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Abstract

Recently, non-coding RNAs (ncRNAs) have been discovered with novel functions, and it
has been appreciated that there is pervasive transcription of genomes. Moreover, many
novel ncRNAs are not conserved on the primary sequence level. Therefore, de novo
computational ncRNA detection that is accurate and efficient is desirable. The purpose of
this study is to develop a ncRNA detection method based on conservation of structure in
more than two genomes. A new method called Multifind, using Multilign, was developed.
Multilign predicts the common secondary structure for multiple input sequences. Multifind
then uses measures of structure conservation to estimate the probability that the input
sequences are a conserved ncRNA using a classification support vector machine. Multilign
is based on Dynalign, which folds and aligns two sequences simultaneously using a scoring
scheme that does not include sequence identity; its structure prediction quality is therefore
not affected by input sequence diversity. Additionally, ensemble defect was introduced to
Multifind as an additional discriminating feature that quantifies the compactness of the fold-
ing space for a sequence. Benchmarks showed Multifind performs better than RNAz and
LocARNATE+RNAz, a method that uses RNAz on structure alignments generated by
LocARNATE, on testing sequences extracted from the Rfam database. For de novo ncRNA
discovery in three genomes, Multifind and LocARNATE+RNAz had an advantage over
RNAz in low similarity regions of genome alignments. Additionally, Multifind and LocAR-
NATE+RNAz found different subsets of known ncRNA sequences, suggesting the two
approaches are complementary.

Introduction

Traditionally, RNA was considered to simply be important in expressing proteins. The discov-
ery of a wide range of RNA molecules that do not function as intermediates of protein transla-
tion has changed that view. RNA sequences are involved in important biological functions
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such as self-cleavage catalysis, post-transcription gene regulation and genome defense [1-3].
These RNA sequences that function without being translated to proteins are called non-coding
RNA (ncRNA) sequences. RNA transcripts can therefore be characterized in three ways, pro-
tein-coding, non-coding, or non-functional.

The ENCODE project (“the Encyclopedia Of DNA Elements”), a research project that aims
to identify all the functional elements in the human genome sequence, showed 62% of the
human genome is transcribed [4]. 5% of this transcriptional output can be explained as exons
by GENCODE, which aims to annotate all the gene features in the human genome [4].
Although not all of the transcripts are functional, this suggests that only a small portion of
ncRNA functions are known to us, despite their importance.

One difficulty with the computational discovery of novel classes of ncRNA by comparative
genomics is the low sequence conservation of ncRNAs [5]. Many functional ncRNAs, however,
have conserved secondary structures [6]. Therefore, secondary structure conservation can
serve as strong evidence that an RNA has function. Methods exploiting RNA secondary struc-
ture conservation have been developed, but there is room to improve the accuracy [6-10]. For
example, the overlap in the sets of putative ncRNA using different methods only contains a
small portion of all the predictions [11-13].

Current methods for detecting structured RNA adopt a range of strategies. RNAz [8, 14]
and EvoFold [7] adopt an align-then-fold strategy. RNA secondary structure folding is per-
formed on a multiple sequence alignment, where the input alignment is fixed. Then the pre-
dicted structure is evaluated to give a probability or a score of the candidate being ncRNA. The
performance of this strategy is hindered by the alignment quality, which is adversely affected
by low sequence similarity. To overcome limitations in alignment quality, CMfinder [9]
searches for common structures among unaligned sequences by comparing local structures
predicted on single sequences. Another approach is taken by methods based on Dynalign [10,
15] and Foldalign [16], which use algorithms that fold and align two sequences simultaneously.
The structural alignment quality is therefore not adversely affected by low sequence similarity
because the sequence alignment is guided by RNA secondary structure. For example, Dynalign
performs better at ncRNA discovery on homologous RNA sequences with low sequence simi-
larities than RNAz [10]. A variation on this is the LocARNATE+RNAz approach that uses
LocARNATE to align sequences using secondary structure information and then RNAz to clas-
sify the sequence [14].

