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P H Y S I C S

Atom interferometry with thousand-fold increase 
in dynamic range
Dimitry Yankelev1,2*†, Chen Avinadav1,2†, Nir Davidson1, Ofer Firstenberg1

The periodicity inherent to any interferometric signal entails a fundamental trade-off between sensitivity and 
dynamic range of interferometry-based sensors. Here, we develop a methodology for substantially extending the 
dynamic range of such sensors without compromising their sensitivity, stability, and bandwidth. The scheme is 
based on simultaneous operation of two nearly identical interferometers, providing a moiré-like period much 
larger than 2 and benefiting from close-to-maximal sensitivity and from suppression of common-mode noise. 
The methodology is highly suited to atom interferometers, which offer record sensitivities in measuring gravito-
inertial forces but suffer from limited dynamic range. We experimentally demonstrate an atom interferometer 
with a dynamic-range enhancement of more than an order of magnitude in a single shot and more than three 
orders of magnitude within a few shots for both static and dynamic signals. This approach can considerably improve 
the operation of interferometric sensors in challenging, uncertain, or rapidly varying conditions.

INTRODUCTION
The ambiguity-free dynamic range of interferometric physical sen-
sors is fundamentally limited to 2 radians. When the a priori phase 
uncertainty is larger than a single fringe, additional information is 
required to uniquely determine the physical quantity measured by 
the interferometer. If this quantity remains constant over long periods 
of time, then the phase ambiguity may be resolved through addi-
tional interferometric measurements with different scale factors, 
defined as the ratio between the interferometer phase and the mag-
nitude of the physical quantity. A more challenging scenario arises 
when the physical quantity changes rapidly with time, and measure-
ment with multiple scale factors must be realized simultaneously.

Overcoming this challenge in cold-atom interferometers (1), 
which have emerged over the past decades as extremely sensitive 
sensors of gravitational and inertial forces, is an especially ambitious 
proposition. Applications of atom interferometers vary from fun-
damental research (2–6) and precision measurements (7, 8) to grav-
ity surveys and inertial navigation (9). Mobile interferometers are 
being developed by several groups (10–13) with demonstrations of 
land-based, marine, and airborne gravity surveys (14–16).

In the latter applications, limited dynamic range is especially 
challenging, as the uncertainty in the acceleration to be measured is 
potentially very large. Reducing the interferometer scale factor or 
performing multiple measurements at each location results in re-
duced sensitivity or lower temporal bandwidth, respectively. A pos-
sible solution relies on auxiliary acceleration sensors with larger 
dynamic range but lower stability to constrain the interferometric 
measurement to a smaller, nonambiguous range (17, 18). This hy-
brid approach has been previously used for mobile inertial measure-
ments, e.g., on ships (14) and airplanes (16, 19). However, it requires 
that the uncertainty in acceleration estimation from the auxiliary 
sensor be smaller than the 2 periodicity of the interferometric sensor. 
This may be difficult to achieve when operating the interferometer 
at maximum sensitivity owing to large variations in the auxiliary 
sensor bias, transfer function errors, misalignment between the 

sensors, or nonlinearities. Increasing the interferometer dynamic 
range beyond 2 would reduce sensitivity to such effects and enable 
hybrid operation under more challenging conditions. It is therefore 
highly desirable to have a high-sensitivity, high-bandwidth atom 
interferometer with a large dynamic range. While optical interfer-
ometers may gain such capabilities by using and detecting multiple 
wavelengths (20, 21), this feat is more challenging for matter-wave 
interferometers.

In this work, we achieve a substantial enhancement of dynamic range 
on a single-shot basis by combining two powerful approaches in 
atom interferometry: increasing the dynamic range without sensi-
tivity loss through small variations of the interferometer scale factor 
(22) and acquiring multiple phase measurements in a single experi-
mental run (23, 24). First, when the same fundamental physical 
quantity determines two interferometric phases with slightly different 
scale factors, it can be uniquely extracted within an enhanced dy-
namic range, determined by a moiré wavelength, which is inversely 
proportional to the difference between scale factors (Fig. 1A). Sec-
ond, by operating and reading out the two interferometers simulta-
neously within the same experimental shot, major common-mode 
noises are efficiently rejected, increasing the scheme’s robustness to 
dominant sources of noise. In addition, such operation maintains 
the original temporal bandwidth of the measurement. Further ex-
ponential increase in dynamic range, at the cost of a linear reduc-
tion of temporal bandwidth, is achieved by varying the scale factor 
ratio between shots.

RESULTS
Principles of dual-T interferometry
We realize the above concept in a Mach-Zehnder atom interferom-
eter measuring the local acceleration of gravity (25). Such devices 
use light pulses as “atom optics” that split the atomic wave packet 
into two arms and later recombine them after they traveled on mac-
roscopically distinct trajectories. The differential phase accumulated 
between the arms of the interferometer depends on the motion of 
the atoms.

