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Ultrasensitive plasmonic sensing in air using
optical fibre spectral combs
Christophe Caucheteur1,*, Tuan Guo2,*, Fu Liu2, Bai-Ou Guan2 & Jacques Albert3

Surface plasmon polaritons (SPP) can be excited on metal-coated optical fibres, enabling

the accurate monitoring of refractive index changes. Configurations reported so far mainly

operate in liquids but not in air because of a mismatch between permittivities of guided light

modes and the surrounding medium. Here we demonstrate a plasmonic optical fibre platform

that overcomes this limitation. The underpinning of our work is a grating architecture—a

gold-coated highly tilted Bragg grating—that excites a spectral comb of narrowband-cladding

modes with effective indices near 1.0 and below. Using conventional spectral interrogation,

we measure shifts of the SPP-matched resonances in response to static atmospheric pressure

changes. A dynamic experiment conducted using a laser lined-up with an SPP-matched

resonance demonstrates the ability to detect an acoustic wave with a resolution of 10�8

refractive index unit (RIU). We believe that this configuration opens research directions for

highly sensitive plasmonic sensing in gas.
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T
he use of surface plasmon resonance (SPR)1,2 for gas
detection and biosensing dates back to 1982 (refs 3,4).
Since then, we have witnessed considerable research

activities aimed at the development of optical sensors suited to
measure (bio)chemical species. SPR-based sensors have
demonstrated a great potential for affinity biosensors, yielding
real-time analysis of specific bio-interactions, without using
labelled molecules5. This technology has progressively emerged
as the leading one in the field of direct and real-time monitoring
of biomolecular interactions. The sensitivity to the surrounding
refractive index often falls in the range of 10� 6–10� 7 refractive
index unit (RIU) for instruments with reference channels and
temperature stabilization6.

Currently, among the possible plasmonic optical sensor
configurations, optical fibre-based SPR sensors present the
highest degree of miniaturization. They have opened the path
to remote monitoring by minimally invasive sensors that can
be distributed or inserted into small spaces, otherwise unlikely
to be reached with prism configurations. They have been
extensively used in aqueous solutions.

The first fibre SPR configurations consisted of multimode
optical fibres with their cladding locally removed or thinned to
make the guided light interact with the metal coating deposited
on the fibre surface7. SPR excitation efficiencies have been further
enhanced with side-polished single-mode fibres8. In all cases,
light-coupling is obtained either by etching or polishing, which
requires a careful control and weakens the fibre. Hence, for
practical reasons, the use of thick optical fibres (with cladding
diameters between 200 and 400 mm) has been preferred9.

Instead of removing the cladding, gratings photo-inscribed in
the core of telecommunication-grade single-mode optical fibres
can be used to diffract part of the light into the cladding. In this
case, the resonant grating coupling only occurs at specific
wavelengths, that is, different fibre modes couple distinctively at
different wavelengths. This is similar to a coupled two-resonator
system in which the first resonator consists of the grating that
couples two fibre modes with each other and the second
resonator is the metal coating that couples a fibre mode to a
surface plasmon polariton (SPP). When these two resonances are
matched, the wavelength of the corresponding grating resonances
becomes sensitive to the changes in the SPR. Different grating
architectures can be used. Uniform fibre Bragg gratings (FBGs)
are narrowband, wavelength-selective filters that couple the
forward-going core mode into a backward-going one. Light,
therefore, remains confined in the fibre core and is insensitive to
surrounding medium changes. Etched FBGs with the cladding
removed have thus been used10. More advantageously, tilted
FBGs (TFBGs) that have grating fringes slightly angled with
respect to the normal of the optical fibre propagation axis couple
light from the core towards the cladding while preserving the
optical fibre integrity. Two kinds of coupling occur here: the
self-backward coupling of the core mode (the Bragg resonance)
and the backward coupling of the core mode with tens to
hundreds of cladding modes. The TFBG-transmitted amplitude
spectrum displays a dense comb of narrowband-cladding mode
resonances (full-width at half-maximum B200 pm; ref. 11) for
wavelengths at which light has been coupled out of the core.
When a metal film is deposited on the cladding surface, the
cladding modes that are phase-matched to the SPP tunnel energy
into it and the spectrum is modified12–14. In the TFBG spectrum,
the Bragg resonance is insensitive (in wavelength and power) to
the surrounding refractive index changes. It can therefore be used
to subtract unwanted temperature- and power-level fluctuation
effects from the sensor response. Moreover, the grating tilt breaks
the cylindrical symmetry of the fibre cross-section, allowing the
separate excitation of high-order cladding modes that are radially