Although Dynalign has been successfully applied to ncRNA discovery, only two sequences
can be taken as input in that method. Therefore, it cannot take advantage of the additional
compensatory base pair change information provided by using more than two sequences. Mul-
tilign [17], a method based on Dynalign, can predict common secondary structures among
more than two sequences by progressively building the alignment. Multilign was shown to be
more accurate at structure prediction than Dynalign. In this contribution, a method called
Multifind is reported to detect ncRNAs in multiple sequences using Multilign. Multiple fea-
tures concerning structural conservation and stability were taken as input features to train a
support vector machine. Benchmarks on known families of ncRNA taken from Rfam 10.1 [18,
19] show Multifind performs better than RNAz and LocARNATE+RNAz. For ncRNA discov-
ery in genomes or transcriptomes, Multifind can serve as a complement to RNAz and LocAR-
NATE+RNAz in finding ncRNAs in low identity aligned regions.
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Methods
Structure Determination

Multilign was used to determine common structures among multiple sequences [17]. Multilign
uses Dynalign, a program that folds and aligns two sequences simultaneously to find their com-
mon structures. In Multilign, Dynalign progressively constructs the consensus structure for
multiple sequences. Among the input sequences, one sequence is chosen as the index sequence
to participate in pairwise Dynalign calculations with each other sequence. Base pairs are only
allowed in the index sequence if they are contained in a set of low free energy structures pre-
dicted by Dynalign with each other sequence. In the final iteration of refinement, Multilign
folds the index sequence, where its structure is well-determined, with each other sequence with
Dynalign calculations to determine the common structure.

For single-sequence structure prediction, Fold [20] and MaxExpect [21] in the RN Astruc-
ture package [22] were used. The free energy changes were calculated using the most recent
nearest neighbor parameter set [20, 23, 24], with the exception that the parameter for adding
an additional helix to a multibranch loop was set to -0.6 kcal/mol to be consistent with the esti-
mate based on optical melting experiments [25].

SVM implementation and usage

The SVM implementation LIBSVM, http://www.csie.ntu.edu.tw/~cjlin/libsvim/, was used.
LIBSVM implements SVM formulations both for classification and regression analysis [26].
Each of these implementations has a set of parameters that need to be optimized. In this study,
e-support vector regression (e-SVR) using the radial basis function (RBF) kernel was used for
regression analyses. This formulation has three parameters to optimize, C, € and 7. Classifica-
tion analyses used the c-support vector classification (c-SVC) with the RBF kernel that has two
parameters (C and v) to optimize. LIBSVM provides two python scripts (grid.py and gridre-
gression.py) that were used to optimize the parameters by searching for their optimal values in
user-specified grids. Parameter values were evaluated according to 5-fold cross validation on
the training data sets.

Features for Distinguishing ncRNA

Multifind uses three features to distinguish ncRNA sequences from background sequences.
These features are structural conservation index, average single sequence folding free energy Z
score and average single sequence normalized ensemble defect Z score. Additionally, the aver-
age Shannon entropy for the sequence alignment provides context for the values of the three
features that is important for classification accuracy.

Structure conservation index (SC/)

Structural conservation index (SCI) quantifies the structural conservation among RNA second-
ary structures [8]. It is defined as:

SCI ="/, (1)
where E, is the average of the folding free energies of the structures predicted by Multilign. E; is

the average of the folding free energies of the structures predicted with Fold, a single sequence
structure prediction tool in RNAstructure [22].
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Average single sequence folding free energy Z score

To quantify the significance of the thermodynamic stability of the structures predicted for sin-
gle sequences, a Z score was used, i.e. the number of standard deviations the stability is differ-
ent as compared to the mean of a suitable sample. To generate a sample to determine the
background folding free energy change, the original sequence was shuffled, only maintaining
the nucleotide frequency. The structures are predicted for each sequence and the Z score is
then defined as:

where E is the folding free energy change of an individual sequence predicted on single
sequence, y is the average folding free energy change of the shuffled sequences and o is the
standard deviation of the folding free energy changes of the shuffled sequences.

Calculating the Z score by shuffling sequences, however, is computationally costly. SVMs
were used to predict the Z scores for single sequences, as done previously [8]. First, 17,303
sequences were generated with length from 30 to 150 nucleotides, GC content from 25% to
75%, G/GC ratio from 25% to 75% and A/AU ratio from 25% to 75%. Then each sequence was
shuftled 1,000 times to get the average and the standard deviation of the folding free energy
changes of the shuffled sequences for each target sequence. Two separate regression SVMs
were trained to predict average and standard deviation. The inputs to each SVM are GC con-
tent, G/GC ratio, A/AU ratio and sequence length.