In our experiment, laser-cooled 87Rb atoms are launched verti-
cally on a free-fall trajectory. Counterpropagating, vertical laser 
beams at 780 nm drive two-photon Raman transitions between two 
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electronic ground states while imparting recoil of two photon mo-
menta (26). The Raman beams are sent from the top and are retro-
reflected from a mechanically stabilized mirror at the bottom, which 
defines the reference frame with respect to which the motion of the 
atoms is measured. The interferometric sequence is composed of 
three Raman pulses, equally spaced by time T, acting to split the 
atomic wave packet into two components that drift apart, and then 
to redirect and recombine them, leading to a final atomic popula-
tion ratio determined by the phase difference between the two arms.

In this configuration, the phase difference is determined by the 
gravitational acceleration g according to a = (keffg − )T2, with ℏkeff 
as the total momentum transferred by the Raman interaction and  
as a chirp rate applied to the relative frequency between the Raman 
beams to compensate for the changing Doppler shift of the falling 
atoms. Residual vibrations of the mirror contribute noise to the in-
ertial phase a.

The concept we develop relies on a so-called dual-T operation of 
the interferometer. Instead of one pulse sequence, two interleaved 
pulse sequences with slightly different T values are performed 
(Fig. 1B). Raman transitions with counterpropagating beams are 
Doppler sensitive; that is, they efficiently address atoms only within 
a narrow distribution of vertical velocities. Therefore, by tuning the 
two-photon Doppler detuning of each set of pulses, one can inde-
pendently address different velocity classes of the atoms (inset in 
Fig. 1B). We operate the two interferometers with scale factors dif-
fering by the ratio  ≲ 1, choosing the interferometric durations 
T1 = T and ​​T​ 2​​  = ​ √ 

_
  ​ T​, with T = 55 ms (see Materials and Methods).

Conventionally, the population ratio between the interfering 
atomic states is measured directly, and the cosine of the phase is 
extracted. In contrast, in our dual-T scheme, we detect the phases 
1, 2 of both interferometers by acquiring an image of the atoms in 
one of the final atomic states. We obtain the phase through phase 
shear readout (27), tilting the retro-reflecting Raman mirror by a 
small angle before the final /2 pulses to add a horizontal phase gra-
dient, and thereby generate a spatial transverse interference pattern 
across the cloud, as used in point-source interferometry (28–30). 
This detection method offers two advantages. First, the phase offset 
of the spatial interference pattern is directly extracted with constant 
sensitivity for all interferometric phases, in a manner equivalent to 
full quadrature detection, where both sine and cosine components 
of the phase are measured. Second, independent readout of both 
interferometers is inherently achieved owing to the mapping of the 
different velocity classes onto different vertical positions, due to 
ballistic expansion of the cloud. A typical image obtained in a single 
experiment is shown in Fig. 1C.

Figure 1D shows single-shot measurements in a dual-T operation 
with the dynamic range enhanced by a factor of 8. We vary a by 
changing the chirp rate  with respect to its nominal value 0 = keffg, 
thereby emulating changes in g. According to the equivalence prin-
ciple, the scenario of the mirror being at rest with the lasers chirped 
at keff(g − a) and the scenario of the mirror accelerating at a ≠ 0 
while the lasers are chirped at keffg are indistinguishable from the 
point of view of the atoms. Varying the chirp rate is therefore the 
standard method to emulate changes in acceleration in a precise 

Fig. 1. Concept, scheme, and results of dual-T interferometry.  (A) Conceptual representation of dynamic range enhancement by a factor of ×8, using a pair of simul-
taneous interferometers with different scale factors. (B) Dual-T atom interferometry. A pair of Raman pulse sequences (red and blue), with different interrogation times 
T and addressing different velocity classes of the atoms, coupled between two atomic states with a momentum difference of ℏkeff (bright and dark trajectories). To obtain 
full phase quadrature information, the Raman retro-reflecting mirror is tilted before the final /2 pulses, generating a transverse phase gradient across the cloud. (C) Top: 
A single fluorescence image captures the population in one of the atomic states for both interferometers. Bottom: Measured cross sections (solid lines) and the fitted 
fringes (dashed lines) of both interferometers, after vertical integration of the regions indicated by the dashed rectangles and subtraction of the Gaussian envelope. The 
interferometer phases 1, 2 are determined by the fringe phase at the center of each cloud. (D) Results of dual-T interferometry for inertial phase a in the range of 
±8 (color-coded); each dot represents a single dual-T measurement. Slope of gray lines is the scale factor ratio  = (T2/T1)2 = 7/8. Shaded region represents the original, 
ambiguity-free, 2 dynamic range of a single interferometer operated at T = T1. Full-quadrature phase detection allows for a unique solution for all phases, compared to 
ambiguities generated when detecting only the cosine component (E). (F) Dual-T measurements at constant inertial phase a = 0, demonstrating that the noise in both 
interferometers is highly correlated with slope ∼. In red, the covariance ellipse at 95% confidence level.
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and controlled manner. We find that a is mapped onto a unique set 
of straight, parallel lines in the plane spanned by 1 and 2 owing to 
the quadrature detection capability. Conversely, conventional de-
tection, which resolves only the cosine of the phase, would result in 
many phase ambiguities due to very different values of a being 
mapped to similar measured phase components (Fig. 1E), severely 
limiting the benefits of a dual-T operation. Quadrature detection, 
together with the strong suppression of common noise due to oper-
ation at very similar scale factors, allows the dual-T scheme to 
achieve a considerably larger enhancement compared to past imple-
mentations of simultaneous atom interferometers with different 
scale factors (23).

