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Abstract

Background: Immunotherapy yields survival benefit for some advanced stage non-small cell lung cancer (NSCLC) patients.
Because highly predictive biomarkers of immunotherapy response are an unmet clinical need, we used pretreatment radio-
mics and clinical data to train and validate a parsimonious model associated with survival outcomes among NSCLC patients
treated with immunotherapy. Methods: Three cohorts of NSCLC patients treated with immunotherapy were analyzed:
training (n¼180), validation 1 (n¼90), and validation 2 (n¼62). The most informative clinical and radiomic features were
subjected to decision tree analysis, which stratified patients into risk groups of low, moderate, high, and very high risk of
death after initiation of immunotherapy. All statistical tests were 2-sided. Results: The very high-risk group was associated
with extremely poor overall survival (OS) in validation cohorts 1 (hazard ratio [HR] ¼ 5.35, 95% confidence interval [CI] ¼ 2.14
to 13.36; 1-year OS¼11.1%, 95% CI¼1.9% to 29.8%; 3-year OS¼0%) and 2 (HR¼13.81, 95% CI¼2.58 to 73.93; 1-year OS¼47.6%,
95% CI¼18.2% to 72.4%; 3-year OS¼0%) when compared with the low-risk group (HR¼1.00) in validation cohorts 1 (1-year
OS¼85.0%, 95% CI¼60.4% to 94.9%; 3-year OS¼38.9%, 95% CI¼17.1% to 60.3%) and 2 (1-year OS¼80.2%, 95% CI¼40.3% to
94.8%; 3-year OS¼40.1%, 95% CI¼1.3% to 83.5%). The most informative radiomic feature, gray-level co-occurrence matrix
(GLCM) inverse difference, was positively associated with hypoxia-related carbonic anhydrase 9 using gene-expression profil-
ing and immunohistochemistry. Conclusion: Utilizing standard-of-care imaging and clinical data, we identified and validated
a novel parsimonious model associated with survival outcomes among NSCLC patients treated with immunotherapy. Based
on this model, clinicians can identify patients who are unlikely to respond to immunotherapy.

Checkpoint blockade immunotherapy demonstrates durable
and long-term survival benefit in 20%-50% patients with ad-
vanced stage non-small cell lung cancer (NSCLC) (1-6). Because
patterns of immunotherapy response (7) are complex, including
rapid disease progression (8), hyperprogression (9), and acquired
resistance (10), there is an urgency to identify highly predictive
biomarkers that can stratify patients into distinct risk groups of
survival and progression. Tumor programmed cell death ligand-
1 (PD-L1) expression by immunohistochemistry (IHC) is a
standard-of-care biomarker; however, recent clinical trials

demonstrated statistically significant survival benefit for
patients irrespective of tumor PD-L1 expression (6,11). Although
tumor mutational burden (TMB) (12) has also shown to be a pre-
dictor of immunotherapy response (13–15), tumor specimens
have to be sufficient in both quantity and quality to assess TMB
(14), and laboratory methods to calculate TMB can be timely and
expensive. As such, complimentary biomarkers that are predic-
tive, noninvasive, and measured in a timely fashion using
standard-of-care modalities would have direct translational
implications.

Received: 23 December 2020; Revised: 30 March 2021; Accepted: 16 April 2021

© The Author(s) 2021. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/
licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
For commercial re-use, please contact journals.permissions@oup.com

1 of 11

JNCI Cancer Spectrum (2021) 5(4): pkab048

doi: 10.1093/jncics/pkab048
First published online 13 May 2021
Article

https://orcid.org/0000-0002-2565-4030
https://orcid.org/0000-0003-3462-6303
https://orcid.org/0000-0002-9833-2788
https://orcid.org/0000-0001-5040-4482
https://orcid.org/0000-0003-0490-5184
https://orcid.org/0000-0002-8888-7747
https://orcid.org/0000-0003-3241-3216
mailto:
https://academic.oup.com/


Quantitative image-based features, or radiomics, reflect the
underlying pathophysiology and tumor heterogeneity (16) and
have advantages over tissue-based biomarkers as they can be
rapidly extracted using standard-of-care medical images and
can capture data from the entire region of interest (eg, tumor)
rather than a small portion of the tumor that is biopsied and
assayed. Therefore, in this study, we used pretreatment clinical
data and radiomic features extracted from pretreatment com-
puted tomography (CT) scans to develop a risk model that is as-
sociated with survival outcomes among NSCLC patients treated
with immunotherapy. The biological underpinnings of the
radiomics signature were assessed by gene expression and IHC
analyses.