Average single sequence normalized ensemble defect Z score

Functional RNAs are not only constrained to fold into thermodynamically stable structures.
To function, the RNA structural conformational space needs to be well constrained to one or at
most a few dominant structures. Prior analysis showed natural occurring RNA sequences have
well-constrained conformational spaces compared to random sequences with the same nucleo-
tide content [27]. To describe compactness of folding space of RNAs, the distance, d, between
two structures s; and s, of a sequence is defined as:

d(51752) =N-— Z Si,j(sl)si.j(s2)7 (3)

1<i<N
1<j<N+1

where i and j are indexes of nucleotide position and N is the sequence length. S; ;(s;) = 1 if base
pair i-j is in structure s;, and is 0 otherwise. Similarly, S; x,1(s;) = 1 if i is unpaired and 0 other-
wise. It is clear d(sy, s,) = N if every nucleotide in the sequence adopts a different conformation
in two structures and d(sy,s,) = 0 if two structures are completely identical. This formulation of
distance between structures is chosen for the convenience of calculating ensemble defect, as
shown below. The distance of one structure, s, from its own thermodynamic ensemble there-
fore can be defined as:

I’l(S, Q) = ZP(O'aQ)d(Sa 6)7 (4)

aeQ

where Q is the set of all the possible structures of the sequence. p(0,Q) is the probability of
structure ¢ in €2, which can be obtained by calculating the partition function. It can be shown
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that:

n(s, Q) =N— > P(is), (5)

1<i<N

where P(i,s) is the probability of nucleotide i adopting the specific conformation in structure s,
i. e. the probability of nucleotide i being base paired with the specific nucleotide in structure s
or the probability of nucleotide i being unpaired if i is unpaired in structure s. The term, n(s,2),
is the ensemble defect of structure s, and n(s, ) /N is the normalized ensemble defect [28].
MaxExpect in RNAstructure predicts the lowest ensemble defect structure, which can be used
to define s. For this structure, the MaxExpect score is n(s,£2), when y equals one [21].

To infer the significance of the normalized ensemble defect, SVMs were trained to predict
the average normalized ensemble defect and normalized ensemble defect standard deviation of
the shuffled sequences. The input sequences were the same sequence set used for determining
average folding free energy change and its standard deviation for SVM training. The average
ensemble defect Z score of all the sequences was included as a feature in the classification SVM.

Shannon entropy

Although SCI is useful for predicting sequences that are ncRNA, when sequences have high
identity, SCI is close to one and therefore it cannot identify ncRNAs effectively. The folding
free energy change Z score and ensemble defect Z score predicted on single sequences are then
more meaningful to identify ncRNAs. For the SVM to put the correct emphasis on these fea-
tures, a feature that can describe the diversity of the aligned sequences, average Shannon
entropy, was included [29]:

5= 20S, (©)

icA

where §; is the Shannon entropy of one column, A is the set of all the columns in an alignment,
N is the number of columns in an alignment.

S = _Zpk In p,, (7)

keC

where C s all the types of characters in a RNA alignment, C = {A,C,G,U,-} and py is the fre-
quency of character k in the column i. The higher the Shannon entropy, the more diverse the
sequences in the alignment are.

Machine Training and Evaluation

The four features (structural conservation index, average single sequence folding free energy Z
score, average single sequence normalized ensemble defect Z score and Shannon entropy) were
included in ncRNA classification training. Training data were drawn from the Rfam database
10.1 [18, 19]. All the Rfam sequence families with average lengths from 30 to 150, with over 25
members, and with conserved structures were chosen for obtaining sequences. This provided
164 families. In each family, an equal number of groups containing from 3 to 6 sequences were
randomly selected with replacement. The number of sequence groups drawn from each family
was proportional to the size of the family. In total, 22,308 sequence groups were drawn to con-
stitute the positive training set. Then each group of sequences was aligned using ClustalW [30].
For each alignment generated, all the columns were randomly shuffled to build up the negative
training set with the exact same size as the positive training set. The complete data set of
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positive and negative controls for training and testing is provided as Supporting Information
(S1 and S2 Files).

SVM training was run on these alignments using the “-b 1’ option. This trained the SVM to
output probability of an alignment being ncRNA, which provides the information needed for
using a threshold for classification.

