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Abstract

Purpose The extent to which efficacy of the HER2 anti-

body Trastuzumab in brain metastases is limited by access

of antibody to brain lesions remains a question of signifi-

cant clinical importance. We investigated the uptake and

distribution of trastuzumab in brain and mammary fat pad

grafts of HER2-positive breast cancer to evaluate the

relationship of these parameters to the anti-tumor activity

of trastuzumab and trastuzumab emtansine (T-DM1).

Methods Mouse transgenic breast tumor cells expressing

human HER2 (Fo2-1282 or Fo5) were used to establish

intracranial and orthotopic tumors. Tumor uptake and tis-

sue distribution of systemically administered 89Zr-trastu-

zumab or muMAb 4D5 (murine parent of trastuzumab)

were measured by PET and ELISA. Efficacy of muMAb

4D5, the PI3K/mTOR inhibitor GNE-317, and T-DM1 was

also assessed.

Results 89Zr-trastuzumab and muMAb 4D5 exhibited

robust uptake into Fo2-1282 brain tumors, but not normal

brains. Uptake into brain grafts was similar to mammary

grafts. Despite this, muMAb 4D5 was less efficacious in

brain grafts. Co-administration of muMAb 4D5 and GNE-

317, a brain-penetrant PI3K/mTOR inhibitor, provided

longer survival in mice with brain lesions than either agent

alone. Moreover, T-DM1 increased survival in the Fo5

brain metastasis model.

Conclusions In models of HER2-positive breast cancer

brain metastasis, trastuzumab efficacy does not appear to

be limited by access to intracranial tumors. Anti-tumor

activity improved with the addition of a brain-penetrant

PI3K/mTOR inhibitor, suggesting that combining targeted

therapies is a more effective strategy for treating HER2-

positive breast cancer brain metastases. Survival was also

extended in mice with Fo5 brain lesions treated with

T-DM1.
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Introduction

The incidence of brain metastases in patients with meta-

static breast cancer (MBC) appears to be increasing over

time, due in part to improved control of systemic disease,

prolonged survival, and enhanced detection [1]. Brain

metastases lead to substantial morbidity—in patients with

MBC, including cerebral edema, headaches, seizures,

motor impairment, speech difficulty, and mental distur-

bances [2]. Systemic therapy has limited efficacy in treat-

ing brain metastases, possibly due to poor penetration of

the blood–brain barrier (BBB), expression of drug efflux

pumps in the BBB, enriched abundance of ErbB ligands, or

acquired resistance following treatment with multiple prior

regimens [3]. In addition to systemic therapy, standard

treatments for brain metastases include whole-brain radia-

tion, stereotactic radiosurgery, and, for eligible patients

with solitary lesions, surgical resection [4]. Despite these

interventions, median overall survival (OS) is poor, ranging

from 3–30 months, depending on breast cancer subtype

and treatment [5].

Approximately 20% of all breast cancers overexpress

human epidermal growth factor receptor 2 (HER2) [6, 7].

In RegistHER, a prospective, observational study of 1012

patients with HER2-positive MBC, central nervous system

(CNS) metastases were documented in 37.3% of patients

over a median follow-up of 29 months [8]. Other analyses

found brain metastases to be present in up to 55% of

patients with HER2-positive MBC [5, 9]. Amplification

and/or overexpression of HER2 may play a role in the

occurrence or progression of brain metastases. In a mouse

model of MBC, HER2 overexpression promoted outgrowth

of breast tumor-derived brain metastases, with the number

of large brain metastases increasing 3-fold in mice inocu-

lated with high HER2-expressing versus low HER2-ex-

pressing human breast cancer cells [10]. In a study of more

than 600 patients with MBC, HER2-positivity was a sig-

nificant and independent risk factor for subsequent devel-

opment of brain metastases [11]. Moreover, in a study

comparing HER2 mRNA levels in unlinked archival brain

metastases and primary breast tumors, HER2 mRNA was

found, on average, to be 5-fold more abundant in brain

metastases than in primary tumors [10].