polarized (transverse magnetic (TM) and EH modes) and
azimuthally polarized (transverse electric (TE) and HE
modes)15. Radially polarized mode resonances can excite TM-
polarized SPP waves while the interleaved spectrum of
azimuthally polarized ones cannot16. Fibre SPR refractometers
with sensitivities of B500 nm RIU� 1 in aqueous solutions
have been demonstrated17. Biochemical sensors based on the
antibody/antigen affinity have also been reported for proteins
and cell immunosensing18–22. They present limits of detection
and sensitivities that compete with the most sophisticated
plasmonic-based sensing solutions23,24.

The development of optical fibre SPR platforms for gas sensing
where the refractive index of the medium is far from the one of
the fibre material is not trivial. Hence, unclad optical fibre and
fibre-grating SPR configurations reported so far operate well in
aqueous solutions but are not able to provide direct (that is, with
only a single metal layer on the silica surface) SPP excitation in
air or gaseous environments. Indeed, most of the configurations
reported so far are unable to couple light into fibre modes
that have sufficiently small effective refractive indices
(corresponding to small enough incidence angles at the
cladding outer boundary). Several configurations have been
proposed to overcome this limitation. Multilayer coatings have
been used on top of unclad fibre sections to provide a medium
with the correct refractive index for SPP excitation25–27. Sensing
mechanisms are based on the refractive index changes occuring in
this multilayer structure when gases are adsorbed into it. A
tapered fibre optic tip sensor with angled facets such that optical
modes with effective index close to 1 can be excited has also been
proposed28,29.

In this paper, we demonstrate a robust all-fibre configuration
able to excite SPP directly in air with narrowband-cladding mode
resonances that can be measured with high resolution. It is based
on highly tilted FBGs to allow the excitation of cladding modes
with effective indices between 0.92 and 1.18 RIU, in gold-coated
single-mode optical fibres. The SPP excited by this configuration is
used in an experiment that reveals the potential of the technique in
terms of absolute refractometric sensitivity in dilute gases. Here we
rely on acoustically induced refractive index change sensing, as the
latter requires an ultrahigh measurement resolution30,31. We
demonstrate that the SPP-matched resonances can detect an
acoustic wave moving across the fibre grating. This demonstration
confirms that surrounding refractive index changes of 10� 8 RIU
can be resolved with a TFBG-SPR device.

Results
Transmitted amplitude spectrum of bare highly tilted FBGs.
The cladding mode resonances of a TFBG appear at
well-defined wavelengths given by the following phase-matching
conditions:

lclad;i ¼ neff ;coreþ neff ;clad;i
� �

L ð1Þ

where neff,core denotes the effective refractive index of the
core mode, neff,clad,i the effective refractive index of the ith

cladding mode and L the grating period measured along the
optical fibre axis.

Figure 1 depicts the transmitted amplitude spectrum of a
16-mm-long 37� TFBG photo-inscribed in a single-mode
optical fibre (Corning SMF-28) with a 1,073.81-nm-period
uniform phase mask, yielding a Bragg resonance B1,550 nm
(with an effective refractive index of 1.447). The internal tilt angle
was 23�. Curves measured in different liquids are displayed on the
same figure with a vertical offset. The cladding mode resonances
on the short-wavelength side of the Bragg resonance can be
divided into two main subsets:
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(1) in the wavelength range (1,480–1,550 nm), cladding mode
resonances have effective refractive indices ranging between
1.30 and 1.44, and are therefore suited for measurement in
aqueous solutions, similar to the case of weakly TFBGs with
tilt angles limited to 10�.

(2) in the wavelength range (1,270–1,410 nm), cladding mode
resonances present effective refractive indices ranging
between 0.92 and 1.18, according to the aforementioned
phase-matching condition.

The modes of this second subset, which can only be excited for
tilt angle values above 30�, constitute the key elements of the
proposed sensor configuration. Red stars in Fig. 1 indicate the
position of the cutoff wavelength, corresponding to the cladding
mode resonance for which its effective refractive index matches
the one of the surrounding medium. Resonances at wavelengths
shorter than the cutoff belong to leaky cladding modes.