Genomic testing data were generated by cutting genome alignments into windows. Then
ncRNA detection methods were run on the windows. Three genome alignments were used for
benchmarking, which are (1) Escherichia coli (RefSeq Accesssion: NC_000913) aligned with
Salmonella typhi (NC_004631), Salmonella paratyphi (NC_011147), Shigella boydii (NC_
010658) and Klebsiella pneumonia (NC_011283), (2) Streptomyces coelicolor (NC_003888)
aligned with Streptomyces avermitilis (NC_03155) and Streptomyces griseus (NC_010572) and
(3) Saccharomyces cerevisiae (NC_001133) aligned with Saccharomyces paradoxus, Saccharo-
myces mikatae, Saccharomyces kudriavzevii, Saccharomyces bayanus, Saccharomyces castellii
and Saccharomyces kluyveri. The sequences for the E. coli and S. coelicolor alignments were
downloaded from NCBI RefSeq database [31], and both alignments were generated using the
“progressiveMauve” command in Mauve [32] with no extra options other than the input
sequences. The Saccharomyces cerevisiae alignment was downloaded from the UCSC genome
browser [33]. For all the alignments, only the alignment blocks that include all the input
sequences and are in intergenic regions of the E. coli, the S. coelicolor or the S. cerevisiae
genome were kept for subsequent processing and analysis. The intergenic regions’ coordinates
of the E. coli and the S. cerevisiae genomes were inferred from the coordinates of the genes
included in the RefSeq files. The intergenic regions’ coordinates of the S. coelicolor genome
were provided by Vockenhuber et al. [13]. Then all the alignment blocks were cut into 100 nt
windows with 50 nt step size. Known ncRNA locations in E. coli and S. coelicolor genomes
were acquired from the Rfam database 10.1 [18, 19]. Additional known ncRNAs in the S. coeli-
color genome identified by deep sequencing experiments were also included [13]. ncRNA loca-
tions in S. cerevisae were acquired from the RefSeq file.

Scoring

For ncRNA prediction, there are two criteria to evaluate the prediction: First is the fraction of
the real ncRNAs detected. This is the sensitivity:

e TP
sensitivity = TP+ EN’ (8)

where TP is the true positives (ncRNAs correctly classified as ncRNA) and FN is the false nega-
tives (ncRNA incorrectly classified as not being ncRNA).

The second criterion is the fraction of the non-ncRNAs correctly classified as not ncRNA,
the specificity:

.y IN
specificity = TN + 7P’ 9)

where TN is the true negatives (sequences that are not ncRNA and correctly classified as not
being ncRNA) and FP is the false positive (sequences that are not ncRNA and correctly classi-
fied as being ncRNA). Because of the large lengths of genomes, a large number of false positives
would be generated if the specificity is not high. Therefore, high specificity is critical.
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Results
Single Sequence Free Energy Z Score Estimation

Following previous practice, the single sequence folding free energy Z scores were used in Mul-
tifind to estimate folding stability [8]. The accuracy of the Z-score estimation by SVMs was
evaluated by benchmarking on randomly generated sequences. 1,000 random sequences were
generated with GC content, G/GC ratio and A/AU ratio randomly picked within the range of
25% to 75%, and each sequence was shuffled 1,000 times to generate a background set of
sequences. The average folding free energy change and standard deviation in folding free
energy change for the background sequences were calculated and were used to determine Z
scores for the 1,000 random sequences. The SVMs were also used to predict the Z scores on
these sequences. The predicted Z score was plotted against sampled Z score (S1A Fig) and was
shown to be highly correlated by the linear correlation coefficients (Rpe energy - = 0.998). The
correlation shows that these SVMs have high prediction accuracies for the folding free energy
Z score.

Ensemble Defect

For an RNA sequence to be functional, it needs to be able to fold into stable structures. Addi-
tionally, the number of structures it can fold into needs to be limited [27]. The ensemble defect
of a secondary structure describes how different the structure is from its alternatives, weighted
by the ensemble probability [28]. By predicting the structure with the minimum ensemble
defect of a RNA sequence, the compactness of its conformational space can be quantified. In
this study, the mean predicted minimum ensemble defect Z score of all the input sequences
was taken as an input for the SVM training. The accuracy of the Z score prediction, taken over
the same data set and background sequences used to evaluate the prediction accuracy of the
folding free energy change Z score, is illustrated in S1B Fig (Repsembie defect z = 0.999).

