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No population left behind: Improving paediatric drug safety
using informatics and systems biology
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Adverse drugs effects (ADEs) in children are common and may result in disability and

death. The current paediatric drug safety landscape, including clinical trials, is limited as

it rarely includes children and relies on extrapolation from adults. Children are not small

adults but go through an evolutionarily conserved and physiologically dynamic process

of growth and maturation. Novel quantitative approaches, integrating observations

from clinical trials and drug safety databases with dynamic mechanisms, can be used to

systematically identify ADEs unique to childhood. In this perspective, we discuss three

critical research directions using systems biology methodologies and novel informatics

to improve paediatric drug safety, namely child versus adult drug safety profiles, age-

dependent drug toxicities and genetic susceptibility of ADEs across childhood. We

argue that a data-driven framework that leverages observational data, biomedical

knowledge and systems biology modelling will reveal previously unknown mechanisms

of pediatric adverse drug events and lead to improved paediatric drug safety.
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1 | CHILDREN AND ADVERSE DRUG
EFFECTS

Millions of children are prescribed medication every year1,2 and

adverse effects are common.3 A meta-analysis showed the prevalence

of adverse drug effects (ADEs) in paediatric patients is as high as

16.8% and that 0.4–10.3% of hospitalizations are due to ADEs.4

Drugs associated to adverse effects are from various drug classes,

with anti-epileptic, anti-neoplastic and antibiotic drugs being the most

frequent culprits.5,6 Notably, the observed effects can be severe and

87% were found to be preventable.7 Adverse drug effects negatively

impact the quality of life of children8 and chronic treatments can lead

to late-onset or long-term ADEs.9 Few therapeutic studies have inves-

tigated long-term effects of drug exposures, making it difficult to

anticipate the consequences of drug therapy during childhood.10 Tra-

ditional methods for establishing drug safety, including preclinical

studies, clinical trials, and post-marketing surveillance, are failing the

paediatric population.

In preclinical studies, in silico screening for developmental toxicity

does not consider growth and maturation of children from infancy

through adolescence.11,12 Additionally, juvenile animals in safety phar-

macology studies have limited similarity in function and morphology

to humans13 leading to poor detection of toxicities during child devel-

opment.14 Clinical trials rarely include paediatric patients even if the

drug is widely prescribed in this population (Figure 1). Moreover, pae-

diatric clinical trials suffer from low completion rates, issues esta-

blishing generalizable study designs, lack of accepted and validated

paediatric endpoints, scarce participants and inflated placebo effects,

and inability to detect long-term ADEs.15–18 Post-marketing and epi-

demiological studies of ADEs in children are exploratory and descrip-

tive in nature,19,20 and have limited clinical translation due to

insufficient statistical control of bias and confounding.21 The current
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drug safety pipeline treats children as small adults which has led to a

lack of understanding how to safely treat this vulnerable population.22

Improving drug safety in the paediatric population must follow from

understanding paediatric biology and how drug actions and effects

are altered during growth and development.

2 | PAEDIATRIC BIOLOGY AND
PAEDIATRIC DRUG SAFETY

Unlike adults, children undergo dynamic biological and physical pro-

cesses from accelerated growth and maturation.23 Children undergo an

evolutionarily conserved process of genomic imprinting, hormonal

regulation and adaptive phenotype trajectories across the stages of

development.24 The obvious physical changes as children grow older

are reflections of rapid and dynamic organ development, tissue differen-

tiation and functional development across childhood. For example, the

immune system dynamically develops where immune cells and immuno-

globulins vary in number and concentration across many years, ulti-

mately converging to adult levels.25–27 The human brain is constantly

changing, from increasing and decreasing white and gray matter through

adolescence,28,29 growth and elimination of synapses and neurons,30

and adaptive expression of receptors and neurotransmitters from early

life through adolescence.31–33 One of the most fascinating and possibly

influential processes in human biology stems from our endocrine

system, and in childhood different hormones coordinated by the

developing brain regulate tissue differentiation, cell proliferation and

receptor expression during the different stages of development.24,34,35

Advances in large-scale genomic technologies, as well as international

collaborations such as the Pediatric Cell Atlas,36 allow researchers to

probe and illuminate the molecular landscapes that are a reflection of

this developmental period.37,38 A multi-omics perspective of the first

week of life showed distinct molecular networks and pathways, such as

increasing interleukin signalling and complement cascade, characterizing

a stable developmental trajectory since birth.39 Stevens et al. highlighted

the developing molecular landscape across childhood, showing clusters

of genetic programmes towards each phase of growth, including

dynamics of signalling pathways across growth phases such as NOTCH,

TFGB and VEGF signalling.40 Moreover, concerted gene regulatory

programmes are conserved across species, which is exemplified by

distinct developmental trajectories in parallel with stages of child

development from the mouse liver transcriptome.41 Distinct and evolu-

tionarily conserved biological mechanisms during the period of growth

and development distinguish children from adults.

