNet, an algorithm for feature fusion from multiple feature layers, and MS-CNN, the
multi-scale detection algorithm and the method proposed in this paper. Their comprehensive detection
performance for small object detection is better than other algorithms and other networks. With the
cooperation of the context feature extraction module and the skip pooling method, the detection
performance of SC-Faster R-CNN for small objects was greatly improved on the basis of Faster R-CNN.
It can be seen in Figure 7b,c that as the object scale becomes larger, the detection performance of each
algorithm gradually tends to approximate.
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Figure 7. Detection of (a) small, (b) medium, and (c) large objects in test set of 07 + 12 dataset by
various deep neural network algorithms.

In order to more intuitively reflect the detection performance of SC-Faster R-CNN, this paper
discusses that when the threshold of IoU is 0.4, 0.6, and 0.8, various detection algorithms are based
on the 07 + 12 dataset to obtain precision-recall (PR) curve images. According to Figure 8, it can be
concluded that with increased IoU threshold, the improved SC-Faster R-CNN based on the Faster
R-CNN framework highlights the state-of-the-art detection performance. The results of the PR curve
images are consistent with the conclusion of Table 4.
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Figure 8. PR curve images of various deep neural network algorithms. The object detection situation for
different networks in the 07 + 12 dataset can be seen more intuitively when the threshold of intersection
over union (IoU) is different: (a) when IoU = 0.4, the overall detection performance of each network
is not much different, but SC-Faster R-CNN is better than other networks; (b) when IoU = 0.6, the
detection performance of most networks drops sharply, but that of SC-Faster R-CNN is stable; (c) when
IoU = 0.8, the overall detection performance of each network decreases, but SC-Faster R-CNN still has
splendid detection performance compared to other networks.

4.4.2. Calculation Efficiency

In the training and calculation process of deep neural network algorithms, hundreds of millions
of parameters are often involved. The calculation of these parameters requires a lot of computing
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power. The deep neural network algorithms involved in the object detection experiment in this paper
all run on GPU. An excellent object detection algorithm not only needs to focus on detection accuracy,
but also consider detection efficiency. In many fields, such as unmanned driving and military object
intrusion, the efficiency of object detection has extremely strict requirements. This section discusses
the important performance indicators when testing on the 07 + 12 dataset.

It can be seen from Table 5 that the calculation speed of the one-stage algorithm is much higher
than that of the two-stage algorithm, but according to the above experimental results, the one-stage
algorithm needs to weigh the detection accuracy and time-consumption issues in the object detection
process. By comparing SC-Faster R-CNN and SC-Faster R*-CNN, it can be seen that the former’s area
recommendation method is improved from RPN to GA-RPN, therefore, the number of proposals is
greatly reduced, so both mAP and FPS have been improved.

Table 5. Important performance indicators of each algorithm when testing on 07 + 12 dataset.

Method mAP FPS Batch Size Proposals

Faster R-CNN 70.8 5 1 2460
MS-CNN 73.2 8 1 548
HyperNet 71.2 5 1 1140
YOLOv3 72.0 87 1 98
SSD512 74.2 56 8 24,564

SC-Faster R*-CNN 75.8 5 1 2460
SC-Faster R-CNN 77.6 9 1 473

5. Conclusions and Future Work

This paper introduces the Faster R-CNN algorithm with skip pooling and fusion of contextual
information (SC-Faster R-CNN). The algorithm is based on the Faster R-CNN framework and adds a
feature extraction model and skip pooling method that integrates contextual information and uses
guided anchors with high performance instead of RPN. In order to prove that it has high detection
performance, we conducted ablation and comparison experiments between the proposed algorithm
and Faster R-CNN, YOLOv3, SSD512, HyperNet, and MS-CNN. Training and testing on PASCAL VOC
2007 and 2012 datasets produced state-of-the-art results. Through experimental results, it is found that
the algorithm proposed in this paper is particularly effective for difficult problems in the detection of
partially occluded and small objects.

In this paper, the proposed algorithm has high detection performance in general and for objects
that are too small or partially occluded, but it still has certain limitations in the detection of deformed,
rotating, and camouflaged objects. In order to further improve the detection efficiency, we will
pay more attention to the research of difficult sample detection. In order to meet the real-time
performance of the system, we will further study the processing speed of the algorithm and other issues.
Also, researching an object detection algorithm with strong generalization ability but considerable
computational efficiency will be a meaningful future research direction.
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