ncRNA classification on Rfam dataset

The training dataset is composed of 164 families containing 22,308 real ncRNA alignments
and the same number of negative control alignments, acquired by shuftling the columns of the
ncRNA alignments. All the ncRNA alignments were acquired from Rfam seed alignments [18,
19]. To test the classification method, a cross-validation approach was used, with four rounds.
In each round, families were randomly chosen to form a testing test, containing roughly 10%
of all the alignments in the dataset. Testing sets were chosen according to family identity, i.e. a
family either appeared in the training or testing set but not both, which avoided homology
between the training set and testing set. The four testing sets do not overlap, therefore they are
completely independent.

Receiver-operator characteristic curves (ROC curves) were plotted to demonstrate the qual-
ity of classification. These curves show the tradeoff in sensitivity (the fraction of ncRNA align-
ments correctly classified as ncRNA) and specificity (the fraction of shuffled alignments
correctly classified as not being ncRNA) by plotting sensitivity as a function of false positive
rate, i.e. 1-specificity. This is done by iterating over the probability threshold for which a
sequence is classified as ncRNA. A perfect classifier would have a point in the upper-left-hand
corner of the plot at 100% sensitivity and 100% specificity.

The three features, SCI, single sequence folding free energy Z score, and single sequence
ensemble defect Z score provide information that can identify ncRNA as compared to
sequences from shuffled genome alignments. ROC curves were plotted for each feature (Fig 1).
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Fig 1. ROC curves for ncRNA discovery features. For each feature, cut offs were scanned to generate ROC curves. The hypotheses are that alignments
with higher SCI, lower free energy Z scores and lower ensemble defect Z scores are more likely to be ncRNA. The ROC curves were generated using the
entire Rfam dataset.

doi:10.1371/journal.pone.0130200.g001

Four SVM classification machines were trained to output classification probability using four
training sets and tested on the four testing sets. RNAz [8, 14], LocARNATE+RNAz [14], Dyna-
lign/SVM [10] and Multifind without ensemble defect Z score were also tested on the four test-
ing sets. For the tests of Dynalign/SVM, two sequences from each alignment were randomly
chosen because Dynalign/SVM is limited to two sequences as input. For RNAz calculations,
the sequences were aligned using ClustalW, as done previously [8, 14], and then this alignment
was used as input. For LocARNATE+RNAz [14], multiple unaligned sequences are first taken
as input to LocARNATE, which then outputs a structural alignment that can serve as input for
RNAz.
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Fig 2. ROC curves for benchmarks on the first RFAM testing set. (A) ROC curves for Multifind, Multifind trained without ensemble defect Z score, RNAz,
LocaRNATE+RNAz and Dynalign/SVM on the first testing set. (B) The high-specificity range of the ROC curves for Multifind, Multifind trained without
ensemble defect Z score, RNAz, LocARNATE+RNAz and Dynalign/SVM on the first testing set.

doi:10.1371/journal.pone.0130200.g002

ROC curves were generated for all four testing sets (Figs 2-5) and there was variability
across the four sets. Multifind has higher sensitivity than RNAz and LocARNATE+RNAz at
most specificities across the four testing sets. Because Dynalign/SVM can only take two
sequences as input, its performance was not as good as Multifind, LocARNATE+RNAz or
RNAz. For each testing set, plots were made for both all specificities and for the high-specificity
regions (1-Specificity < 0.10). For genome scans, the most important part of the ROC curve is
the high-specificity region (Specificity > 0.98) because scans performed at low specificity
would generate large numbers of false positives because of the relatively low prevalence of
ncRNAs in genomes. In all sets, Multifind performed best in this high-specificity region,
although RNAz performed similarly to Multifind on set two (Fig 3).

One hypothesis was that Multifind will perform better than RNAz on low similarity align-
ments because Multilign aligns and folds multiple sequences simultaneously. To test this
hypothesis, each testing set was divided into two categories with Shannon entropy larger or
smaller than 0.3, and the accuracies of the classifiers measured using ROC curves for each cate-
gory (Figs 6-9). On testing sets with high entropy, Multifind has a distinct advantage over
RNAz. The advantage of LocARNATE+RNAz over RNAz is also apparent because LocAR-
NATE aligns and folds sequences simultaneously. In most high-entropy testing sets, Multifind
also has higher sensitivity than LocARNATE+RNAz at all specificities. At the highest specifici-
ties (Specificity > 0.98), Multifind outperforms LocARNATE+RNAz in all four data sets. Figs
4 and 8 also show that Multifind has some advantage over Multifind without ensemble defect
on the 3rd testing set, therefore ensemble defect can provide independent predictive power.