Phase estimation for single-shot dual-T
The measured interferometric phases 1, 2 are constrained to the 
bare dynamic range ± and can be written as

	​​ ​ 1​​  = ​ ​ a​​ − 2 ​n​ 1​​​	 (1)

	​​ ​ 2​​  =   ​​ a​​ − 2 ​n​ 2​​​	 (2)

The integers n1 and n2, which respectively bring 1 and 2 to the 
range ±, are a priori unknown.

We define D ≡ (1 − )−1, with  = (T2/T1)2 as the scale factor ra-
tio. For integer values of D, the dynamic range enhancement is ex-
actly D; as illustrated in Fig. 1A, 1 and 2 have a joint period of 2D 
as in a moiré effect, resulting in an extended ambiguity-free dynam-
ic range of ±D (see Materials and Methods for discussion on non-
integer values).

To analyze a dual-T measurement and extract an estimate for a, 
we define the quantities diff and sum

	​​ ​(​​​ 
​​ diff​​​ ​​ sum​​​​)​​  = ​   1 ─ 

1 + ​​​ 2​
 ​​(​​​ ​  − 1​ 1​ 


  ​​)​​​(​​​

​​ 1​​
​ ​​ 2​​​​)​​​​	 (3)

diff and sum act as coarse and fine measurements, respectively. 
As shown in Fig. 2A, which presents an analysis of D = 8 dual-T 
measurements, diff takes on a discrete set of 2D − 1 values. This 
constrain uniquely determines the values of n1 and n2 and hence the 
2 subrange in which a lies. Correspondingly, sum is a continuous 

variable, providing the estimation of the inertial phase a within 
that subrange (see Materials and Methods).

Phase estimation for sequential operation
We now turn to discuss further enhancement of the dynamic range 
obtained by a sequence of several dual-T shots with alternating in-
teger values of D. Here, we fix T1 and alternate T2 between shots. 
Assuming that changes in a are smaller than  between consecutive 
shots, the above analysis per shot provides n1 mod D. Together, the 
full sequence uniquely determines n1 within a range defined by the 
least common multiple of the used D values, or, for coprime inte-
gers, simply their product (see Materials and Methods and fig. S1).

Analyses of two-shot operation with D = 7,8 and three-shot op-
eration with D = 5,7,8 are shown in Fig. 2 (B and C). Each data point 
is a measurement with a random value of a within the extended 
dynamic ranges ±56 and ±280, respectively. We observe two- and 
three-dimensional clustering of the differential phases diff, where 
each cluster corresponds to a unique, nonambiguous phase range 
smaller than 2.

Noise and outlier probability
By virtue of simultaneously operating the two interferometers with 
similar scale factors, vibration-induced phase noise is highly cor-
related between them (Fig. 1F) and has negligible contribution to 
diff. The dominant noise in diff results from uncorrelated, inde-
pendent detection noise in 1 and 2, whose SD we denote as ind 
(see Materials and Methods for a detailed discussion of noise terms).

As D is increased and the discrete values of diff become denser, 
the uncorrelated noise may lead to errors in determining the correct 
subrange for a, producing an outlier with phase estimation error in 
multiples of 2. The probability ϵ for a measurement to be such an 
outlier is approximately (see Eq. 10 for exact expression)

	​​ ϵ  ≈  erfc​(​​ ​  ─ 2 ​ ​  1 ─ D · ​​ ind​​ ​​)​​​​	 (4)

Crucially, ϵ depends only on the uncorrelated noise and not on 
the vibration-dominated correlated noise, which is typically much 
larger. In the data presented in Fig. 2A, we observe one such outlier 
out of 5000 measurements for D = 8.