Methods

Immunotherapy-Treated Lung Cancer Patients

This study was approved by the University of South Florida in-
stitutional review board, and a waiver of informed consented
was obtained. Three cohorts of NSCLC patients treated with im-
munotherapy were analyzed: training (Moffitt Cancer Center
[MCC]1, n¼ 180), validation 1 (MCC2, n¼ 90), and validation 2
(Veterans Health Administration [VA], n¼ 62). Patients in MCC1
and MCC2 cohorts were treated at the H. Lee Moffitt Cancer
Center and Research Institute, Tampa, Florida, and patients in
the VA cohort were treated at James A. Haley Veterans’
Hospital, Tampa, Florida. All patients were treated with PD-1 or
PD-L1 therapy or combinations of PD-L1 or PD-1 with cytotoxic
T-lymphocyte–associated protein 4 doublet therapy. Inclusion
criteria included pretreatment CT or positron emission tomog-
raphy-CT imaging acquired less than 90 days prior to initiation
of immunotherapy and having at least 1 measurable lung lesion
defined by Response Evaluation Criteria in Solid Tumors
(RECIST) criteria. Additional details about the lung cancer
patients and patient data are provided in the Supplementary
Methods (available online).

Radiogenomics Dataset

A previously described (17) patient dataset of 103 surgically
resected adenocarcinomas (Lung1) who had CT radiomics and
tumor gene-expression profiling was used to identify biological
underpinnings of the most informative radiomic feature; addi-
tional details are provided in the Supplementary Methods
(available online).

Immunohistochemistry

To validate the radiogenomics data, IHC of CAIX was performed
on 16 NSCLC patient samples that had a presurgical CT. The IHC
staining was quantified by automated evaluation of positive
staining percentage defined by the Aperio ImageScope (http://
www.leicabiosystems.com) and by H-scoring metric (18) quanti-
fied by a board-certified pathologist (JS) who was masked to
radiomics and automated IHC scoring data.

Prognostic Datasets

The most informative radiomics was analyzed in 4 independent
datasets of NSCLC patients not treated with immunotherapy.
Overall survival (OS) was the dependent variable. The first

dataset (Lung1) was the radiogenomics dataset described above.
The second dataset (Lung2) included 234 patients diagnosed
with incidental lung cancer from the National Lung Screening
Trial (16,19). The third dataset (Lung3) included 62 patients who
had presurgical CTs and underwent resection at MCC (20,21).
The fourth dataset (Lung4) (20,21) included 47 patients who had
presurgical CT scans and underwent surgical resection at the
Maastricht Radiation Oncology Clinic (MAASTRO).

Radiomic Feature Extraction

Figure 1 is an overview of our radiomics pipeline. Pretreatment
thoracic CT scans were retrieved from the picture archiving and
communication system and loaded into the HealthMyne soft-
ware (http://www.healthmyne.com) for segmentation. Using
the HealthMyne software, 2 radiologists (YT and JQ) with more
than 10 years of clinical experience initialized the 3D segmenta-
tion algorithm on the largest lung lesion. The radiologists either
confirmed or edited the segmentations as necessary. The tumor
masks were imported into in-house radiomic feature extraction
toolboxes created in MATLAB 2015b (The Mathworks Inc,
Natick, MA) and Cþþ (https://isocpp.org). A total of 213 radiomic
features were extracted from the intratumoral (122 features)
and the peritumoral (3 mm outside of tumor boundary) regions
(91 features) using standardized algorithms defined by the
Image Biomarker Standardization Initiative (22). Stable and re-
producible radiomic features were identified using previously
described methods (23); details are included in the
Supplementary Methods (available online).

Statistical Analysis

Statistical analyses were performed using Stata/MP 14.2
(StataCorp LP, College Station, TX) and R Project for Statistical
Computing version 3.4.3 (http://www.r-project.org/). All statistical
tests were 2-sided, and a P value of less than .05 was considered
statistically significant. Differences between cohorts for clinical
covariates were tested using Fisher exact test for categorical vari-
ables and Mann-Whitney U test and Student’s t test for continu-
ous variables. Survival analyses were performed using Cox
regression, Kaplan-Meier survival estimates, and log-rank test.
OS and progression-free survival (PFS) were the 2 dependent vari-
ables. Index date was the date of initiation of immunotherapy.
For OS, an event was defined as death. For PFS, an event was de-
fined as death or either clinical- or RECIST-based progression of
cancer, and the data were right censored at 36 months.