Behaviour of gold-coated highly-tilted FBG refractometers.
The transmission spectra of TFBGs, coated with a 50-nm-gold
layer and left strain-free in air, are shown in Fig. 2. The input
state of polarization was linear and oriented in the P-plane
relative to the tilt direction to excite radially polarized light
modes. A clear SPP signature (that is, the strong attenuation in
the resonance amplitude because of the transfer and loss of power
to the SPP) appears B1,325 nm, slightly above the cutoff wave-
length, according to Equation 1 and taking into account the
optical fibre dispersion. This signature is comparable to the one
already reported in aqueous solutions for weakly tilted FBGs.
For S-polarized input light, the SPP cannot be excited by the
azimuthally polarized cladding modes and no attenuation of
the resonance amplitudes appears in the spectrum.

Validating simulation results can be plotted as the mode loss
(imaginary part of the effective mode index) against the real part
of the effective index, as shown in Fig. 3. There is a sharp increase
in loss that is observed only for TM/EH modes in the vicinity
of neff,clad(i)¼ 1.007, which is the value expected for the SPP
wave-effective index of the gold/air boundary at these
wavelengths. This loss increase leads to an attenuation of the
resonance of the corresponding cladding mode. Simulations
further indicate that the radial order of the modes with effective

indices B1.0 is near 167. Figure 3 also shows the theoretical
reflectance of a gold-coated glass prism (with the same gold
thickness and glass type as the fibre, that is, fused silica) as a
function of the effective index of propagation of a surface wave
propagating along the prism base. The latter curve has a
reflectance minimum (because of energy transfer to a SPP of
the gold interface) at the same value of effective index as the fibre

12
SRI=1.4234

SRI=1.4026
*

*

*

*

Liquids (RI: 1.33–1.45)

Gases (RI: 0.9–1.1)

*

Cladding modes

Core
mode

SRI=1.3801

SRI=1.3328

SRI=1.00028

1,250 1,300 1,350 1,400 1,450 1,500 1,550
Wavelength (nm)

8

4

0

–4

–8

R
el

at
iv

e 
po

w
er

 (
dB

)

Figure 1 | Transmitted power spectra of an uncoated 16-mm-long 37�
TFBG in air and liquids. Spectra measured for different surrounding

refractive indices (SRIs) are plotted with an offset in the vertical scale. Red

stars identify the cutoff wavelength in each medium.
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Figure 2 | Evidence of SPR attenuation of cladding mode resonances in

the P-polarized transmitted power spectra of a 37� TFBG coated with

50 nm of gold (red curve). The resonances in the S-polarized spectrum

(blue curve) at the same wavelengths near 1,325 nm are not attenuated.

Shaded regions of the spectra emphasize the resonances of interest near

the SPR (used for refractometric sensing) and near the Bragg resonance at

1,555 nm (for temperature compensation).
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Figure 3 | Simulation of the attenuation of gold-coated fibre-cladding

modes with effective indices near 1.0. Each vertical bar corresponds to a

particular cladding mode and is colour-coded by its polarization state (TM

and EH, which are P-polarized at the cladding surface; TE and HE, which are

S-polarized). The dashed red line shows the theoretical reflectance of a

conventional prism-based SPR device made from the same materials as the

fibre (silica with a refractive index of 1.445), as a function of the effective

refractive index of a TM surface wave propagating along the base of the

prism during total internal reflection. A pair of P-polarized cladding modes

with an effective index near 1.007 is phase-matched to an SPP and has an

attenuation that is larger than that of its neighbours by one order of

magnitude.
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model. Finally, converting this effective index to resonance
wavelength by Equation 1 and taking into account the dispersion
of the glass index, the SPP resonance is predicted to occur near
1,325 nm, exactly where it is observed (Fig. 2).

Static gas-phase refractometry results are shown in Fig. 4a, which
depicts the evolution of the SPP-matched cladding mode resonance
when the atmospheric pressure is decreased in steps to reach
B1,000 Pa. A strong blue shift of the mode resonance is obtained,
accompanied by a change of its relative amplitude. Also shown in
Fig. 4b is the spectrum in the vicinity of the Bragg resonance to
show that it remains virtually unchanged, confirming that the
evolution of the SPP mode arises from surrounding refractive index
changes and not from physical effects (strain or temperature32).