Fig. 2. Analysis of dual-T interferometry measurements in single-shot, two-shot, and three-shot operation. (A) Single-shot dual-T operation with D = 8 for a in the 
range of ±8 (color-coded). Every dot corresponds to a single measurement. Each discrete value of diff corresponds to a different subrange of a, and within that sub-
range, sum changes continuously and linearly with a. (B) Sequential two-shot dual-T operation with D = 7,8 for a in the range of ±56, presented in the ​​​diff​ 

(D = 7)​ − ​​diff​ 
(D = 8)​​ 

plane. The discrete clusters in this plane correspond to different subranges of a. (C) Sequential three-shot dual-T operation with D = 5,7,8 for a in the range of ±280, 
presented in the ​​​diff​ 

(D = 5)​ − ​​diff​ 
(D = 7)​ − ​​diff​ 

(D = 8)​​ space. For clarity, only a subset of the solutions around ​​​diff​ 
(D = 5,7,8)​  =  0​ is presented, and gray ovals surround the expected solutions.
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For the case of sequential dual-T operation, the total outlier 
probability depends on the outlier probabilities in each shot and, in 
the relevant regime of small error probabilities, is given simply by 
their sum. For any desired dynamic range and temporal bandwidth, 
the outlier probability is therefore minimized by choosing consecu-
tive coprime values of D.

Experimental performance
To quantify the performance of the dual-T scheme in terms of phase 
sensitivity and outlier probability, we extend the phase scan to ran-
dom, known, values of a within the range of ±1000, correspond-
ing to accelerations of ±65 mm/s2 at T = 55 ms. For each phase, we 
perform measurements with D values between 5 and 15 and perform 
dual-T analysis using each D separately, using pairs of consecutive 
D values, and using triplets of consecutive coprime D values. We ana-
lyze each measurement within its appropriate extended dynamic range; 
data points that are outside the measurement’s relevant dynamic range 
are wrapped back onto it. We then compare the extracted phase to 
its expected value, from which we estimate the outlier probability ϵ 
as well as the phase residuals of the measurements without outliers.

The results, presented in Fig. 3, demonstrate an enhancement of 
dynamic range by factors of 10 in a single shot, ∼100 in two shots, 
and ∼1000 in three shots, while maintaining phase residuals of ,est 
∼160 per shot (∼3.3 m/s2 per shot), and with outlier probabilities 
of 0.5, 1.1, and 1.2%, respectively. In general, we find excellent 
agreement with the error model described in Eq. 4, with ind = 
80 mrad estimated from these data (see the Supplementary Materials).

We note that an outlier fraction on the order of 1% is acceptable 
in most applications, as such outliers can be identified and removed 
by comparison to adjacent shots or using auxiliary measurements. 
However, even if nearly zero outlier fraction is required, the dual-T 
scheme can deliver a substantial dynamic range enhancement. For 
example, with the above measured value of ind and for D = 6, we 
expect ϵ ≈ 3 × 10−6.

Furthermore, averaging over N repeated measurements with the 
same D value can decrease the outlier probability ϵ by effectively 

reducing ind by a factor ​​√ 
_

 N ​​. However, by using the same number 
of sequential measurements with alternating values of D as 
described above, the same value of ϵ may be achieved with consid-
erably larger dynamic range enhancement, as seen from comparing 
solid and dashed curves in Fig. 3C.

Stability of dual-T interferometry
To demonstrate the long-term stability of dual-T interferometry, 
we continuously measure gravity over 20 hours with D = 10. As 
shown in Fig. 4, a follows the expected tidal gravity variations 
throughout the measurement period. It remains stable at time scales 
of 104 s to better than 100 nm/s2, consistent with past gravimetric 
measurements in our apparatus, showing that the dual-T scheme does 
not add visible drifts to the estimated phase. Therefore, it is possible 
to reach the same accuracy as conventional interferometric operation 
relying on a one-off calibration run. Conversely, diff does exhibit 
small drifts, which we attribute to mutual light shift between the two 
interferometers. However, due to the discrete nature of diff, these 
drifts can be easily corrected in several ways (see Materials and Methods).

Tracking fast-varying signals
We now turn to discuss dynamic scenarios, such as mobile gravity 
surveys or inertial measurements on a navigating platform, where 
the measured acceleration and thus a change substantially between 
shots. Dual-T interferometry with fixed D can directly track a signal 
that randomly varies by up to ±D from shot to shot. Moreover, 
alternating the value of D between consecutive measurements can 
enable tracking a signal with even larger variations; however, the 
sequential analysis described above cannot be applied due to the phase 
changing between shots, and a different analysis method is required.

To track such a signal, we use a particle filter estimation protocol 
(31, 32). Particle filtering is a powerful and well-established technique 
in navigation science, signal processing, and machine learning, 
among other fields. It is a sequential, Monte Carlo estimation ap-
proach based on a large number of particles, which represent 
possible hypotheses of the system’s current state, e.g., the inertial 

−10

0

10

es
t

D = 10

−10 0 10
−0.2

0

0.2

es
t

a (mod 20 )

−100

0

100

D = 10,11

−100 0 100

a (mod 220 )

−1000

0

1000

D = 9,10,11

−1000 0 1000

a (mod 1980 )

0%
0.01%

0.1%

1%

10%

5 10 15 30 90 200 500 1000 3000
Dynamic range enhancement

0.16

0.18

,e
st
 (r
ad
)

