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Current medications for neurodegenerative and neuropsychiatric diseases such as

Alzheimer’s disease (AD), Huntington’s disease (HD), Parkinson’s disease (PD), and

Schizophrenia mainly target disease symptoms. Thus, there is an urgent need to develop

novel therapeutics that can delay, halt or reverse disease progression. AD, HD, PD,

and schizophrenia are characterized by elevated oxidative and nitrosative stress, which

play a central role in pathogenesis. Clinical trials utilizing antioxidants to counter disease

progression have largely been unsuccessful. Most antioxidants are relatively non-specific

and do not adequately target neuroprotective pathways. Accordingly, a search for

agents that restore redox balance as well as halt or reverse neuronal loss is underway.

The small molecules, cysteamine, the decarboxylated derivative of the amino acid

cysteine, and cystamine, the oxidized form of cysteamine, respectively, mitigate oxidative

stress and inflammation and upregulate neuroprotective pathways involving brain-derived

neurotrophic factor (BDNF) and Nuclear factor erythroid 2-related factor 2 (Nrf2) signaling.

Cysteamine can traverse the blood brain barrier, a desirable characteristic of drugs

targeting neurodegeneration. This review addresses recent developments in the use of

these aminothiols to counter neurodegeneration and neuropsychiatric deficits.
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INTRODUCTION

Cysteamine, also known as 2-mercaptoethylamine or aminoethanethiol, is the decarboxylated
derivative of the amino acid cysteine. It exerts radioprotective effects and is more effective than
cysteine alone, although a combination of cysteamine and cysteine display synergistic effects (1, 2).
Although cysteamine reduced mortality in irradiated Drosophila and mice, mutagenic effects of
radiation were not prevented (3, 4). Cysteamine has been utilized for the treatment of cystinosis, a
lysosomal disorder, and, more recently, has been evaluated for the treatment of neurodegenerative
disorders. This review will summarize the current understanding of cysteamine and cystamine, its
oxidized derivative.

In cells, the amino thiol is generated by the degradation of coenzyme A, which in turn, is
generated from pantothenate (vitamin B5) and cysteine (Figure 1A) (5). Coenzyme A degradation
yields pantetheine, which is hydrolyzed by pantetheinase or vanin, generating cysteamine
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and pantothenic acid. Cysteamine is then oxidized to
hypotaurine by cysteamine dioxygenase (6). Hypotaurine can be
converted into taurine by hypotaurine dehydrogenase. Taurine is
eliminated in the form of bile salts such as taurocholate, either
via the urine or feces (7). Levels of cysteamine has been reported
to be in the low micromolar range in tissues such as the liver,
kidney and brain, which were measured after treating lysates
with DTT to liberate free cysteamine (6), indicating association
with proteins via disulfide bonding. Similarly, another study
measured cysteamine after reducing perchloric acid treated
kidney and liver lysates with mercaptopropionic acid (8). The
presence of disulfide-bonded cysteamine with proteins was
subsequently shown by Duffel and associates (9), which could
account for the effects of cysteamine and cystamine on the
activity of several proteins.

The metabolism of cysteamine, cystamine and cysteine are
linked in cells. Both cysteamine and cystamine increase cysteine
levels intracellularly in a temporal and dose-dependent manner
(10). As cysteine is a component of glutathione and a potent
antioxidant itself, treatment of cells with these aminothiols can
mitigate oxidative stress. Treatment of SN56 cholinergic cells
causes an increase in cysteine levels in 30min. Cystamine is first
converted to cysteamine in the reducing atmosphere of cells,
and treating cells with cystamine elicits an increase of cysteine
in 3 h. N-acetylcysteine (NAC), 2-mercaptoethanesulfonic acid
(MESNA) and mercaptopropionylglycine (MPG), on the other
hand, elevate cysteine levels to a lesser extent (2-fold as
compared to 6-fold in the case of cysteamine). The study
also revealed the importance of these thiols in sequestering
reactive aldehyde species in cells and bolstering the antioxidant
capacity of cells. Thus, cystamine and cysteamine also act as
antioxidants themselves. Consistent with these observations,
cysteamine affords protection against acetaminophen- mediated
liver damage, where the highly toxic unsaturated aldehyde
acrolein, is produced (11, 12). Cysteamine has also been proposed
to replace homocysteine as the substrate for cystathionine β-
synthase (CBS) in a reaction with serine to generate thialysine
or (S-(2-aminoethyl)-L-cysteine) (13). Consistent with these
studies, thialysine levels increase in the brain after feeding
cysteamine to rats (14).