HER2-targeted agents, such as trastuzumab [8, 12],

lapatinib [13, 14], and trastuzumab emtansine (T-DM1)

[15, 16], have been shown to improve outcomes in patients

with HER2-positive MBC and CNS metastases, including

leptomeningeal or brain parenchymal lesions [7, 8]. In

registHER, patients administered trastuzumab exhibited a

median OS of 17.5 months from the date of CNS disease

diagnosis compared with 3.8 months for patients not

receiving trastuzumab [8]. Moreover, multivariate analysis

showed trastuzumab to be a significant independent pre-

dictor of survival [8]. In another retrospective study of

women with HER2-positive MBC and CNS metastases,

median OS was 11.6 months among those who received

trastuzumab at the time of, or prior to, CNS lesion diag-

nosis compared with 6.1 months among women who did

not receive trastuzumab (p = 0.03) [12]. It is unclear,

however, whether the improvements in OS stem from

control of systemic, extra-cranial disease, or from direct

effects of trastuzumab on brain lesions.

Although efficacy of systemic therapy for treating brain

metastases may be limited by the inability of HER2-tar-

geted therapies to access the brain, animal studies show

that the BBB is likely compromised by brain lesions [17].

Moreover, in patients with HER2-positive breast cancer,

accumulation of trastuzumab was 17.5-fold higher in brain

metastases than in normal brain tissue [18]. As it is unclear

what role access plays in treating brain metastases in

patients with HER2-positive MBC, we investigated the

extent of trastuzumab delivery, as well as efficacy of

trastuzumab alone or in combination with a PI3K (phos-

phatidylinositol 3-kinase) inhibitor, and T-DM1 in exper-

imental models of HER2-positive brain lesions.

Methods

Materials

Trastuzumab, T-DM1, muMAb 4D5 (the murine parent

molecule of trastuzumab), control antibodies, and GNE-

317 were from Genentech, Inc. 89Zr-labeled antibodies

were synthesized as described [19]. Anti-STEAP1 was

used as the isotype-matched control antibody for trastu-

zumab, and anti-CD22-DM1 served as the non-targeted

control antibody–drug conjugate (ADC) for T-DM1.

MMTV-human HER2 transgenic mice were established

previously [20]. Tumors were obtained from the Fo2-1282

and Fo5 human HER2 transgenic lines for model

development.

Experimental Design and Procedures

Fo2-1282 and Fo5 brain implant and orthotopic

models

Immune-competent female FVB mice (age 6–8 weeks)

were used in all experiments. Tumors from MMTV-human

HER2 transgenic lines Fo2-1282 and Fo5 were propagated

and maintained by serial orthotopic engraftment in the

number 2/3 mammary fat pad in FVB mice. For
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inoculation into the brain, orthotopic tumors were har-

vested and dissociated to produce a single-cell suspension.

The suspension containing cells from Fo2-1282 tumors was

stereotactically injected into the right striatum of mice

(250,000 cells in 5 lL BSA/PBS) under isoflurane anes-

thesia. Stereotaxic coordinates were AP ?0.2–0.5 mm

from bregma; M-L = 2 mm; D-V = 3.5-mm flat skull.

The same procedure was followed to create experimental

Fo5 brain grafts, except that 200,000 cells were inoculated.

Sham surgery was performed using vehicle with no cells.

Orthotopic tumors were established by surgically

implanting 2 9 2 mm tumor fragments into the number

2/3 mammary fat pads. Hematoxylin and eosin (H&E) and

immunohistochemical staining of HER2 were performed

on brain grafts, as previously described [28]. Additional

experimental details are provided in the online supplement.

All studies were conducted in accordance with the Guide

for the Care and Use of Laboratory Animals.

Analysis of trastuzumab and muMAb 4D5 uptake

into brain by ELISA

Trastuzumab (30 mg/kg) and muMAb 4D5 (10 or 30 mg/

kg) were administered by intraperitoneal (IP) injection.

Twenty-four hours after trastuzumab administration, blood

samples were drawn from the left cardiac ventricle under

anesthesia, vasculature was flushed with an intra-cardiac

perfusion of saline solution maintained at 4 �C, and brain

samples were harvested. Mice that did not undergo surgery

served as additional controls. Trastuzumab and muMAb

4D5 were quantified in harvested samples using ELISA,

the details of which are provided in the online supplement.