1 shot
2 shots
3 shots

A

B

C

D

,

Fig. 3. Performance analysis of dual-T interferometry. (A) Estimated inertial phase for single-shot measurements (left, inset shown zoom on ±/2 region) and for se-
quential two-shot (center) and three-shot (right) measurements, with dynamic range enhancement factors of 10, 110, and 990, respectively. Outlying measurements 
appear as data points visibly distant (>2) from their expected value. We observe only 10, 24, and 26 such outliers of 2000 data points in the three datasets, respectively. 
(B) Residuals of the estimated phases, including only non-outlying measurements. Compared to single-shot measurements, SDs of two- and three-shot residuals are 
smaller by factors of ​​√ 

_
 2 ​​ and ​​√ 

_
 3 ​​, respectively. (C) Outlier probability ϵ as a function of dynamic range enhancement obtained for individual values of D and for various 

combinations of consecutive coprime D values. For D ≤ 8, there were no outliers in the measured dataset. Error bars represent 67% confidence intervals of the estimated 
value. Solid lines are calculated using Eq. 4 with ind = 80 mrad. Dashed lines represent outlier probability for an alternative scheme of averaging two or three sequential 
shots using a single D value. (D) Estimation error of gravitation phase per shot ,est. The error is dominated by vibration-induced phase noise and is nearly equal for all 
realizations. Arrows in (C) and (D) indicate the measurements shown in (A) and (B).



Yankelev et al., Sci. Adv. 2020; 6 : eabd0650     4 November 2020

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

5 of 8

phase measured by the sensor. These hypotheses are weighted 
through Bayesian estimation after every measurement, converging 
on a solution that is consistent with the sensor readings over time. 
In our context, under some model assumptions on the signal dy-
namics, use of particle filter enables full recovery of the single-shot 
bandwidth (22) while maintaining the large increase in dynamic 
range rendered by the sequential operation.

An experimental realization of tracking a dynamic signal is pre-
sented in Fig. 5. We change the chirp rate  between shots to simulate 
a band-limited random walk of a and perform dual-T measurements 
with alternating D = 9,10. The sequence of measured phases is then 
analyzed with a particle filter protocol using a second-order deriva-
tive model (see Materials and Methods) to extract best estimate for 
the time series of a. Following a brief convergence period (fig. S6), 
we successfully track this time-varying signal, which spans over 
2000 and changes by up to 40 between shots, with sensitivity per 
shot similar to measurements of static signals under similar condi-
tions and with no outliers. We note that while the analysis was carried 
out in post-process, it is in principle compatible with implementa-
tion as a real-time protocol.

DISCUSSION
In conclusion, we present an approach to atom interferometry for 
substantial enhancement of dynamic range without compromising 
sensitivity and measurement bandwidth. In applications where tradi-
tional atom interferometers must be operated at reduced sensitivity 
owing to the expected dynamic range of the measured signal, our 
approach enables measurements with a substantial increase in sen-
sitivity while maintaining the necessary dynamic range.

Taking advantage of full-quadrature phase detection and common-
noise rejection, we experimentally demonstrate an increase of dy-
namic range by more than an order of magnitude in a single shot. 
Incorporating data from several consecutive shots, the dynamic 
range further increases in exponential fashion, allowing us to reach 
three orders of magnitude gain using only three measurements. 
Last, we demonstrate tracking of a dynamical signal with tens of 

radians shot-to-shot variation by combining the dual-T measurement 
with a particle filter protocol, representing a major improvement 
compared to recent works (22).

This approach can considerably enhance performance of sensors 
and, in particular, inertial-sensing atom interferometers, under 
challenging conditions, by enabling nonambiguous operation with-
out sacrificing either sensitivity or bandwidth. Such conditions are 
encountered in field operation of such sensors, for example, in mo-
bile gravity surveys or when used for inertial navigation on a mov-
ing platform. By extending the sensor real-time dynamic range, the 
requirements on vibration isolation or corrections based on auxiliary 
measurements can be relaxed or, equivalently, existing sensors can 
be operated in more demanding environments at higher sensitivi-
ties. Therefore, it complements and potentially improves the tech-
nique of hybridization with a classical sensor.

Dual-T measurements can be realized by multiple means, based 
on known atom interferometry tools, e.g., dual-species interferom-
etry (23) or momentum-state multiplexing (24), in addition to phase 
shear readout (27) used in this work. It is also compatible with impor
tant atom interferometry practices, such as k-reversal (33, 34) and 
zero–dead-time operation (35). Further improvement of the scheme is 
possible by incorporating more than two interferometric sequences 
within the same experimental shot, enabling the gain demonstrated 
here for sequential operation within a single shot. The dual-T ap-
proach may also be applied in other atom interferometers, such as 
gyroscopes in the butterfly configuration (36, 37) and multiaxis in-
ertial sensors in launched (38, 39) or continuous (40) configurations.