PROTECTIVE EFFECTS OF CYSTEAMINE
AND CYSTAMINE

Therapeutic Applications of Cysteamine
and Cystamine in Peripheral Tissues
Both cysteamine and cystamine, have been used for the
treatment of several conditions (Figure 1B). These compounds

Abbreviations: AChE, acetylcholinesterase; AD, Alzheimer’s disease; APP,

amyloid precursor protein; ALS, Amyotrophic lateral sclerosis; ASD, Autism

spectrum disorders; BDNF, brain-derived neurotrophic factor; BECN1, beclin

1; CBS, cystathionine β-synthase; HD, Huntington’s disease; MPTP, 1-methyl-

4-phenyl-1,2,3,6-tetrahydropyridine; MESNA, 2-mercaptoethanesulfonic acid;

MPG, mercaptopropionylglycine; MeCp2, methyl-CpG binding protein 2; MTDL,

multi-target-directed ligand; PD, Parkinson’s disease; Nrf2, Nuclear factor

erythroid 2-related factor 2; PSEN1, presenilin 1; SOD1, superoxide dismutase 1;

TG2, transglutaminase 2.

possess radioprotective properties and were initially used to
treat radiation sickness that arises in cancer patients after
radiotherapy, but subsequently discontinued after unsuccessful
clinical trials (1, 15). One of the earliest uses of cysteamine in
medicine, which is FDA-approved, is the treatment of cystinosis,
an inherited autosomal recessive disorder in which the body
accumulates cystine due a defect in the lysosomal cysteine
transporter, cystinosin (16, 17). Cystine crystals build up in
many tissues and damage organs such as the kidney and the
eye. One of the initial manifestations of juvenile cystinosis
is renal Fanconi syndrome which manifests as dysfunction of
the renal proximal tubule leading to polyuria, phosphaturia,
glycosuria, proteinuria, acidosis, growth retardation, and rickets
(18). Cysteamine participates in disulfide exchange reactions to
form cysteine and mixed disulfides of cysteine and cysteamine,
which can then exit the lysosome.

Cysteamine also has anti-malarial effects preventing the
replication of the parasite, Plasmodium falciparum in vivo and
also potentiates the action of the anti-malarial artemisin (19, 20).
Cysteamine has also been reported to have anti-HIV-1 effects
(21, 22). Cysteamine elicits both beneficial and harmful effects,
some of which included ulcer formation and anti-angiogenic
effects (23). Cystamine, the oxidized form of cysteamine, inhibits
erythrocyte sickling in sickle cell anemia (24). Incubating sickle
cells with cystamine leads to the formation of an S-ethylamine
derivative and a decrease in sickling under hypoxic conditions.
Several other beneficial effects of the two cysteine derivatives are
summarized in Table 1.

Therapeutic Applications of Cysteamine
and Cystamine in Brain Diseases
Cysteamine and cystamine appear to be promising in the
treatment of certain mouse models of neurodegenerative
diseases, such as Parkinson’s disease (PD) and Huntington’s
disease (HD) (47). Cysteamine can cross the blood-brain
barrier, which makes it an attractive candidate for therapeutic
applications (48).