Rigorous model building approaches were employed to re-
duce the number of variables and identify the most informative
clinical covariates and radiomic features associated with OS in
the training cohort (MCC1). The most informative clinical cova-
riates and radiomic features that were identified in the training
cohort were then tested in 2 validation cohorts (MCC2 and VA).
For the clinical covariates, univariable Cox regression identified
variables statistically significantly associated with OS. To gener-
ate a parsimonious clinical model, statistically significant clini-
cal covariates from the univariable analyses were included in a
stepwise backward elimination model using a threshold of P
less than .01 for inclusion. For the radiomic features, we re-
moved radiomic features correlated with tumor volume using a
Pearson correlation coefficient of 0.80 or higher; among intra-
correlated features using an absolute Pearson correlation coeffi-
cient of 0.80 or higher, the feature with the lowest P value in
univariable analysis was retained, and the other(s) was
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removed. Among the remaining features, univariable Cox re-
gression identified those statistically significantly associated
with OS. Among the remaining features, a parsimonious model
was identified using stepwise backward elimination using a
threshold of P less than .01 for inclusion. Bonferroni-Holm
method was used for multiple testing corrections.

The variables from the parsimonious clinical and radiomics
models were used as inputs into a survival Classification and
Regression Tree (CART) (24), which yielded risk groups associ-
ated with OS in MCC1 and then was validated in MCC2 and VA.
Time-dependent area under the curve (AUC) values were calcu-
lated for 6, 12, 24, and 36 months.

Radiomics Quality Score (RQS)

RQS was calculated using an established metric that assesses
the quality of a radiomics study (25). The RQS contains 16 items
with a maximum score of 36.

Results

Patient Demographics

Type of checkpoint inhibitor, Eastern Cooperative Oncology
Group (ECOG) performance status, number of previous lines of

therapy, serum albumin, lymphocyte counts, and neutrophils
to lymphocytes ratio were statistically significantly different be-
tween MCC1 and MCC2 (Table 1). Median age, sex, smoking sta-
tus, stage, type of checkpoint inhibitor, ECOG performance
status, lymphocyte counts, and neutrophils to lymphocytes ra-
tio were statistically significantly different between MCC1 and
VA.

The OS and PFS rates for all cohorts are presented in
Supplementary Table 1 (available online), and the Kaplan-Meier
survival curves are presented in Supplementary Figure 1 (avail-

able online). MCC1 and MCC2 had statistically significantly dif-
ferent OS (36-month OS ¼ 32.6% vs 19.2%; P < .001) and PFS (36-
month PFS ¼ 20.8% vs 9.5%; P ¼ .003). PFS was not available for
the VA cohort.

Covariate Reduction

Among the 16 covariates (Table 1) considered for the clinical
model, 5 covariates (serum albumin, number of metastatic sites,
previous lines of therapy, white blood cell, neutrophil count)
were statistically significant in univariable analysis in MCC1
(Supplementary Table 2, available online). The parsimonious
clinical model included 2 clinical covariates that were statisti-
cally significantly associated with OS: serum albumin (hazard

Figure 1. The radiomics pipeline. After pretreatment (ie, baseline), imaging, and patient data are obtained, radiomic features are extracted from standard-of-care imag-

ing studies (yellow). Radiologists mark target the lesions, and lesions are automatically (or semi-automatically) segmented. Radiomic features are then extracted from

the region of interest (purple). Unstable, nonreproducible and correlated radiomic features are removed. The remaining features are combined with the pretreatment

clinical covariates (green), and model building approaches are applied, which can be used for patient stratification and/or treatment selection.
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ratio [HR] ¼ 0.33, 95% confidence interval [CI] ¼ 0.20 to 0.52) and
number of metastatic sites (HR¼ 2.14, 95% CI¼ 1.48 to 3.11).

Among the 213 intratumoral and peritumoral radiomic fea-
tures, 67 were found to be stable and reproducible (Figure 2, A).