Paediatric drug safety must follow from an understanding of how

pharmacology is altered during growth and development. Prenatally,

perinatally and postnatally, the response and effect of drug treatment

coincides with the dynamic molecular patterns underlying physiological

and structural development in children.42–47 For example, linear and

nonlinear dynamics of cytochrome P450 and other metabolic enzymes

influence drug disposition such as antipyrine,48 fentanyl,49 phenytoin,50

and many other drugs.51 Across child developmental stages, growth and

maturation processes such as growth rates of immune and neural cell

types may alter drug pharmacodynamics as well, resulting in hypersensi-

tivity to nonsteroidal anti-inflammatory drugs (NSAIDs) such as

ibuprofen,52,53 antiepileptic drugs such as phenobarbital,54 and drugs

like warfarin and cyclosporin.55,56 The hypothalamus–pituitary–adrenal

(HPA) axis, which secretes growth hormone and sex steroids, acceler-

ates during puberty57 and may affect drug response58,59 and be affected

by drug therapy.60 This is an example where drug toxicity may depend

on growth and maturation processes during developmental stages as

well as from previous developmental stages, such as during early

F IGURE 1 Relationship between the rate of drug prescription in an Academic Medical Center and evaluation in clinical trials for children.
Note: all drugs prescribed clinically have been evaluated within clinical trials. The percentages on the x-axis indicate the proportion of paediatric
patients (<18 years old) out of all patients prescribed a drug at Columbia University Irving Medical Center. The y-axis indicates the proportion of
paediatric clinical trials (eligibility <18 years old) out of all clinical trials registered at clinicaltrials.gov. The error bars represent 95% confidence
intervals. The number above the bars indicate the number of clinical trials including paediatric patients for the prescribed drugs in that category
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life,61–63 resulting in known but less characterized long-term drug

effects.64–67 Another less characterized but observed phenomenon is

how dynamic growth processes interact with pharmacogenes during

childhood.68 Adverse drug effects manifest from disrupting gene

variation, leading to hearing loss,69 and altered gene expression profiles,

leading to teratogenicity,70 but genetic susceptibility to ADEs across

childhood is largely unexplored. These and other effects during

childhood, such as drug interactions,71 emphasize the basis for and

importance of uncovering pharmacodynamic determinants of ADEs in

the paediatric population.

3 | SYSTEMS BIOLOGY AND
INFORMATICS APPROACHES TO IMPROVE
PAEDIATRIC DRUG SAFETY

Paediatric drug safety consistently considers children as small adults

without incorporating the unique biology of children.72–74 We high-

light three key research directions that build upon foundational paedi-

atric research and discuss novel approaches for improving paediatric

drug safety (Figure 2).

3.1 | Child versus adult drug safety profiles

A known but still unsolved problem is detection of ADEs in children

and their comparison to adults.75 Population stratification is a popular

approach to identify ADEs within the paediatric population and was

used to discover the arrhythmogenic effects of short-acting beta-

agonists from electronic health records.76 In other applications, paedi-

atric populations are compared directly to adult populations, as was

used to identify renal toxicity associated with enalapril in

EudraVigilance.77 Recent work has started to refine these compari-

sons by comparing across developmental stages.78,79 The use of these

detection methods, which are efficient and essential for identifying

drug–adverse event associations (see reviews on disproportionality

measures and data mining80,81), are still burdened by potential con-

founding due to disease status, growth considerations at drug pre-

scription and other extraneous factors. Methodologies must be

nuanced enough to distinguish differences in adverse effects from dif-

ferences in prescribing and reporting patterns. Moreover, fair and

accurate comparisons of children to adults will potentially uncover

effects of paediatric-specific mechanisms. Real-world data, like those

found in electronic health record databases, gather clinical data on

large populations of patients as a byproduct of the practice of medi-

cine. As a result of their size, these resources can be used to identify

less frequent but still clinically important adverse drug effects in chil-

dren.82,83 Additionally, analysis of real-world data can prioritize plausi-

ble ADEs from thousands of data-mined hypotheses, helping to

identify the needles in the adverse event haystack.84,85 As automated

and computational methods become more commonplace, however,

high-quality reference sets are required. Methodologies can be com-

pared and evaluated against a common reference set, such as the one

created by the GRiP consortium.86 Our lab developed a machine-

F IGURE 2 Three unsolved and critical research directions to enhance paediatric drug safety. Novel informatics and systems biology
approaches are needed to tackle both signal identification and mechanistic evaluation of adverse drug effects in children. Observational
databases are critical for systematic analyses but inherent bias and confounding requires correction for producing sound detection results.
Mechanistic databases, such as Drugbank or Chembl, evaluate adverse drug effects using biomedical and chemical knowledge to predict drug
toxicities. Developed methodologies require adequate internal and external validation to ensure method robustness and generalizable results
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readable version of these data that is publicly available to the research

community.87 Detection of adverse drug effects during childhood

through comparison to adults requires novel statistical approaches for

sound population comparison and corroboration within real-world

data and a paediatric-specific reference set.