Huntington’s Disease
Huntington’s disease is a neurodegenerative disorder caused by
expansion of polyglutamine repeats in the protein huntingtin,
Htt, which causes it to aggregate and cause widespread damage in
almost all tissues expressing it (49). Initial studies on cystamine
and its therapeutic effects on disease progression in HD
focused on its inhibitory effects on the enzyme transglutaminase
(37, 40). Transglutaminases catalyze the formation of ε-N-(γ-
glutamyl)-lysyl crosslinks between proteins and were proposed
to contribute to neuropathology of HD (50–52). However, later
studies revealed that ablation of the transglutaminase gene did
not prevent neurodegeneration in HD (53). Cystamine has also
been beneficial in a fly model of HD, where photoreceptor
degeneration was rescued in adult flies (54). Cystamine treatment
in mouse models of HD lead to increased cysteine levels,
which was proposed to be neuroprotective (35, 55). Cysteine
is a potent antioxidant and dysregulated cysteine metabolism
mediates neurodegeneration in HD (56–58). Cysteine is also
the precursor of the gaseous signaling molecule, hydrogen
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FIGURE 1 | (A) Biosynthesis of cysteamine and intersection with cysteine catabolism. Cysteamine is generated in mammals by the degradation of coenzyme A,

which is required for the metabolism of fatty acids, carbohydrates, amino acids and ketone bodies. When coenzyme A is cleaved (cleavage at the dotted line),

pantetheine is generated, which is acted on by pantetheinase or vanin to form cysteamine. Cysteamine is converted to hypotaurine by cysteamine decarboxylase.

Cysteine, a component of coenzyme A, is acted on by cysteine dioxygenase to form cysteine sulfonate which is decarboxylated by cysteine sulfonate decarboxylase

to form hypotaurine. Hypotaurine generated is further metabolized to taurine by hypotaurine decarboxylase. (B) Effects of cysteamine/cystamine. Both cysteamine

and its oxidized form cystamine have protective effects in cells and tissues. Originally identified as radioprotective molecules, subsequently these aminothiols have

been reported to mitigate cystinosis, a condition characterized by accumulation of cystine crystals in the body. Cystamine and cysteamine have a variety of other

effects which include antioxidant effects (by increasing cysteine and glutathione levels), inhibition of transglutaminase 2 and caspase 3 (possibly by modifying reactive

cysteine residues or cysteaminylation), modulation of mitochondrial function, immunomodulation. These molecules have also been reported to increase levels of brain

derived neurotrophic factor (BDNF) and heat shock proteins, which affords neuroprotective benefits.
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TABLE 1 | Neuroprotective actions of cysteamine/cystamine.

Cytoprotective effects of Cysteamine/Cystamine System References

Protection against glutamate-induced toxicity Primary glial cells (25)

Scavenges acrolein, a toxic metabolite generated during lipid peroxidation. Drug

detoxification and polyamine oxidation

Cysteamine: Acetaminophen-induced hepatic injury in mice (26)

Reduces oxidative stress and antioxidant balance in regulatory T cells Cystamine: systemic lupus erythematosus (SLE)-prone mice (27)

Improved membrane functionality, reduced lipid peroxidation and improved viability of

sperm

Cysteamine: Cyropreserved Ram semen (28)

Intraperitoneal injection of cystamine mediates neuroprotection by enhancing

neuronal progenitor cell proliferation and proliferation through the BDNF pathway

Cystamine: mouse model of stroke (29)

Dopaminergic neurodegeneration induced by MPTP is prevented by cysteamine and

cystamine

MPTP model of neurodegeneration (30, 31)

Neuroprotection from 3-nitropropionic acid (3NP) toxicity by cystamine Stimulates NF-E2 related factor 2 (Nrf2) signaling in cell

culture and the 3-NP model of neurodegeneration in mice

(32)

Administration of cystamine confers protection against haloperidol-induced toxicity

and ischemic brain injury

Mouse model (33)

Aggregation of amyloid β1−42 (Aβ) in astrocyte cultures reduced by cystamine Cultured astrocystes (34)

Cystamine elevated L-cysteine levels in HD R6/2 mouse model of HD and PC12 model of polyglutamine

aggregation

(35)

Transglutaminase-induced aggregation of alpha-synuclein decreased by cystamine in vitro and in COS-7 cells (36)

Cystamine significantly extended survival, improved body weight and motor

performance, and delayed the neuropathological sequela

R6/2 mouse model of HD (37)