MATERIALS AND METHODS
Details of the experiment
We load a cloud of 87Rb atoms in a magneto-optical trap (MOT) 
and launch it upward at 0.9 m/s with moving optical molasses, 
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ing D = 9,10. (A) Acceleration signal extracted from the measurements using the 
particle filter (red), compared to the input signal (black). Bottom panel shows the 
residuals with an SD of 174 mrad (3.6 m/s2). (B) Temporal derivative (shot-to-shot 
variation) of the measured acceleration signal (red) compared to the input (black).
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which also cools the cloud to 5 K. Atoms initially populate equally 
all mF sublevels in the F = 2 hyperfine manifold. We select atoms in 
two distinct velocity classes and in the mF = 0 state using two coun-
terpropagating Raman  pulses, with 20-s duration and a relative 
Doppler detuning of 80 kHz. Two interferometric sequences of 
/2 −  − /2 pulses, with durations of 12, 24, and 12 s, respective-
ly, address each of the velocity classes as shown in Fig. 1. The timing 
of the  pulses of the two interferometers is set to 22 and 22.5 ms 
after the apex of the trajectories. The precise ratio of T2/T1 contains 
empirically calibrated corrections on the order of 10−5 with respect 
to the naïve ​​√ 

_
  ​​ value, attributed mainly to finite Raman pulse dura-

tions (41). Before the final /2 pulses, the Raman mirror is tilted by 
120 rad. With the MOT beams tuned on resonance with the F = 
2 → F = 3 cycling transition, a fluorescence image of atoms in the F = 2 
level is taken on a charge-coupled device camera oriented perpen-
dicularly to the Raman mirror tilt axis. The experiment is repeated 
every 2 to 3 s.

Extraction of the measured phases 1, 2
We first integrate the image horizontally to find the vertical Gaussian 
envelopes of the fringe patterns, which are used to define the analy-
sis region of interest for each interferometer (fig. S2). We then ver-
tically integrate the image over those regions and fit the resulting 
profile to Gaussian envelopes with sinusoidal modulation. The phases 
of the measurement are taken as the phases of the fitted fringes at 
the horizontal center of the cloud. Last, we calculate and correct the 
vibration-induced phase based on the auxiliary accelerometer sig-
nal (Nanometrics Titan), taking into account the different interro-
gation times of each interferometer.

Single-shot dual-T analysis
For each dual-T shot, we rotate the measured 1, 2 according to Eq. 3

	​​ ​​ diff​​  = ​   2 ─ 
1 + ​​​ 2​

 ​ ​(​​ ​ ​n​ 1​​ ─ D ​ − n​)​​​​	 (5)

	​​ ​ sum​​  = ​ ​ a​​ − 2  ​ (​n​ 1​​ +  ​n​ 2​​) ─ 
1 + ​​​ 2​

  ​​	 (6)

Within the extended dynamic range of ±D for a, the integer n1 
takes values within ±⌊D/2⌋, and n = n1 − n2 takes either 0 or ± 1. 
From diff, we uniquely determine n

	​​ n  = ​

⎧

 
⎪

 ⎨ 
⎪

 

⎩

​​​
0

​ 
​∣​​ diff​​∣  < ​    ─ 

1 + ​​​ 2​
 ​ ​(​​1 − ​  1 ─ 2D ​​)​​​

​   
− sgn(​​ diff​​)

​ 
​∣​​ diff​​∣  > ​    ─ 

1 + ​​​ 2​
 ​ ​(​​1 − ​  1 ─ 2D ​​)​​​

​​​	 (7)

and n1 follows as the round value of D[(1 + 2)diff/(2) + n]. Last, 
we estimate a by substituting n1 and n2 = n1 − n back into sum.

All measurements presented in this work were performed in a 
noisy urban-industrial environment and include passive vibration 
isolation and postprocessing correction of residual vibrations using 
the auxiliary accelerometer. The residual vibration phase noise is 
usually reduced to at most 200 mrad and post-processing correction 
of residual vibrations using the auxiliary accelerometer. By calculat-
ing the vibration-induced phase for each of the two interferometers 
based on their individual transfer function (42), the residual vibra-
tion phase noise is reduced to at most 300 mrad and typically below 

200 mrad. However, as demonstrated in fig. S3, the dual-T approach 
works equally well also for substantially larger vibration noise (e.g., 
without correction based on the auxiliary accelerometer).

We focused the discussion on integer D. Rational D yields joint 
phase periodicity according to the lowest term numerator of D but 
with less efficient common-mode noise rejection. For irrational D, 
there is no well-defined periodicity and hence no discrete set of al-
lowed diff solutions. While, in both cases, dynamic range enhance-
ment is attained, optimal results are achieved for integer D.