Other measurements were performed on another grating with
smaller atmospheric pressure changes to quantify the sensitivity
of the SPP-matched cladding mode resonance to air pressure
(and hence to the refractive index of the fibre surrounding).
Figure 5 depicts a spectral region around the SPR signature,
confirming that only the subset of modes that are phase-matched
with the SPR envelope are sensitive to the atmospheric pressure
change, with different degrees of sensitivity, as already observed
for refractometic changes in liquids33. The inset of Fig. 5 focuses
on the evolution of the most sensitive cladding mode resonance,
showing again a clear wavelength shift and amplitude change.
Similarly to our lines of work conducted in liquids, this mode is
the most sensitive as it is located on the shoulder of the SPR
envelope. Both the wavelength shift and amplitude change can be
used to estimate the SPP modification induced by surrounding
refractive index changes. The former measure is inherently
insensitive to unwanted optical power fluctuations. The latter can
also be made immune by self-referencing the spectrum with the
Bragg resonance wavelength and power level, because they
remain unaffected by surrounding refractive index changes, as
demonstrated in Fig. 4.

The raw data of Fig. 5 were used to compute the sensitivity as a
function of the surrounding refractive index change, knowing
that the refractive index of air is linked to the atmospheric
pressure and to the temperature as follows34,35:

n ¼ 1þ ns� 1ð Þ p
ps

Ts

T
ð2Þ

where ns¼ 1.00026825 (for dry air with 450 p.p.m. of CO2),
ps¼ 101,325 Pa and Ts¼ 288.15 K.

Fig. 6a,b displays the corresponding evolutions of the
wavelength shift and amplitude change as a function of the
surrounding refractive index. A linear regression of the raw data
yields a sensitivity of 204 nm RIU� 1 and 5,515 dB RIU� 1,

respectively. These values agree well with those reported for gold-
coated weakly TFBG refractometers used in aqueous solutions.

High-resolution refractometric sensing with highly-tilted
FBGs. Finally, dynamic measurements have been performed with
the experimental setup described in the Methods section. The
loudspeaker and the sensor were placed on top of two different
vibration-isolated tables to make sure that the sensor measures
only the atmospheric pressure change induced by the sound
waves in air. The distance between the loudspeaker (6 cm
diameter without acoustic focusing) and the sensor was 15 cm.
The amplifier was set close to its maximum so that the sound
level L was measured to be 109 dB at the sensor location.
The sound level L is defined by the following relationship:

L ¼ 20 log
p

2e� 5
ð3Þ

with p expressed in Pa (ref. 36).
According to the aforementioned formula, a sound level of

109 dB yields an atmospheric pressure change of only 5.6 Pa,
corresponding to an air refractive index change as small as
1.48� 10� 8 RIU at constant temperature (Equation 2).
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Figure 4 | Effect of atmospheric pressure changes on the resonances of interest of a gold-coated highly tilted FBG. (a) The evolution of an SPP-

matched cladding mode resonance in response to strong changes of the atmospheric pressure. (b) Focuses on the core-mode resonance.
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The tunable laser wavelength was then set to correspond to
different cladding mode resonances of interest to assess their
behaviour in response to such a small surrounding refractive index
change. The laser has a linewidth of 500 kHz (or B3 fm at
1,320 nm) and its wavelength was positioned on the edge of a
given cladding mode resonance, in order for resonance shifts to
cause the largest possible transmission-level changes. Figure 7
displays the typical experimental responses for several resonances,
obtained for a 2-kHz sine excitation. It shows that the most
sensitive cladding mode resonance (located at a wavelength of
1,316.382 nm, with the probe laser tuned to 1,316.270 nm) follows
the sine wave excitation accurately and therefore that it yields an
easily measurable response to refractive index changes of the order
of 10� 8. The oscillation of the neighbouring mode (at
1,318.184 nm) is three times less sensitive but is still able to
follow the sound wave. Other modes in the same spectral region
were not sensitive enough and are therefore not displayed in this
figure. The other mode traces in Fig. 7 correspond to the
azimuthally polarized mode closest to the SPP (and located at
1,317.024 nm) and to the ghost-mode resonance (1,542.288 nm)
that is adjacent to the Bragg resonance. The ghost-mode
resonance is the most sensitive resonance to bending11, and the
fact that these two resonances remain clearly in the noise level of
the photodiode (PD) confirms that the reported signals are only
due to the perturbation of the SPP-effective index by air refractive
index variations from the acoustic wave. The key point of this
ultralow detection level is that the measurement is dynamic (that
is, not disturbed by lower-frequency drift) and especially that the
TFBG resonances are very narrow and deep, and therefore have
large slopes where a stable ultranarrow linewidth laser can be used
to probe very small shifts of selected cladding mode resonances.