Cystamine increased viability of striatal progenitor cells harboring mutant huntingtin

and prevented ROS formation in HD cells subjected to H2O2 and STS

STHdhQ7/Q7 and STHdhQ111/Q111 striatal progenitor cell lines (38)

Cysteamine and cystamine prevented the 3-NP-mediated decrease in cellular and

mitochondrial GSH levels as well as mitochondrial depolarization

STHdhQ7/Q7 and STHdhQ111/Q111 striatal progenitor cell lines (39)

Cystamine extended survival, reduced associated tremor and abnormal movements

and ameliorated weight loss. Increased the transcription of the chaperone

HDJ1/Hsp40

R6/2 mouse model of HD (40)

Cystamine significantly delayed the progression of ALS symptoms and reduced

SOD1 oligomers and microglial activation

G93A mouse model of ALS, cell culture models (41)

Cystamine prevents toxicity induced by aggregation of polyadenylate-binding protein

nuclear 1

Mouse model of Oculopharyngeal muscular dystrophy

(OPMD)

(42)

Cystamine modulates blood pressure and reduces hypertension Spontaneously hypertensive rats (43)

Cysteamine alleviates fibrosis and symptoms associated with chronic kidney disease

(CKD)

Mouse models of CKD (44)

Cysteamine suppresses cataract formation induced by selenite Rats (45)

Cystamine rescued behavioral deficits induced by 2,5-hexanedione by increasing

BDNF and hsp70 expression

Rats (46)

sulfide, which participates in a myriad of physiological processes
(59–61). Cystamine, in combination with mithramycin, was
also shown to be protective in the R6/2 model of HD (62).
The beneficial effects of cysteamine led to clinical trials in
HD (63). In addition, cystamine can augment levels of brain
derived neurotrophic factor, BDNF, in mouse models of HD
(64). More recently cysteamine was shown to counteract
toxicity mediated by mutant huntingtin in vitro in primary
neuron and iPSC models of HD although the exact molecular
mechanism by which cytoprotection is conferred is still
unknown (65).

Alzheimer’s Disease
Alzheimer’s disease (AD) is the most prevalent
neurodegenerative disorder and the most common form of
dementia (66, 67). The molecular hallmarks of AD include
increased load of amyloid plaques and neurofibrillary tangles,

which affect multiple cellular processes. Numerous reports
describe links between dementia and AD with amyloid deposits
or tangles. Postmortem analysis of cognitively normal subjects
have revealed increased amyloid plaques, a pathogenic signature
of AD, but no dementia (68). Conversely, several diagnosed
AD patients have no signs of neuritic plaques (69). Thus, the
correlation between amyloid plaques and AD awaits further
study (70). Regardless of these inconsistencies, it is clear that the
brain has corrective mechanisms that delay cognitive decline and
if harnessed, may stall neurodegeneration. The search for small
molecules that stimulate neuroprotective signaling cascades may
be beneficial. Cystamine and its derivatives are being evaluated
as possible therapies for the disease. Chronic cysteamine
treatment (daily injections for a period of 4 months) resulted
in improvements in habituation and spatial learning deficits in
the APP-Psen1 mouse model of AD (71). The APP-Psen1 model
harbors the human transgenes for the Swedish mutation of the
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amyloid precursor protein (APP) and presenilin-1 (PSEN1)
containing an L166P mutation, regulated by the Thy-1 promoter
(72). AD patients have elevated transglutaminase levels, which
colocalize with the amyloid plaques (34). Transglutaminases
accelerate amyloid beta aggregation and toxicity. Accordingly,
cystamine therapy is being considered for lowering the amyloid
plaque burden in AD patients. In particular, Multi-Target
Directed Ligands (MTDLs) or single compounds which may
simultaneously act on different targets are being explored. Along
these lines, a cysamine-tacrine dimer has been developed, which
decreased acetylcholinesterase (AChE)-induced beta-amyloid
aggregation (73).