Of 67 features, 8 were correlated with tumor volume and
removed. Ten of the remaining features were statistically
significantly associated with OS in univariable analysis
(Supplementary Table 3, available online), and 2 features

Table 1. Patient characteristics of the training and 2 validation cohorts

Characteristicsb,c

Training Validation

Pb,c

Validation

Pb,d

MCC1 cohort MCC2 cohort VA cohort
(n¼ 180) (n¼ 90) (n¼ 62)

Age at initiation of treatment, No. (%)
Dichotomized
<65 y 68 (37.8) 37 (41.1) 15 (24.2)
�65 y 112 (62.2) 53 (58.9) .60 47 (75.8) .06

Median (95% CI), y 67 (65 to 68) 67 (64 to 69) .78 68 (67 to 71) .03
Sex, No. (%)

Female 95 (52.8) 43 (47.8) 3 (4.8)
Male 85 (47.2) 47 (52.2) .44 59 (95.2) <.001

Smoking status, No. (%)d

Never smoker 30 (16.7) 16 (17.8) 2 (3.2)
Ever smoker 146 (81.1) 74 (82.2) .87 60 (96.8) .004
Unknown/Missing 4 (2.2) 0 (0) 0 (0)

Stage, No. (%)
III 6 (3.3) 4 (4.4) 13 (21.0)
IV 174 (96.7) 86 (95.6) .74 49 (79.0) <.001

Histology, No. (%)
Adenocarcinoma/others 137 (76.1) 71 (78.9) 43 (69.3)
Squamous cell carcinoma 43 (23.9) 19 (21.1) .65 19 (30.7) .14

Checkpoint inhibitors, No. (%)
Anti–PD-L1 48 (26.6) 18 (20.0) 8 (12.9)
Anti–PD-1 57 (31.7) 69 (76.7) 54 (87.1)
Doublet 75 (41.7) 3 (3.3) <.001 0 (0) <.001

ECOG performance status, No. (%)
0 39 (21.7) 10 (11.1) 12 (19.4)
1 141 (78.3) 67 (74.4) 39 (62.9)
2 0 (0) 13 (14.4) <.001 11 (17.7) <.001

Previous lines of therapy on current diagnosis, No. (%)
None 70 (43.9) 21 (23.3) N/A
1 48 (26.7) 47 (52.2) N/A
�2 62 (34.4) 22 (24.4) <.001 N/A —

Number of metastatic sites, No. (%)
1 82 (46.6) 51 (56.7) 25 (40.3)
�2 98 (54.4) 39 (43.3) .09 37 (59.7) .55

EGFR mutational status, No. (%)e

Not detected 107 (59.4) 37 (41.1) N/A
Detected 25 (13.9) 5 (5.6) .36 N/A —
Missing/Inconclusive 48 (26.7) 48 (53.3) N/A

KRAS mutational status, No. (%)e

Not detected 61 (33.9) 20 (22.2) N/A
Detected 29 (16.1) 12 (13.3) .66 N/A —
Missing/Inconclusive 90 (50.0) 58 (64.4) N/A

Hematology, median (95% CI)
Serum albumin, g/dL 4.0 (2.8 to 4.9) 3.8 (2.3 to 4.7) < 001 3.9 (2.9 to 4.6) .09
Lymphocytes, 1x109/L 1.3 (0.3 to 3.6) 1.0 (0.3 to 3.4) <.001 1.0 (0.2 to 3.2) .01
WBC, 1x109/L 7.1 (3.2 to 61.5) 7.7 (1.4 to 45.1) .25 7.5 (1.8 to 19.4) .38
Neutrophils, 1x109/L 4.8 (1.6 to 31.7) 5.3 (0.4 to 40.2) .13 5.6 (1.1 to 15.1) .33
Ratio of neutrophils: Lymphocytes 3.7 (1.1 to 30.4) 5.2 (0.5 to 53.1) .002 5.3 (0.8 to 34.3) .004

aThe majority of the MCC1 (95.3%) and the MCC2 cohorts (86.7%) were self-reported White race and majority of MCC1 cohort (97.0%) and the MCC2 cohort (88.9%) were

self-reported non-Hispanic. For the VA cohort, racial and ethnicity data were not available. CI ¼ confidence interval; ECOG ¼ Eastern Cooperative Oncology Group;