Imaging

ImmunoPET was performed using 89Zr-labeled trastuzu-

mab and 89Zr-labeled control anti-STEAP1 antibody, as

described previously [19]. Uptake was quantified in brain

tumor grafts, normal brain, liver, and blood (n = 2 for all

groups). Predicted MuMAb 4D5 uptake in brain and

orthotopic grafts was estimated by multiplying 89Zr-tras-

tuzumab uptake with the injected dose of muMAb 4D5

(n = 10–12 per group). Antibody uptake was assessed

between days 1–5 post-injection. Magnetic resonance

imaging (MRI) was performed as previously described

[21]. See online supplement for additional details.

Statistical analysis of imaging studies

Plots were constructed with R software version 2.10.1 (R

Foundation for Statistical Computing, Vienna, Austria).

Statistical significance was determined using Student’s

t test. P values less than 0.05 were considered significant;

data are presented as mean ± standard deviation.

Efficacy experiments in Fo2-1282 brain

and mammary grafts and Fo5 brain grafts

To evaluate the efficacy of muMAb 4D5 in Fo2-1282

mammary fat pad versus brain tumor grafts, mice were

administered 3, 10, 20, or 30 mg/kg antibody IP (n = 8 per

group) after a 29 loading dose initially and once per week

for 3 weeks at the indicated dose. Antibody diluent (8.6 g/

L NaCl, 0.289 g/L sodium acetate, 0.086 mL/L polysor-

bate 20) was used as vehicle control. To investigate the

efficacy of muMAb 4D5 combined with the brain-penetrant

PI3K/mTOR inhibitor GNE-317 [22], muMAb 4D5 was

given at a dose of 30 mg/kg weekly IP after a 60-mg/kg

loading dose; GNE-317 was administered by oral gavage

daily for 20 days at a dose of 30 mg/kg (n = 12 for each

treatment group). For the Fo5 model, mice received a

single intravenous (IV) dose (10 mg/kg) of either T-DM1

or non-targeted control ADC 9 days after inoculation of

Fo5 tumor cells. Efficacy in mice bearing orthotopic

mammary tumors was determined by caliper tumor volume

measurement using the following formula: Tumor volume

(mm3) = (Length 9 Width2) 9 0.5. When tumors reached

200–400 mm3, mice were randomized into treatment

groups. Data collected from each experimental group were

expressed as mean ± standard error of the mean. Kaplan–

Meier plots were generated for time-to-progression,

defined as either time-to-tumor doubling from day 0 or

survival if no tumor volume doubling occurred. Efficacy in

mice bearing brain grafts was assessed by survival, defined

as the length of time elapsing from the date of surgical cell

injection to the date on which mice exhibited a C20%

reduction in body weight and/or became moribund. The

duration of survival was analyzed using Kaplan–Meier

methodology. Statistical analysis was performed on all

Kaplan–Meier curves using JMP software version 6.0 (SAS

Institute).

Results

Characterization of the Fo2-1282 brain lesion model

Fo2-1282 brain grafts exhibited aggressive growth in

immune-competent mice, as all animals succumbed to

tumors on day 15–20 following surgical inoculation of

tumor cells. Immunohistochemistry demonstrated uniform

staining of HER2 throughout the tumors (Fig. 1a, right),

and the distribution of HER2 expression matched the

extent of the tumor, as revealed by H&E staining (Fig. 1a,

left) and T1-weighted MRI (Fig. 1b).
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To investigate the degree and specificity of trastuzumab

uptake into Fo2-1282 brain grafts, tumor-bearing mice

were administered a single systemic dose of either 89Zr-

trastuzumab or control 89Zr-anti-STEAP1, then subjected

to PET imaging. PET scans revealed robust uptake of 89Zr-

trastuzumab into brain grafts (Fig. 2, left). Specificity of
89Zr-trastuzumab tumor uptake was demonstrated by the

presence of only weak 89Zr-anti-STEAP1 signal in separate

Fo2-1282 brain grafts (Fig. 2, right). The 89Zr-labeled

antibodies were administered at day 14 post-inoculation,

and PET images were acquired at 1, 3, and 5 days post-

tracer injection. At all three time points, the concentration

of 89Zr-trastuzumab within the brain graft was greater than

that of control (Fig. 3). Uptake of 89Zr-trastuzumab in the

brain graft was 24.4% ID/g (percent injected dose per gram

tissue) at day 5 post-injection, but uptake of the control

antibody reached only 9.2% ID/g. The apparent uptake in

the contralateral side of the brain was 1.1% ID/g for 89Zr-

trastuzumab and 1.2% ID/g for 89Zr-control antibody

(Fig. 3). The uptake of both 89Zr-antibodies was also

comparable in blood and liver (Fig. 3).