Parkinson’s Disease
Aggregation of alpha-synuclein, leading to the formation
of Lewy bodies, is a hallmark of Parkinson’s disease (PD),
which affects the substantia nigra of the brain causing motor
deficits and multiple abnormalities. Existing therapies for PD
largely target symptoms and do not mitigate neuronal loss
observed. Several lines of evidence suggest the therapeutic
potential of the aminothiol in PD (71). Cystamine ameliorated
mitochondrial dysfunction and oxidative stress associated
with 6-hydroxydopamine and 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP)-induced models of PD (74). In the
MPTP-induced neurotoxicity model of PD in mice, independent
studies revealed various effects of cystamine such as elevation in
the levels of tyrosine hydroxylase and BDNF (30, 75). Similarly,
cysteamine, the reduced form of cystamine, also afforded
neuroprotection. Similar to AD, elevated transglutaminase
activity caused an increase in the formation of cross-linked
alpha-synuclein and insoluble aggregates, which could be
abrogated by cystamine (36).

Amyotrophic Lateral Sclerosis
ALS, also known as Lou Gehrig’s disease, is a neurodegenerative
disease where selective degeneration of motor neurons in the
brain and spinal cord occurs leading to paralysis of skeletal
muscles and progressive weakness and atrophy of limbs (76).
Difficulties in speech and movement follow and patients are
typically wheelchair-bound. Causes of ALS can be either genetic
or sporadic (refers to patients without a family history). Among
the best studied genetic mutations in familial ALS include
mutations in superoxide dismutase 1 (SOD1), which misfolds,
aggregates, and elicit toxicity by multiple mechanisms (77, 78).
Proposed reasons for SOD1 aggregation include crosslinking
mediated by transglutaminase 2 (TG2). Studies with cell culture
models of ALS reveal that cystamine prevents aggregation of
SOD1 and improved cell survival (79). Furthermore, inhibiting
spinal TG2 by cystamine reduces SOD1 oligomers, microglial
activation and delayed progression in the G93A SOD1 mouse
model of ALS (41). Thus, cystamine treatment may be beneficial
in treating ALS.

Neurological Complications of Cystinosis
Although cystinosis was not considered to affect brain function, it
is now known that cystinosis can result in neurocognitive deficits
in adults as well as children. These include impaired visual spatial,

visual memory, language problems, academic impairment,
seizures, memory impairment, motor incoordination, and
neuromuscular dysfunction and is often accompanied by
structural abnormalities in the brain (80–82). Early treatment
with cysteamine orally prevents several of these neurocognitive
deficits. Patients with cystinosis treated at or after age 2 years
(late-treatment group) score poorer than the early treatment
group (before 2 years) on verbal, performance, and full-scale
IQ tests and tests rating visual-spatial skills (83). Similarly,
adults with cystinosis who receive consistent chronic treatment
with cysteamine fare better on visual learning and memory
skills (84).

Schizophrenia and Neuropsychiatric Diseases
Schizophrenia is a psychiatric disease, with complex genetic
and neurological contributions of unclear origins, manifesting
as a combination of symptoms which includes hallucinations,
delusions, motivational and cognitive deficits (85). Although
treatments for schizophrenia target psychotic symptoms, most
existing drugs do not relieve social and cognitive deficits.
The neurochemical changes in schizophrenia typically occur
well before formal diagnosis, and, thus, preventive therapies
could be beneficial. Schizophrenic patients have lower levels
of BDNF so that schizophrenic patients might benefit from
use of cysteamine due to its BDNF-enhancing properties
and effects on the dopaminergic system (86, 87). In an
amphetamine-induced psychosis model of schizophrenia,
cysteamine prevents increased locomotor activity by decreasing
dopamine release (88). Cysteamine counteracts the BDNF-
lowering effects of haloperidol (89). The anti-depressant
effect of cysteamine may also benefit other mental conditions
(90). These studies are consistent with an earlier study which
demonstrated that cysteamine blocked amphetamine-induced
deficits in sensorimotor gating in male Sprague-Dawley
rats (91). Similarly, cysteamine treatment increases BDNF
levels in the frontal cortex and hippocampus and improved
spatial memory in heterozygous reeler mice, which exhibit
behavioral and neurochemical abnormalities similar to those in
schizophrenia (92).