EGFR ¼ estimated glomerular filtration rate; MCC ¼ Moffitt Cancer Center; PD-L1 ¼ programmed cell death ligand-1; VA ¼ Veterans Health Administration; WBC ¼
white blood cell; N/A ¼ not available (i.e., these covariates were not available in the VA validation cohort).
bP values for continuous variables were calculated using Mann-Whitney test and Fisher exact test for categorical variables. All P values are 2-sided. P values were not

calculated for N/A cells and an em dash was denoted.
cP values were calculated comparing MCC1 and MCC2 cohorts.
dP values were calculated comparing MCC1 and VA cohorts.
eP values for smoking status, EGFR mutational status, and KRAS mutational status were calculated excluding missing or inconclusive data.
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remained after removing correlated features (Figure 2, B).
Among the 2 remaining features (gray level co-occurrence ma-
trix [GLCM] inverse difference and peritumoral quartile coeffi-

cient of dispersion), stepwise backward elimination identified a
parsimonious model with 1 feature: GLCM inverse difference
(HR¼ 1.41, 95% CI¼ 1.19 to 1.67).

CART Analysis

Using the 2 covariates from the parsimonious clinical model
and 1 radiomic feature from the parsimonious radiomic model
as inputs, CART analysis identified a novel tree structure (Figure

2, C) and grouped patients into 6 risk groups associated with OS
(Supplementary Figure 2, available online). Of the original 6
groups, groups 2 and 3 were combined and groups 4 and 5 were
combined as the hazard ratios for groups 2 and 3 and groups 4
and 5 were not statistically significantly different, resulting in 4
risk groups: low risk, moderate risk, high risk, and very high risk
(Figure 3, A). The risk groups from the MCC1 cohort were also
analyzed in both validation cohorts (MCC2 and VA; Figure 3, B
and C). Similar findings were observed when the risk groups
were analyzed for PFS for MCC1 and MCC2 (Figure 3, D and E).
PFS data were not available for VA.

Time-dependent AUCs demonstrated that the final model
(Supplementary Figure 3, A, available online) consistently had

Figure 2. The heat map of concordance correlation coefficients, the correlation matrix for the “avatar” feature, and the Classification and Regression Tree (CART). A)

The heat map plots the concordance correlation coefficients (CCC) of the radiomic features acquired by different segmentations and image acquisitions. Each column

in the heat map represents a radiomic feature from the indicated feature group and region of interest (eg, intratumoral or peritumoral). The features are compared be-

tween different segmentation algorithms (ALG), different initial parameters (IP), and test-retest scans (RIDER). The green boxes represent higher (CCC > 0.95), blue

boxes represent moderate (CCC � 0.75 and CCC � 0.95), and red boxes represent lower (CCC < 0.75) CCCs. B) The correlation matrix plots the radiomic features that

were statistically significantly associated with overall survival in the univariable analysis. The most informative radiomic feature (gray-level co-occurrence matrix

[GLCM] inverse difference) was correlated with 7 other features. C) CART analysis was used to identify patient risk groups based on a decision tree containing 1 radio-

mic feature and 2 clinical features. Patients were grouped from low-risk to very high-risk based on overall survival outcomes.
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higher AUCs compared with the clinical only model
(Supplementary Figure 3, B, available online).

Multivariable Analyses

Multivariable Cox regression analyses demonstrate that the
main effects for the risk groups were consistent when adjusting
for clinical covariates (Table 1) that were statistically signifi-
cantly different between MCC1 and MCC2. The multivariable
models revealed the very high-risk group was associated with
extremely poor OS in validation cohort 1 (HR¼ 5.35, 95%
CI¼ 2.14 to 13.36; 1-year OS¼ 11.1%, 95% CI¼ 1.9% to 29.8%; 3-
year OS¼ 0%) and validation cohort 2 (HR¼ 13.81, 95% CI¼ 2.58
to 73.93; 1-year OS¼ 47.6%, 95% CI¼ 18.2% to 72.4%; 3-year
OS¼ 0%) when compared with the low-risk group (HR¼ 1.00) in
validation cohort 1 (1-year OS¼ 85.0%, 95% CI¼ 60.4% to 94.9%;
3-year OS¼ 38.9%, 95% CI¼ 17.1% to 60.3%) and validation co-
hort 2 (1-year OS¼ 80.2%, 95% CI¼ 40.3% to 94.8%; 3-year
OS¼ 40.1%, 95% CI¼ 1.3% to 83.5%; Table 2; Supplementary
Tables 1 and 4, available online). The results were similar for
PFS (Table 2; Supplementary Table 1, available online).
Additionally, results were consistent for OS in multivariable
analyses adjusting for clinical covariates that were statistically

significantly different between MCC1 and VA cohorts
(Supplementary Tables 1 and 4, available online).