To determine the limit of detection of the reported sensing
configuration, another set of experiments was conducted by
tuning the sound level by steps of B1 dB between 105 and
109.2 dB for a 2-kHz sine excitation. The latter value is the
maximum sound level that our amplified source can reach. For a
sound level below 105 dB (this value corresponds to an
atmospheric pressure change of 3.56 Pa and an air refractive
index change of 0.94� 10� 8 RIU), the sensor trace recorded
by the oscilloscope remained flat. A growing sine function at

2 kHz frequency was then recorded for sound levels above 106 dB,
as depicted in Fig. 8a. For each investigated sound level, five
measurements were recorded, allowing us to compute the mean
value and s.d. of the peak-to-peak amplitude of the recorded sine
evolution. Figure 8b depicts the obtained results as a function of
the surrounding refractive index change, which was computed
from the measurement of the sound level using Equations 2
and 3. From these results, we can confirm that the limit of
detection of our sensor configuration is very close to 10� 8 RIU.

Discussion
The transmission spectrum of the TFBG in air shown in Fig. 1
indicates that cladding modes with effective indices lower than
1.0 are excited, and therefore that the evanescent surface wave has
a superluminal velocity in the axial direction of the fibre. In more
detail, the effective refractive index of a mode is given by the ratio
of the phase velocity in vacuum over the phase velocity of the
mode in the fibre, measured along the fibre axis. Taking the
analogy of a plane wave incident on a flat interface between a high
refractive index medium and a low refractive index medium, a
similar effective index can be calculated for the phase velocity
along the interface. As the angle of incidence decreases from 90
degrees towards the critical angle, the phase velocity along the
interface increases (and the effective index decreases). Passing the
critical angle, the wave becomes leaky but the phase velocity
along the interface continues to increase. The same phenomenon
occurs in fibres, or at the base of a Kretschmann–Raether prism,
as the angle of incidence decreases (equivalent to the order
of the cladding mode increasing). For a fibre in air (or vacuum),
effective indices lower than 1.0 mean that the corresponding
cladding mode is leaky (but still propagating).

Temperature changes were not considered in this work for
which dynamic measurements were conducted in a thermally
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stabilized clean room environment over limited periods of time
not exceeding a few seconds. In such small time periods, the
ambient temperature can be considered as constant. Note that
the influence of the temperature on the fibre itself (because of the
thermo-optic coefficient of glass and the thermal expansion of
the grating period) is removed from the measurements by
referencing all wavelengths to the resonance of the core-mode
reflection (that senses temperature and strain but not SRI)11. This
can be carried out by locking the wavelength of the probe laser at
a precise offset from Bragg wavelength with a suitably fast
feedback loop system.

The observations reported in this paper constitute an
experimental evidence that SPP waves can be excited on the
surface of a metal-coated fibre in air at atmospheric and lower
pressures. The device uses a TFBG with a tilt angle near 37� to
excite cladding modes that have effective indices from 0.92 to 1.18
RIU, and a polarization state that is oriented to maximize the
coupling of energy from the cladding to the SPP (that is,
radially at the cladding boundary). It was further demonstrated

that such a device can detect changes in the refractive index of air
as the pressure is varied, with sensitivities of 204 nm RIU� 1and
5,515 dB RIU� 1. Most importantly, the use of a single-
wavelength, narrow linewidth interrogation technique was shown
to enable this device to measure refractive index changes of the
order of 10� 8 RIU dynamically at 2 kHz. This achievement stems
from many factors, but mostly from the fact that the power
transmission spectrum of TFBGs contains a low insertion loss,
very dense frequency comb of narrowband resonances that can
‘probe’ many kinds of perturbations to the fibre and its
surroundings. Because of the differential selectivity of the modes
to different types of perturbations, most of the spectral comb
typically remains invariant under a specific perturbation and can
be used as a power level and wavelength reference to reduce
system measurement noise. Finally, the main enabling
advance reported here was the successful extension of this
frequency comb to cover fibre modes with effective indices above
and below 1.0, thus allowing for SPP excitation in gases at any
pressure down to vacuum levels.
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Vertical error bars show the s.d.’s from five independent measurements. Horizontal error bars represent the error made on the computation of the

refractive index value due to the uncertainty on the sound measurement (0.1 dB). The term LOE means limit of excitation (that is, the maximum sound level

available with our system).
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As a consequence, the proposed configuration has the potential
to be used for highly sensitive gas detection (at p.p.m. levels or
even lower), with specific receptors grafted on the metal surface.
We therefore believe that it opens up prospects for the
development of remotely operated plasmonic optical fibre sensors
in gaseous environments and also, more generally, as a means to
generate plasmon waves on optical fibre surfaces with various
materials including graphene37,38.