Similarly, cystamine and cysteamine may be beneficial in
other conditions involving low neurotrophin levels, such as
autism spectrum disorders (ASD). Analysis of postmortem
human brain samples revealed increases in TG2 mRNA and
protein levels in the middle frontal gyrus of subjects with
autism spectrum disorder. Thus, cysteamine may alleviate
symptoms of ASD by inhibiting TG2 and increasing BDNF
levels (93). The same study demonstrated that ER stress
induced TG2 expression and deficits in social behavior. Systemic
administration of cysteamine attenuated these behavioral
abnormalities. In mice lacking methyl-CpG binding protein
2 (MeCP2), a model of Rett syndrome, associated with
decreased BDNF levels and obsessive compulsive phenotypes,
cysteamine treatment improved lifespan, and improved motor
function (94, 95). In a similar vein, cysteamine counteracted
anxiety, and depression-like behaviors in a mouse model
of anxiety/depression induced by chronic glucocorticoid
exposure (96).
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POTENTIAL SIDE-EFFECTS OF
CYSTEAMINE AND CYSTAMINE

Although cysteamine and cystamine have several desirable effects
in cells and tissues, some studies have reported side-effects.
For instance, in the treatment of HD patients using cysteamine
(Cystagon) in the CYTE-I-HD clinical trials, rashes, nausea, and
motor impairment along with bad breath were observed in a
few patients (63). In phase II trials, asthenia or fatigue was more
commonly observed (97). Despite these side-effects, cysteamine
appeared to be well tolerated by almost all of the patients.

CONCLUDING REMARKS

Some therapies using antioxidants have not yielded satisfactory
outcomes in clinical trials (98–101). Several reasons have been
attributed to the failure of such trials. Certain antioxidants
inhibit fundamental cellular processes such as autophagy,
which is crucial to eliminate misfolded proteins and damaged
organelles (102). Most antioxidants utilized only target specific
free radicals and thus may counteract only selected types of
free radicals. Most clinical trials were initiated relatively late
in disease progression, when most of the oxidative damage
has already accrued. Doses of antioxidants utilized have also
not been adequately tested. Durations of several of these trials
have also been short, and longer term uses of redox active
molecules have not been studied in detail. Thus, development
of antioxidant molecules that have multiple targets, while not
inhibiting basic cellular processes such as autophagy, is crucial.
Cysteamine normalizes the proteostasis machinery by restoring
BECN1/Beclin 1-dependent autophagy in cystic fibrosis inmouse
models of the disease and also in patients (103). Cysteamine
dendrimers have been found to ameliorate autophagy deficits

in cystic fibrosis (104). It is evident that signaling pathways

modulated by cystamine and cysteamine are diverse (Figure 1B),
and knowledge of these cascades will yield information that
can be harnessed to tailor treatments for diverse diseases. The
tissue-specific effects and optimal concentrations of the thiol
redox couple that would be beneficial for specific diseases has
still not been elucidated. Although these aminothiols possess
beneficial disease-modifying effects in several conditions, it is still
unclear whether these molecules or their metabolites mediate the
cytoprotection observed in neurodegenerative diseases. However,
increase in cysteine levels can promote neuroprotection, and
some of the beneficial effects can be attributed to increases in
cysteine to mitigate oxidative stress as has been observed in HD
(56). Similarly, systematic studies measuring the concentration
and metabolism of cysteamine and cystamine in pathological
conditions have not been conducted and are areas of future
investigation. Epigenetic effects of cystamine and cysteamine and
cysteaminylation, the posttranslational modification mediated by
cystamine and cysteamine await detailed investigation. The use
of cystamine and cysteamine is another example of a repurposed
drug, which has cytoprotective effects in the brain. Combination
therapy of these aminothiols with other approved drugs offer
attractive options to arrive at safe and effective drugs for these
complex diseases.
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