Gadolinium-contrast MRI revealed gadolinium leakage

at the site of the brain graft (Fig. 2), suggesting that growth

of Fo2-1282 brain lesions had locally compromised the

BBB. Compared with the contralateral side, uptake of

control antibody in the lesion was elevated, a likely con-

sequence of the compromised BBB (Fig. 3). Concentra-

tions of the two labeled antibodies were similar in blood

and non-malignant tissues, including normal brain and liver

(Fig. 3), further demonstrating specific uptake of 89Zr-

trastuzumab into Fo2-1282 brain grafts. These results show

that the contrast-enhanced lesions are accessible to targeted

antibody penetration, as measured with radiolabeled

trastuzumab.

To determine whether stereotactic surgery was itself

responsible for the prolonged disruption of the BBB

(thereby permitting increased uptake of trastuzumab into

brain grafts), trastuzumab was systemically administered to

animals that had received sham injection in one brain

Fig. 1 Characterization of Fo2-1282 brain metastasis model. a He-

matoxylin and eosin (H&E) staining (left) and HER2 protein

expression determined by immunohistochemistry (right). b T1-

weighted MRI with contrast in separate tumor-bearing mice. Repre-

sentative data are shown

Fig. 2 Trastuzumab uptake into

Fo2-1282 brain grafts following

a single systemic dose. PET

imaging of 89Zr-trastuzumab

(left) and 89Zr-anti-STEAP1

control antibody (right) uptake
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hemisphere and no injection (control) in the other hemi-

sphere. Concentrations of trastuzumab were 1000-fold

lower in the sham-injected brain hemisphere than in serum

(Fig. 4). The concentration of trastuzumab in the sham-

injected hemisphere was similar to that in the non-injected

control hemisphere (Fig. 4). These results did not markedly

differ between day 1 (pre-surgical wound healing) and day

9 (post-healing) post-surgery. Together, these findings

suggest that the physical trauma of stereotactic brain sur-

gery did not lead to increased uptake of trastuzumab in the

brain.

The uptake of 89Zr-trastuzumab was subsequently

compared between Fo2-1282 brain lesions and Fo2-1282

mammary fat pad (orthotopic) tumors. Nearly equivalent
89Zr-trastuzumab uptake was observed in brain grafts and

mammary fat pad tumors at both day 3 and day 5 post-

surgery (Fig. 5, top panels). Tracer was used to estimate

muMAb4D5 uptake in brain and mammary fat pad lesions

at a given dose (Fig. 5, middle panels). Orthotopic tumors

showed strong dose-dependent decreases in tumor volume,

as measured by MRI, at 3 and 5 days post-treatment

(Fig. 5, bottom panels). Volume changes in the brain

lesions were modest, due in part to limitations in deter-

mining volume of small tumors by imaging and to

assessment at such early time points. However, there was a

trend for tumor growth delay in the high-dose muMAb 4D5

group at day 5 (Supplementary Table 1).

Efficacy of muMAb 4D5 in orthotopic mammary

tumors and brain lesions

muMAb 4D5, administered weekly for 3 weeks, showed

dose-dependent anti-tumor activity in Fo2-1282 orthotopic

mammary tumors (Fig. 6A), with the 20 and 30 mg/kg
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doses causing complete tumor regression in all animals,

and cures in most mice as evidenced by survival beyond

50 days (Fig. 6b). Three weekly doses of muMAb 4D5 at

10 mg/kg caused tumor growth inhibition and extended

survival in mice with mammary tumors. The increased

survival in all treatment groups differed significantly from

the vehicle control group (log-rank p\ 0.0001 for vehicle

versus 10, 20, and 30 mg/kg groups).