NcRNA classification on genomes

The ability of Multifind to identify ncRNAs in genomes was tested against LocARNATE
+RNAz and RNAz, using scans of three genomes, Escherichia coli [34], Streptomyces coelicolor
[35] and Saccharomyces cerevisiae [36]. E. coli was aligned with four species: Salmonella typhi
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Fig 3. ROC curves for benchmarks on the second RFAM testing set. (A) ROC curves for Multifind, Multifind trained without ensemble defect Z score,
RNAz, LocaRNATE+RNAz and Dynalign/SVM on the second testing set. (B) The high-specificity range of the ROC curves for Multifind, Multifind trained
without ensemble defect Z score, RNAz, LocARNATE+RNAz and Dynalign/SVM on the second testing set.

doi:10.1371/journal.pone.0130200.g003

[37], Salmonella paratyphi [38], Shigella boydii and Klebsiella pneumonia [39]. S. coelicolor was
aligned with two species: Streptomyces avermitilis [39] and Streptomyces griseus [40]. Both
alignments were made using the multiple genome alignment tool Mauve [32]. A seven-way
yeast alignment was downloaded from the UCSC genome browser [33], http://genome.ucsc.
edu/, including: Saccharomyces cerevisiae, Saccharomyces paradoxus, Saccharomyces mikatae,
Saccharomyces kudriavzevii, Saccharomyces bayanus, Saccharomyces castellii and Saccharomy-
ces kluyveri [41]. The scans were restricted to non-repeat, intergenic regions. These regions
were divided into 100 nt windows with 50 nt step size.

A considerable number of ncRNAs are known in these genomes. Known ncRNA locations
in E. coli and S. coelicolor genomes were acquired from the Rfam database 10.1 [18, 19]. Addi-
tional ncRNAs in the S. coelicolor genome identified by deep sequencing experiments were also
included [13]. ncRNA locations in S. cerevisae were acquired from the NCBI database [42].
The distribution of the lengths of the ncRNAs acquired from the above mentioned databases
are provided in S1 Table. A window that has over 30% of its nucleotides overlapping with any
ncRNA or which contains over 50% of nucleotides of a ncRNA was identified as a ncRNA win-
dow. The distribution of the windows in all the genome alignments according to the percentage
of nucleotides that overlap with a ncRNA is provided in S2 Table.

Multifind, LocARNATE+RNAz and RNAz were applied on these windows. To evaluate the
results of these three methods, instead of plotting ROC curves, plots of true positives as a func-
tion of total number of predicted candidates were used. This is because it is unknown whether
unannotated regions are truly not ncRNA. The ratio between true positives and total candi-
dates is a predicted success rate, assuming that most predicted ncRNAs not annotated as
ncRNA are false positives.

The plots for the benchmarks on these three genomes do not show an advantage for Multi-
find or LocARNATE+RNAz when all windows are considered (Figs 10-12). Further analysis,
however, showed that Multifind, LocARNATE+RNAz and RNAz discover different known
ncRNAs (Fig 13). Table 1 also shows that the true positives in the most probable candidates
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LocaRNATE+RNAz and Dynalign/SVM on the 3rd testing set. (B) The high-specificity range of the ROC curves for Multifind, Multifind trained without
ensemble defect Z score, RNAz, LocARNATE+RNAz and Dynalign/SVM on the third testing set.

doi:10.1371/journal.pone.0130200.g004

predicted by Multifind, LocARNATE+RNAz and RNAz have different mean sequence similar-
ities. Multifind and LocARNATE+RNAz tend to predict alignments with high Shannon
entropy to be ncRNA. This suggests Multifind and LocARNATE+RNAz have an advantage for
prediction on low similarity windows, which corresponds to the benchmarks on the Rfam
sequences. To test this hypothesis, all the windows of the yeast alignment were divided into low
similarity (§<0.3) and high similarity (5>0.3) categories. True candidates versus predicted
candidate curves were plotted on these two sets of windows separately (Fig 14). Results showed,
for high similarity windows, RNAz shows a clear advantage, but for low similarity windows,
Multifind and LocARNATE+RNAz performed better.