3.2 | Drug toxicity profile across childhood

Paediatric drug safety can be evaluated in the pre-marketing phases

by focusing on adverse drug reactions that may result from growth

and maturation processes during childhood.75 Systems biology

methods offer a way to extrapolate from the biology of developmen-

tal processes to the clinical effects they may modulate in paediatric

drug treatment. These methods can integrate observational with

mechanistic data, such as drug pharmacology in Drugbank88 and drug

properties in Chembl,89 to study how mechanisms of development

may lead to drug toxicity.90 For example, researchers have linked

observed ADEs to mechanisms, such as drug targets associated with

heart failure,91 target inhibition associated with renal disorders,92 and

drug structures associated with QT prolongation.93 However, the bio-

logical mechanisms characterizing ADEs during childhood require

novel approaches that go beyond the guilt-by-association hypothe-

sis94 and incorporate temporal and dynamic changes of biological net-

works. Time-series-based machine learning approaches can learn drug

properties for predicting adverse reactions across childhood, similar to

Matlock et al., who developed a time-embedding algorithm to predict

CYP enzyme activity across childhood.95 Quantifying the age-

dependence of toxicities across childhood would improve translation

of effects during growth and maturation into developmental stage-

specific clinical trials and clinical contexts. Approaches for validation

are critical when developing these methodologies, including both

internal validation for ensuring the method is accurate and external

validation for assessing generalizability to other drugs, adverse effects

and clinical settings. Once validated, drug toxicity hypotheses would

be powerful for further investigation of metabolic, gene and clinical

markers for incorporation into pharmacometrics and juvenile animal

studies.96,97 Systems biology and machine learning approaches can

integrate observations and mechanisms to predict potential drug tox-

icity across childhood.

3.3 | Genetic susceptibility of paediatric adverse
drug events

The genetic basis of adverse reactions from drug exposure remains

largely unknown.21,98 Genome wide association studies (GWAS) are

established approaches that associate genetic polymorphisms with

adverse drug reactions, such as anthracycline-induced cardiotoxicity

in children.99,100 GWAS are limited, however, to understanding

genetic contributors with single, often common phenotypes101 and

lack the biological context that might be necessary to understand

drug-induced phenotypes. There is an opportunity to use systems

biology to provide the biological context needed to understand GWAS

results of drug-induced phenotypes.102 For example, building long QT

syndrome genetic networks showed enrichment of known gene vari-

ants from GWAS likely to affect the QT interval102 and the modular

assembly of drug safety subnetworks (MADSS) algorithm significantly

improved detection of adverse drug reactions by incorporating

protein–protein interactions into adverse event neighbourhoods.103 In

children, the growth and developmental processes during childhood

interact with genetic factors104,105 and complicate direct associations

with adverse drug reactions. Notwithstanding, our research group

developed a methodology founded on hypothesized population-

specific mechanisms addressing statistical bias and confounding that

uncovered thousands of ADEs, many with a potential basis in genetics,

showing increased safety risks in women.106 Novel methodologies in

paediatric drug safety are tasked to unravel both genetic mechanisms

and their dependencies across child development to uncover

paediatric-specific genetically-induced adverse drug effects.

4 | CONCLUSION

Integrating knowledge of paediatric-specific biology into systems

biology approaches can incorporate mechanistic insights and improve

paediatric drug safety. These approaches become more powerful

when used together within an overarching drug safety framework.

In fact, recent studies are showing how frameworks bridging

pharmacoepidemiology and pharmacodynamics link biological

explanations with detected ADEs. This approach has been used to

understand serotonin syndrome reporting107 and G protein-coupled

receptor-mediated acetaminophen-induced movement disorders.108

However, more is needed for teasing apart correlation from causa-

tion, validating results within external and reference datasets, and tai-

loring analyses towards understanding biological mechanisms in the

paediatric population. In previous work, we have demonstrated a

data-driven methodology that incorporates large-scale detection,

clinical evaluation and experimental validation of ADEs that has

uncovered unforeseen drug–drug interactions such as paroxetine

with pravastatin increasing blood glucose levels109 and lansoprazole

with ceftriaxone prolonging the QT interval.110 While this framework

has been applied for discovering novel drug–drug interactions in

adults, it demonstrates novel informatics coupled with orthogonal

evaluation and validation strategies can identify unknown drug phar-

macology and adverse effects. A similar approach that is adapted to

account for human growth and development may be a systematic

and efficient strategy to identify, evaluate and validate ADEs in the

paediatric population.
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