The efficacy of muMAb 4D5 was, however, markedly

lower against Fo2-1282 brain lesions. Administration of

muMAb 4D5 doses of 10 mg/kg weekly did not extend

survival relative to vehicle-treated control (Fig. 6c), with

all mice succumbing by day 26. Administration of 30 mg/

kg weekly for 3 weeks was efficacious, as demonstrated by

increased survival up to 70 days (Fig. 6c). However, in

contrast to the complete regressions demonstrated in the

mammary tumor model, cures were not observed in ani-

mals with experimental brain lesions.

Tissue concentrations of muMAb 4D5 were then quan-

tified to determine whether lack of uptake into Fo2-1282

brain grafts was responsible for the limited efficacy. For

both the 10 mg/kg and 30 mg/kg doses of muMAb 4D5,

antibody concentrations within the brain grafts were

1000–10,000 ng/mL—concentrations known to have anti-

proliferative activity in vitro [23]—suggesting that

decreased efficacy was not due to limited access of the

antibody to brain lesions (Fig. 6d).

Activity of combination therapy in experimental

brain metastasis model

PI3K signaling is constitutively active in HER2-amplified

cancer cells. Preclinical studies have demonstrated

enhanced anti-tumor activity by combining PI3K inhibitors

with trastuzumab [24]. A brain-penetrant PI3K/mTOR

inhibitor, GNE-317, was shown to have anti-tumor activity

in orthotopic models of glioblastoma [22]. We therefore

investigated combining GNE-317 with muMAb 4D5 in the

Fo2-1282 brain lesion model. Mice with Fo2-1282 brain

grafts were administered vehicle only or one of three

treatments: muMAb 4D5 alone (30 mg/kg weekly 9 3

after 29 loading dose), GNE-317 alone (30 mg/kg daily),

or both agents. Single-agent muMAb 4D5 and single-agent

GNE-317 each extended survival relative to vehicle con-

trol. However, survival with the combination of muMAb

4D5 and GNE-317 was greater than either single-agent

treatment (Fig. 7).

Effect of T-DM1 on survival in mice bearing

experimental brain lesions

After establishing anti-tumor activity of muMAb

4D5/trastuzumab in the Fo2-1282 brain graft model, it was

of interest to determine efficacy of T-DM1, an additional

approved HER2-targeted therapeutic agent. For this pur-

pose, a trastuzumab-insensitive HER2 transgenic tumor

line, Fo5, was utilized [25]. A single IV dose of 10 mg/kg

T-DM1 or control ADC (anti-CD22-DM1) was adminis-

tered to mice bearing Fo5 intracranial grafts. As shown in

Fig. 8, T-DM1 extended both median (50%) and overall

survival of these brain lesion-bearing mice by approxi-

mately 2 weeks relative to control-treated animals.

Discussion

In retrospective clinical studies, trastuzumab was demon-

strated to prolong OS in patients with brain metastases

from HER2-positive MBC [4, 8, 12]. It remains unclear if

increased OS is due to effective control of systemic, extra-

cranial disease or a more direct effect on brain metastases

[4, 12]. A key outstanding question has been to what

degree access to the brain impacts the efficacy of trastu-

zumab in these lesions.

Although the Fo5 and Fo2-1282 models involve direct

intracranial injection of tumor cells, rather than seeding of

brain lesions from systemic circulation, these models were

selected for evaluation of HER2-targeted agents in estab-

lished brain metastases. Steeg et al. [3] demonstrated the
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involvement of HER2 signaling in outgrowth of breast

cancer-derived experimental brain metastases, but not in

initiation of these lesions [10]; outgrowth therefore appears

to be the key process to capture in a model used to evaluate

the effects of HER2 inhibition. This outgrowth process is

well represented in the Fo5 and Fo2-1282 models.