Sequential dual-T analysis
From a sequence of N (N = 2,3 in this work) shots with alternating 
D(i), where i = 1, …, N, we retrieve N pairs of phases ​[​​1​ (i)​, ​​2​ (i)​]​. Ana-
lyzing each shot separately as described above, we extract from 
them a set of values ​​​ ~ n ​​1​ (i)​​, each within ±⌊D(i)/2⌋. Joint analysis of the 
sequential measurements in principle amounts to finding the inte-
ger n1 that satisfies the set of equations ​​​ ~ n ​​1​ (i)​ = ​n​ 1​​ mod  ​D​​ (i)​​. The 
solution is unique within the range ±LCM(D(1), …, D(N)), LCM de-
noting the least common multiple. This analysis assumes that ​​n​1​ (i)​  = ​
n​1​ (1)​​ for all i, as the first interferometer always measures a with the 
same interrogation time T. However, for values of a close to odd 
multiples of , phase noise may cause variations of up to ±1 in ​​n​1​ (i)​​. 
We calculate the variations ​ ​n​1​ (i)​ = ​n​1​ (1)​ − ​n​1​ (i)​​ for i > 1 as the round 
value of ​(​​1​ (1)​ − ​​1​ (i)​ ) / (2)​ and take them into account when solving 
the set of equations described above for n1. This estimation of ​ ​n​1​ (i)​​ 
is valid as long as a does not change by more than  between shots, 
setting the limit for allowed a variations for sequential dual-T anal-
ysis. In Fig. 2B, only measurements with ​ ​n​1​ (2)​  =  0​ are shown for 
clarity; the full range of results is shown in fig. S4.

Experimental noise parameterization
Extending on Eqs. 1 and 2, we write the phases 1, 2 as

	​​ ​ 1​​  =  (​​ a​​ +  ​​ corr​​ ) +   ​​ ind,1​​ − 2 ​n​ 1​​​	 (8)

	​​ ​ 2​​  =  (​​ a​​ +  ​​ corr​​ ) +   ​​ ind,2​​ − 2 ​n​ 2​​​	 (9)

Here, ​ ​​ corr​​  ∼  N(0, ​​corr​ 
2 ​ )​ is the noise term on the inertial signal 

common to both interferometers, whereas ​ ​​ ind,1​​,  ​​ ind,2​​  ∼ N(0, ​​ind​ 2 ​ )​ 
are independent noise terms, e.g., due to detection noise of each 
interferometer. While this noise parameterization is not completely 
general, we empirically observe that it describes our data extremely 
well, as demonstrated in Fig. 1F, and allows for convenient inter-
pretation of the results, as demonstrated in Fig. 3C. We emphasize 
that the used methodology and data processing work well for any 
noise covariance. We further note that, while we identify the domi-
nant contributions to corr and ind as vibration noise and detec-
tion noise, respectively, this correspondence is not complete. For example, 
vibrations at higher frequencies, for which the transfer functions of 
the two interferometers differ, would contribute to the estimate of 
the independent noise.

With this parameterization and based on Eq. 3, diff and sum 
are characterized by random noise with SDs ​​​ ind​​ / ​√ 

_
 1 + ​​​ 2​ ​​ and ​​

​ ,est​​  = ​ √ 
_______________

  ​​corr​ 
2 ​  + ​​ind​ 2 ​  / (1 + ​​​ 2​) ​​, respectively. An outlier measure-

ment occurs when the random deviation of diff from its theoretical 
value is larger than half the difference between its discrete solutions, 
which is 2/[D(1 + 2)]. The probability of such an event is given by
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	​​ ϵ  =  erfc​(​​ ​  ─ 
​√ 
_

 2 ​
 ​  ​  1 ─ 
D ​√ 
_

 1 + ​​​ 2​
 
 ​
 ​ ​  1 ─ ​​ ind​​ ​​)​​​​	 (10)

and approximated by Eq. 4 for  ≈ 1. See the Supplementary Mate-
rials for experimental noise characterization.

Systematic phase shifts
Dual-T measurements have several systematic phase shifts that are 
common also to conventional atom interferometers, due to fac-
tors such as one-photon light shifts, two-photon light shifts (43), 
and offset of the Raman frequency from Doppler resonance (44). 
Typically, either these effects are estimated and accounted for 
theoretically or they are eliminated through wave vector reversal 
(k-reversal) (33, 34).

Nevertheless, some of these shifts may be complicated or modi-
fied by the existence of two simultaneous interferometer pulse se-
quences, while new sources of systematic shifts may arise, such as 
due to an estimation error of the cloud center position when using 
phase shear readout. As demonstrated in Fig. 4, these effects do not 
contribute to bias instability in the measured phase up to few milli-
radians, although they may introduce a constant bias, which can be 
determined and calibrated in advance by comparison of dual-T 
measurements with standard interferometry. We correct this bias 
by performing 15 to 50 initial calibration measurements for differ-
ent D values and keff signs, where we assume prior knowledge of a. 
For the time-varying experiment in Fig. 5, these calibration mea-
surements are not included in the particle filter analysis.