Time Consumption

Multifind inherently scales O(N°M) for M sequences of length N. In spite of the use of heuris-
tics to accelerate the calculation [10, 43], its time consumption was higher than for RNAz,
which scales O(N*) and LocARNATE, which empirically scales O(N*M?). To quantify the time
usage of Multifind, LocARNATE and RNAz, two benchmarks were done on 100 randomly-
chosen alignments from the Rfam training set and 100 randomly-chosen alignments from the
yeast data set. The results (Table 2) showed Multifind consumes more time on the Rfam train-
ing set than LocARNATE+RNAz and RNAz. But on the yeast data set, Multifind consumes
about as much time as LocARNATE+RNAz. The difference in time required by Multifind on
two data sets of about the same size was because of the alignment envelope [43] that constrains
Multifind’s alignment space based on a Hidden Markov Model posterior alignment probability
between sequence pairs. Sequence pairs in the yeast data set have much higher percentage iden-
tity, hence a much more concentrated posterior alignment probability and a narrower align-
ment envelope.
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Discussion

A ncRNA detection method called Multifind, based on Multilign, was developed. The bench-
marks on alignments extracted from Rfam show that Multifind performed better overall on
Rfam testing sets than RN Az and LocARNATE+RNAz. Its advantage is more obvious on low-
identity alignments, where it performs better than RNAz and similarly to LocARNATE
+RNAz. Benchmarks on genomes, however, showed that RNAz is more effective overall in
detecting known ncRNAs in genome alignments. Further analysis showed Multifind and
LocARNATE were more sensitive at discovering known ncRNAs in low-similarity genome
alignment regions, and Multifind, LocARNATE+RNAz and RNAz independently predict a sig-
nificant number of non-overlapping candidates. The latter point was also shown by the study
of Vockenhuber et al. [13] where Dynalign and RN Az were compared.

The above results suggested there is no single best method for ncRNA discovery in genomes;
different methods independently provide different correct candidates (Fig 13). Multifind,
RNAz and LocARNATE+RNAz are applicable on genome-alignment regions with different
sequence similarities. Multifind and LocARNATE+RNAz apply better on regions with low
similarity, and RNAz applies better on regions with high similarity. The benchmark showed,
for the yeast genome alignment, an average Shannon entropy of 0.25 would be a reasonable
threshold for applying different methods. Interestingly, among the 74,484 windows of yeast
alignment, 88% (65,886) are low similarity and therefore only 12% (8,597) are high similarity.
But low-similarity windows include only 47% of all the known ncRNAs, showing an enrich-
ment of known ncRNAs in high-similarity windows. Therefore, it can be argued that, because
it is more convenient to search for functional elements in highly conserved regions in genomes,
there are possibly more unknown ncRNAs in low-similarity genome-alignment regions. Also,
discovering ncRNAs in low-similarity alignments presents a technical barrier that cannot be
overcome without paying a computational price. Multifind is therefore a beneficial tool in
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doi:10.1371/journal.pone.0130200.g006

finding ncRNAs, and it can be a complement to other methods like RNAz and LocARNATE+

RNAz.

For benchmarks on genomes, the three methods are all applied on sliding windows with the
size of 100 nucleotides. Performing de novo ncRNA discovery on windows is a common prac-

tice to limit the computational cost for scanning [44, 45]. This practice does not necessarily
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Dynalign/SVM on the high-entropy range (>0.3) of the second testing set. (D) The high-specificity range of the ROC curves for Multifind, Multifind trained
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doi:10.1371/journal.pone.0130200.g007

overlook ncRNA longer than the window size. Uzilov et al. demonstrated, in the sliding-win-
dow method, long ncRNA can be found multiple times because there are a number of con-
served secondary structural elements that are shorter than the window size [10].
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Dynalign/SVM on the high-entropy range (

>0.3) of the third testing set. (D) The high specificity range of the ROC curves for Multifind, Multifind trained without

ensemble defect Z score, RNAz, LocARNATE+RNAz and Dynalign/SVM on the high-entropy range (>0.3) of the third testing set.