Multivariable Cox regression was also performed adjusting
for clinical covariates that were statistically significant between
the CART risk groups (Supplementary Table 4, available online)
but did not appreciably change the hazard ratios (Table 2).
Serum albumin and number of metastatic sites were not in-
cluded as these covariates were already part of the CART
structure.

As noted above, 8 features were found to be correlated with
tumor volume. Three (longest diameter, minor axis length, and
least axis length) of the 8 features were statistically significantly
associated with OS. However, the hazard ratios for these 3 fea-
tures were not statistically significant when they were included
in a multivariable model containing the most informative clini-
cal covariates and radiomic features.

Other Model Building Approaches

Other model approaches were explored and yielded identical
results (data not shown). First, all radiomic and clinical covari-
ates that were statistically significant in univariable analyses
(Supplementary Table 6, available online) were subjected to
CART analysis. Second, we substituted least absolute shrinkage
and selection operator for the stepwise backward approach,
then applied CART analysis. Lastly, we included the features
correlated with volume and applied the original model-building
approach. These extensive experiments demonstrated that our
model is robust and reproducible by different modeling
approaches.

Radiogenomics Analyses

The most informative radiomic feature was compared with ev-
ery gene probeset using 2 different approaches: 2-group analysis
and correlation analysis. For the 2-group analyses, GLCM in-
verse difference was dichotomized at the cut-point (0.43) deter-
mined by CART. Correlation and 2-group analyses identified 123
statistically significant probesets representing 91 unique genes
that were associated with the GLCM inverse difference radiomic
feature (Supplementary Table 7, available online). Pathway
analysis found no statistically significant enrichment after
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Figure 3. Kaplan-Meier survival curves for the 4 risk groups identified by CART analysis. Overall survival is presented for (A) MCC1 cohort, (B) MCC2 cohort, and (C) VA

cohort. Progressive-free survival (PFS) is presented for (D) MCC1 cohort and (E) MCC2 cohort. PFS was not available for the VA cohort. Risk groups 2 and 3 were com-

bined, and risk groups 4 and 5 were combined (as shown in Supplementary Figure 2, A, available online) to create the moderate-risk and the high-risk groups, respec-

tively. The log-rank test was used to calculate 2-sided P values. MCC ¼Moffitt Cancer Center; VA ¼ Veterans Health Administration.
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correcting by false discovery rate. Gene Ontology Biological
Process enrichment of the gene set identified terms including
regulation of cardiac conduction, sodium ion export across
plasma membrane, and membrane depolarization during ac-
tion potential. Only 3 probesets (representing 2 genes) were pos-
itively associated with GLCM inverse difference: CAIX and
family with sequence similarity 83 member F (FAM83F). For
both gene probesets, CAIX gene expression was statistically sig-
nificantly different by GLCM inverse difference, and CAIX gene
expression was positively correlated with GLCM inverse differ-
ence (Figure 4, A-D).

Immunohistochemistry Analyses

The automated pathology scoring was correlated with the
pathologist-scored H-score (r¼ 0.629; P ¼ .009). CAIX IHC by au-
tomated pathology scoring was statistically significantly differ-
ent by GLCM inverse difference (Mann-Whitney U test P ¼ .008;
Figure 4, E), and CAIX IHC by automated pathology scoring was
modestly correlated with GLCM inverse difference (r¼ 0.514; P ¼
.04; Figure 4, F).

Prognostic Datasets

GLCM inverse difference was statistically significantly associ-
ated with OS in 3 independent NSCLC cohorts (Lung1, Lung2,
and Lung3 in Figure 5) using the identified CART cut-point
(0.43). Although this a priori cut-point was not statistically sig-
nificant in Lung4, GLCM inverse difference as a continuous co-
variate was statistically significantly associated with OS in
univariable analysis (HR¼ 2.74, 95% CI¼ 1.04 to 7.24).

Radiomics Quality Score

This study yields a radiomic quality score of 22 out of a possible
maximum of 36 (Supplementary Table 8, available online).