Methods
Fabrication of gold-coated highly tilted FBGs. Highly-tilted FBGs (B15–20 mm
in length) were manufactured using the phase-mask technique in photosensitive
single-mode fibres, similarly to39,40. The fabrication process mainly includes
the following three steps. First, the fibre was hydrogen-loaded (temperature: 50 �C,
pressure: 1,500 p.s.i., loading time: 168 h) to increase the photosensitivity of the
fibre core. Second, pulsed 193 nm ultraviolet light (power of 3 mJ per pulse,
frequency of 200 Hz) was focused with a cylindrical lens and scanned over the
fibre in the axial direction. Finally, a large tilt angle (over 35 degree) was introduced
by rotating the phase mask and fibre consistently around an axis perpendicular to
the laser beam (with the phase mask and fibre kept parallel). The actual tilt angle of
the grating planes inside the fibre is decreased by refraction at the air–glass
interface. It should be noted that, with the tilt angle increase, the grating inscription
efficiency is decreased. It was empirically found that precisely positioning the fibre
within the ultraviolet focusing plane, slowing down the scanning speed and using a
cylinder lens with a long focus length are the key elements to achieve strong and
highly-tilted FBGs.

A 50-nm-thick gold film was deposited on the fibre probe by radio frequency
(RF) magnetron sputtering. To achieve a high-quality coating, two issues must be
noted. One is to improve the film adhesion by a 2–3-nm-thick chromium layer
sandwiched between the optical fibre surface and the gold film. The second is to
ensure the uniformity of the gold film thickness around the fibre circumference by
rotating the fibre device along its axis during deposition.

Fibre-mode simulations. Grating spectra can be studied and predicted using
coupled mode theory41. In our case, numerical simulations conducted using the
finite difference mode solver FimmWave (from Photon Design Inc.) were carried
out to confirm the experimental evolutions. FimmWave calculates the complex
effective refractive indices of all the modes supported by the fibre geometry used in
this work.

Static amplitude spectrum measurements. Transmitted power spectrum mea-
surements were obtained with an unpolarized super wideband light source
(Amonics ASLD-CWDM-5-B-FA) and an optical spectrum analyser (Yokogawa
AQ6370). An in-line polarization controller from General Photonics was placed
upstream of the TFBG to control the input state of polarization. The correct
polarization state is identified by observation of the spectrum during polarization
adjustment11,13,14. Note that there is not only one polarization state that yields SPP
excitation but rather a set. For instance, when linear polarization states are used, a
range of 10� can be used for clean SPP excitation in the amplitude-transmitted
spectrum of the TFBG.

Static atmospheric pressure measurements were conducted in a custom-made
enclosure in which controlled pressure changes can be applied and measured using
a graduated water column. A 2-mm-thick rubber seal containing two small
apertures (250 mm) was used to avoid air leaks while ensuring that the connecting
fibres used for the real-time monitoring are not subjected to transverse forces when
the pressure is modified in the chamber.

Dynamic acoustic wave sensing. Acoustic wave sensing was obtained with a
dynamic interrogation setup composed of a tunable laser source (TLS, Santec
TLS-210V) followed by the aforementioned polarization controller and a PD
(New Focus Model 2011). The laser wavelength was matched to a SPP-active mode
resonance by simultaneous measurement with the optical spectrum analyser. The
electrical output of the PD was connected to an oscilloscope (Agilent DS06012A
(100 Mz)) to record the time evolution of the output signal. Acoustic waves were
produced by a loudspeaker connected to an audio amplifier (QSC RMX850) that
was driven by a 20-MHz function generator (Agilent 33220A). Sinusoidal functions
with a frequency ranging between 1 Hz and 3 kHz were used in our experiments.
The corresponding sound level in dB was measured using an XL2 analyser from
NTI Audio. This experimental setup is sketched in Fig. 9a. The bottom part of
Fig. 9 shows the operating principle of SPR generation in gold-coated TFBGs
(Fig. 9b) and the preferred optical fibre orientation with respect to the acoustic
wave (Fig. 9c).

Data availability. The data that support the findings of this study are available
from the corresponding authors upon request.
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