doi:10.1371/journal.pone.0130200.g008

In addition to using Multilign, Multifind introduces an additional discriminating feature
that has not been previously used for ncRNA discovery, ensemble defect. This feature quanti-
fies the compactness the folding space of a putative ncRNA. An SVM trained with this feature
can outperform a method trained without this feature for some data sets (Figs 4 and 8). This
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Fig 9. ROC curves for benchmarks on high and low entropy ranges of the fourth RFAM test. (A) ROC curves for Multifind, Multifind trained without
ensemble defect Z score, RNAz, LocARNATE+RNAz and Dynalign/SVM on the low-entropy range (<0.3) of the 4th testing set. (B) The high-specificity range
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(<0.3) of the fourth testing set. (C) ROC cu

rves for Multifind, Multifind trained without ensemble defect Z score, RNAz, LocARNATE+RNAz and Dynalign/

SVM on the high-entropy range (>0.3) of the fourth testing set. (D) The high specificity range of the ROC curves for Multifind, Multifind trained without
ensemble defect Z score, RNAz, LocARNATE+RNAz and Dynalign/SVM on the high-entropy range (>0.3) of the fourth testing set.

doi:10.1371/journal.pone.0130200.g009

supports the hypothesis that ncRNA sequences will fold specifically to up to only a few
structures.

Multifind is available as part of the RN Astructure [22] package (http://rna.urmc.rochester.
edu/RNAstructure.html). It is provided under the GNU public license.
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Conclusions

A new method, Multifind, that identifies conserved ncRNA from input unaligned sequences
was developed. Benchmarks on Rfam datasets showed Multifind performs better than RNAz
and LocARNATE+RNAz, especially on dissimilar sequences. Benchmarks on genomes also
showed Multifind and LocARNATE+RNAz are more successful than RNAz on alignments of
dissimilar sequences. Because each of the three methods finds a distinct subset of the known
ncRNAs, a comprehensive search for ncRNAs would use all three tools.
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Fig 11. True positives versus total number of predicted candidates for the E. coli genome.

doi:10.1371/journal.pone.0130200.9011

PLOS ONE | DOI:10.1371/journal.pone.0130200 June 15,2015 17/22



@’PLOS ‘ ONE

Discovery of Novel ncRNA Sequences in Multiple Genome Alignments

150 200
! 1

True Positives
100
1

o
T} )
f,f”/ B Multifind
/* B RNAz
ol B LocARNATE+RNAZ
I 1 1 I 1
0 500 1000 1500 2000

Predicted Candidates
Fig 12. True positives versus total number of predicted candidates curve for the S. coelicolor genome.

doi:10.1371/journal.pone.0130200.g012

A B
Multifind “ LocARNATE
16 2
RNAZ 3
30 < R”Z‘:Z
17 5
39 28
5
LocARNATE Multifind
40 4
C
RNAz
6
4
6
LocARNATE #
10
4
Multifind
8

Fig 13. Overlap of known ncRNAs discovered by three methods. (A) The Venn diagram of the known
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candidates by each method.
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Table 1. Shannon entropy of the known ncRNAs among top candidates predicted by Multifind, LocARNATE+RNAz and RNAz.

mean Shannon entropy

Discovered by Multifind Discovered by RNAz Discovered by Locarnate+RNAz
E. coli (TP in top 500) 0.26+0.16 0.17+0.14 0.28+0.14
S. coelicolor (TP in top 100) 0.34+0.13 0.34+0.13 0.35+0.12
S. cerevasiae (TP in top 500) 0.22+0.15 0.12+0.13 0.22+0.15
doi:10.1371/journal.pone.0130200.t001
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Fig 14. Benchmarks for ncRNA discovery in yeast. (A) True positives versus total number of predicted
candidates for the S. cerevisiae genome on low similarity (S>0.3) alignment windows. (B) True positives
versus total number of predicted candidates curve for the S. cerevisiae genome on high similarity (S<0.3)
alignment windows.

doi:10.1371/journal.pone.0130200.g014
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Table 2. Time consumption of Multifind, LocARNATE+RNAz and RNAz on 100 Rfam alignments and 100 yeast alignments on a single core of an
Intel Xeon CPU E5450 @ 3.00GHz.

Methods Multifind LocARNATE+RNAz RNAz
Rfam alignments 7h:38min 45min 3min
yeast alignments 1h:8min 44min 4min

doi:10.1371/journal.pone.0130200.t002
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