Discussion

Predictive biomarkers that identify lung cancer patients who
will experience rapid and lethal outcomes in the setting of im-
munotherapy are critical unmet needs as such patients could
avoid ineffective therapy. In this study, we used a rigorous

Table 2. Univariable and multivariable Cox regression analysis for overall survival and progression-free survival

Characteristics

MCC1 cohort (n¼ 180) MCC2 cohort (n¼90)

Univariable modela Multivariable modelb Multivariable modelc Univariable modela Multivariable modelb

HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI)

Overall survival
Risk groupd

Low risk 1.00 (Referent) 1.00 (Referent) 1.00 (Referent) 1.00 (Referent) 1.00 (Referent)
Moderate risk 3.79 (1.13 to 12.68)e 3.08 (0.89 to 10.66) 3.56 (1.02 to 12.48)e 1.70 (0.75 to 3.87) 1.51 (0.66 to 3.51)
High risk 8.02 (2.47 to 26.09)e 7.87 (2.38 to 25.97)e 6.98 (2.10 to 23.18)e 2.73 (1.33 to 5.63)e 3.33 (1.57 to 7.05)e

Very high risk 19.32 (5.80 to 64.32)e 17.33 (5.11 to 58.72)e 17.24 (5.09 to 58.36)e 10.52 (4.58 to 24.17)e 5.35 (2.14 to 13.36)e

ECOG — 1.22 (0.70 to 2.11) 1.20 (0.69 to 2.07) — 2.63 (1.47 to 4.68)e

Pr. treatment — — 1.36 (1.01 to 1.81)e — —
Lymphocytes — 1.04 (0.74 to 1.46) . — 0.73 (0.45 to 1.17)
WBC — — 0.98 (0.88 to 1.09) — —
Neutrophils — — 1.10 (0.89 to 1.34) — —
NLR — 1.01 (0.97 to 1.06) 0.98 (0.92 to 1.05) — 1.05 (1.02 to 1.08)e

Progression-free survival
Risk groupd

Low risk 1.00 (Referent) 1.00 (Referent) 1.00 (Referent) 1.00 (Referent) 1.00 (Referent)
Moderate risk 2.02 (0.89 to 4.64) 2.05 (0.88 to 4.76) 2.36 (1.00 to 5.58)e 2.96 (1.43 to 6.14)e 2.80 (1.34 to 5.85)e

High risk 5.15 (2.33 to 11.36)e 5.55 (2.46 to 12.49)e 4.89 (2.15 to 11.14)e 2.58 (1.29 to 5.14)e 3.05 (1.50 to 6.18)e

Very high risk 9.62 (4.12 to 22.44)e 9.03 (3.77 to 21.63)e 8.79 (3.66 to 21.11)e 7.13 (3.31 to 15.35)e 3.95 (1.56 to 8.54)e

ECOG — 1.09 (0.68 to 1.74) 1.05 (0.66 to 1.68) — 2.33 (1.35 to 4.03)e

Pr. treatment — — 1.32 (1.04 to 1.67)e — —
Lymphocytes — 0.83 (0.63 to 1.09) — — 0.88 (0.59 to 1.33)
WBC — — 1.00 (0.90 to 1.11) — —
Neutrophils — — 1.04 (0.86 to 1.26) — —
NLR — 1.04 (0.99 to 1.09) 1.01 (0.95 to 1.07) — 1.05 (1.02 to 1.08)e

aThe main effects for each risk group with the low-risk group as the referent category (ie, HR ¼ 1.00). Hazard ratios were not calculated for the cells with the em dash.

CI ¼ confidence interval; ECOG ¼ Eastern Cooperative Oncology Group; HR ¼ hazard ratio; MCC ¼Moffitt Cancer Center; NLR ¼ neutrophils to lymphocytes ratio; PFS ¼
progression-free survival; Pr. treatment ¼ previous lines of treatments at current diagnosis; WBC ¼white blood cell.
bThese models included the clinical covariates that were found to be statistically significant different between the MCC1 and MCC2 cohorts (Table 1). The low risk

group was the referent category.
cThese models included the clinical covariates that were found to be statistically significantly different between the Classification and Regression Tree risk groups in

Supplementary Table 5 (available online).
dLow-risk group refers to patients who have low gray level co-occurrence matrix (GLCM) inverse difference (�0.43) and lower number of metastatic sites (n¼1). The

moderate risk group refers to patients who either have low GLCM inverse difference (�0.43) and higher number of metastatic sites (�2), or patients who have higher

GLCM inverse difference (>0.43), higher serum albumin (�3.9), and lower number of metastatic sites (1). The high-risk group refers to either patients who have higher