The Fo5 and Fo2-1282 models used in our experiments

also differ from those utilized by Steeg et al. in a significant

way: while the model tumors based on 231-BR cells are

grown in athymic nude mice [26, 27], our models use

immune-competent mice and therefore lend themselves

particularly well to evaluating the efficacy of trastuzumab,

an antibody whose mechanism of action includes the

recruitment of immune effector cells and activation of

antibody-dependent cell-mediated cytotoxicity or ADCC

[28]. Overall, the efficacy results reported here are similar

to those obtained by Steeg et al. [3] with another HER2-

targeted agent, lapatinib, in an animal model of breast

cancer-derived brain metastasis. As with trastuzumab,

lapatinib inhibited metastatic outgrowth of brain lesions at

high doses, but inhibition was incomplete [26].

In the Fo2-1282 mouse model of HER2-positive breast

cancer-derived brain metastases, 3-fold higher systemic

doses of muMAb4D5/trastuzumab were required to
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achieve efficacy in brain tumor grafts compared with those

in the mammary fat pad. The reduced efficacy of

muMAb4D5 in treating brain grafts did not appear to result

from lack of access, as PET imaging showed 89Zr-trastu-

zumab to localize equivalently in brain and mammary

grafts. Furthermore, 89Zr-trastuzumab localization in the

HER2-positive tumor graft was significantly greater com-

pared to normal brain tissue and muMAb 4D5 was

demonstrated to accumulate in Fo2-1282 brain grafts at

known therapeutic concentrations.
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There are several hypotheses put forward as to the

reduced efficacy of trastuzumab in Fo2-1282 brain lesions

compared with mammary tumors: the inability of immune

effector cells to access the brain lesion, thereby impairing

ADCC; the presence of ErbB ligands in the brain

microenvironment circumventing HER2 inhibition by

trastuzumab; or activation of compensatory signaling

pathways. Although we did not directly investigate the

access of effector cells to brain grafts, previous reports

show the activity of immune cell-dependent therapies in

preclinical models of glioma [29], as well as in patients

with melanoma brain metastases [30]. These observations

are consistent with our hypothesis that lack of access to

effector cells does not explain reduced trastuzumab effi-

cacy in brain grafts.

Our results further suggest that the reduced efficacy of

muMAb 4D5 in Fo2-1282 brain grafts compared with

mammary tumors may arise from incomplete pathway

suppression or hyper-activation of downstream signal

transduction pathways, as combined treatment with

muMAb 4D5 and the brain-penetrant PI3K/mTOR inhi-

bitor GNE-317 was more effective than either drug alone.

One possible explanation for the diminished muMAb 4D5

response is the presence of brain-specific ligands that

mediate resistance to HER2 inhibition. Multiple redundant

HER family ligands mediate insensitivity to trastuzumab or

other HER2-targeted agents [31], and it is likely that sig-

naling driven by these ligands converges on important

downstream cell-survival pathways such as PI3K. Recent

reports suggest that resistance to anti-cancer tyrosine

kinase inhibitors is frequently triggered by the presence of

additional receptor tyrosine kinase ligands [31], and

in vitro experiments suggest that ligand-driven activation

of alternative receptors in the HER family may present a

recurrent mechanism of resistance in breast cancer cells

[32].

An alternate approach to circumventing insensitivity to

anti-HER2 therapies is to target a potent cytotoxic agent to

HER2-positive tumors by utilizing a HER2-directed ADC.

T-DM1 was demonstrated to have superior anti-tumor

activity compared with trastuzumab in HER2-positive

preclinical models [25]. Improved survival after T-DM1

treatment was demonstrated in mice with experimental

lesions from the Fo5 model, a model that does not respond

to trastuzumab [25]. In the phase III EMILIA trial of

patients with HER2-positive MBC previously treated with

trastuzumab and a taxane, T-DM1 showed improved PFS

and OS compared with lapatinib plus capecitabine [33].

Importantly, in a subset of EMILIA study participants with

asymptomatic CNS metastases at baseline, T-DM1 was

associated with significantly improved survival compared

with lapatinib and capecitabine [34].

In conclusion, our data provide a rationale for the clin-

ical evaluation of higher-dose trastuzumab, T-DM1, or

combination therapy with two or more targeted agents for

the treatment of brain metastases in patients with HER2-

positive MBC. To this end, a trial designed to assess the

efficacy of high-dose trastuzumab, combined with per-

tuzumab, in patients with HER2-positive MBC and CNS

progression post-radiotherapy (NCT02536339) is currently

enrolling patients.
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