Correction of drifts in the differential phase
As shown in fig. S5A, diff exhibits small drifts over time from its 
expected discrete value. While these drifts do not directly enter into 
the estimation of a, they may have a large impact on outlier proba-
bility ϵ. By performing k-reversal, we observe that the drift in diff is 
antisymmetric with respect to keff. We therefore attribute the ob-
served phase drifts to differential light shift between the two inter-
ferometric states of the Raman pulses. As the temporal response 
function to external phase shifts is antisymmetric with respect to 
the central  pulse, normally, the effect of light shifts due to the in-
terferometer pulses cancels up to changes in the light shift during 
the interferometer due to laser intensity fluctuations (45). In our 
dual-T realization, the light shift induced by the /2 pulses of 
the shorter interferometer on the longer one still cancels as before, 
but each interferometer experiences an uncompensated light shift 
owing to the  pulse of its counterpart. A realization of dual-T with 
simultaneous  pulses for both interferometers will circumvent this 
effect (23).

These mutual light shifts will be of approximately equal ampli-
tude but opposite signs; therefore, they are suppressed in sum by a 
factor (1 − )/(1 + 2) but amplified in diff by a factor (1 + )/(1 + 2). 
These effects of light shifts are entirely canceled by performing 
k-reversal, and, as we observe in fig. S5B, the average value of diff 
over ±keff remains stable at time scales of 104 s to better than 1 mrad. 
In the particle filter demonstration, we used both keff signs to cor-
rect such drifts, demonstrating the compatibility of the k-reversal 
technique with the dual-T approach.

In addition, because of the discrete nature of diff, the observed 
drifts can also be deterministically corrected without requiring 
k-reversal and thus with practically no impact on the interferometer 

performance or bandwidth. For the data presented in Figs. 2 and 3, 
we continuously correct drifts in diff, without assuming prior 
knowledge of a, by tracking the difference between the measured 
diff values from the nearest discrete values and subtracting their 
long-term, moving average.

Particle filter implementation
We choose as state variables the instantaneous value of the inertial 
phase a and its first- and second-order time derivatives, denoting

	​​ x​​ (m,i)​  = ​ [​​a​ (m,i)​ ​​ ̇ ​​a​ (m,i)​ ​​ ¨ ​​a​ (m,i)​]​​ 
T
​​	 (11)

for the mth particle at the ith time step. As observables, we choose 
the two interferometer phases 1,2. The initial value and derivatives 
of the input a signal are approximately −207, 8.6/dt, and 4.5/dt2, 
respectively. We represent a scenario where some imperfect knowl-
edge about the starting conditions exists by drawing the initial val-
ues of the particles from normal distributions characterized by

	​​ ​

⎧

 
⎪

 ⎨ 
⎪

 

⎩

​​​

​​​ (0)​  =  − 250

​ 

​​​ (0)​  =  50

​  ​​​ ̇ ​​ 
(0)​  =  0​  ​​​ ̇ ​​ 

(0)​  =  10 / dt​   

​​​ ¨ ​​ 
(0)​  =  0

​ 

​​​ ¨ ​​ 
(0)​  =  8 / d​t​​ 2​

​​​	 (12)

At each time step of the filter, we first propagate the particles’ 
state according to x(m,i + 1) = F · x(m,i) + w(m,i), with F being the state 
propagation matrix and w(m,i) being a random process noise with 
zero mean and covariance matrix Q. For our model, we have

	​​ F  = ​
⎡
 ⎢ 

⎣
​​​
1

​ 
dt

​ 
​ 1 ─ 2 ​ d ​t​​ 2​

​ 0​  1​  dt​ 

0

​ 

0

​ 

1

 ​​
⎤
 ⎥ 

⎦
​​, Q  =  d ​t​​ 2​​

⎡
 ⎢ 

⎣
​​​
0

​ 
0

​ 
0

​ 0​  0​  0​ 
0

​ 
0

​ 
​q​​a ¨ ​​ 

2 ​
​​
⎤
 ⎥ 

⎦
​​​​	 (13)

where dt is the time interval between consecutive measurements. 
Following state propagation, we calculate the expected interferom-
eter signals for each particle as ​​​1​ (m,i)​ = ​​a​ (m,i)​​ and ​​​2​ (m,i)​ = ​​​ (i)​ ​​a​ (m,i)​​, 
where (i) is the scale factor ratio in the ith measurement. We calcu-
late their residuals from the actual measurements modulo 2 and 
weigh each particle according to the likelihood that these residuals 
are consistent with the independent measurement noise ind, which 
we take as 73 mrad according to the spread of ind,diff. State variable 
estimation is achieved by using a ridge-detection algorithm (MATLAB 
tfridge function) on the time-dependent particle histogram to esti-
mate ​​​est​ 

(i) ​​, as demonstrated in fig. S6. For ​​q​ ​a ¨ ​​​​, we took a value of 
6/dt2, as it minimizes the mean error of the estimated a from the 
measured 1,2.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/45/eabd0650/DC1
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