GLCM inverse difference (>0.43), higher serum albumin (�3.9), and higher number of metastatic sites (�2), or patients who have higher GLCM inverse difference

(>0.43), lower serum albumin (<3.9), and lower number of metastatic sites (n¼1). The very high-risk group refers to patients who have higher GLCM inverse difference

(>0.43), lower serum albumin (<3.9), and lower number of metastatic sites (�2).eHazard ratios are statistically significant.
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radiomics pipeline to identify a parsimonious clinical-radiomic
risk model that stratified into 4 risk groups based on risk of pa-
tient death (ie, overall survival). The very high-risk group was
associated with extremely poor OS and PFS in the training co-
hort and validated in internal and external cohorts (Figure 3, A-
E). These results suggest very high-risk patients should either
avoid immunotherapy altogether or utilize upfront combination
treatments that may yield an improved response. The 4 risk
groups identified were derived from a decision tree structure
based on 1 radiomic feature (GLCM inverse difference) and 2
clinical covariates (baseline number of metastatic sites and se-
rum albumin). The most informative radiomic feature, GLCM in-
verse difference, was positively associated with CAIX, which is
related to tumor hypoxia.

We classify GLCM inverse difference as an “avatar” radiomic
feature as it is correlated with 7 other radiomic features (Figure
2, B). Higher GLCM inverse difference, which is associated with
poor survival, was found in dense and uniform lesions
(Supplementary Figure 4, available online). Radiogenomics and

IHC analyses revealed that the avatar feature was positively as-
sociated with CAIX expression, which is an important pH regu-
latory enzyme upregulated in hypoxic tumors leading to an
acidic tumor microenvironment (26). Hypoxia is associated with
angiogenesis, tumor growth, invasiveness, metastases, therapy
resistance by inducing cell quiescence and an immunosuppres-
sive phenotype (27), and poor survival in cancer patients includ-
ing NSCLC (28–31). Because our results demonstrate that GLCM
inverse difference is associated with tumor hypoxia, this bio-
marker should have wider reaching implications beyond immu-
notherapy. Thus, it is not surprising that GLCM inverse
difference was associated with OS in the prognostic datasets
suggesting this avatar feature could have broad clinical rele-
vance beyond immunotherapy. Importantly, GLCM inverse dif-
ference was not associated with routinely obtained clinical
covariates (other than ECOG; P ¼ .04) implicating an indepen-
dent effect (Supplementary Table 9, available online).

The most informative clinical covariates demonstrate the
utility of standard-of-care information to predict patient

Figure 4. Gray level co-occurrence matrix (GLCM) inverse difference radiomic feature and CAIX expression. A-D) The association between GLCM inverse difference and

CAIX expression based off 2 different probesets: merck2-DQ892208_at is presented in panels A and B, and merck-NM_001216_at is presented in panels C and D. E) The

association between the automated pathology IHC scoring for CAIX and GLCM inverse difference. F) The correlation between the automated pathology IHC scoring for

CAIX and GLCM inverse difference. In panels A, C, and E, the Mann-Whitney U test was used to calculate 2-sided P values, and the error bars depict Tukey whiskers

(fences). In panels B, D, and F, Pearson correlation coefficient was used to calculate 2-sided P values.
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outcomes. A higher number of metastatic sites increase patient
disease burden and may lead to mixed immunotherapy re-
sponse, where some lesions are regressing and others are pro-
gressing, which ultimately leads to patient-level progressive
disease. The other clinical covariate, serum albumin, has been
shown to be associated with survival in NSCLC patients (32,33)
and is used in existing cancer prognostic scores [ie, Royal
Marsden Hospital prognostic score (34) and MD Anderson risk
score (35)]. Low serum albumin is an indicator of malnutrition,
inflammation, and hepatic dysfunction. The cut-point of 3.9
identified by CART was within the normal limits of serum albu-
min (lower limit¼ 3.5), which may suggest a potentially novel
threshold for survival outcomes in immunotherapy.

Emerging evidence demonstrates the utility of radiomics as a
noninvasive approach to predict lung cancer treatment response
of tyrosine kinase inhibitors (36,37), platinum-based chemother-
apy (36), neo-adjuvant chemoradiation (38,39), stereotactic body
radiation therapy (40,41), and immunotherapy (8,42,43). We pre-
viously (8) demonstrated that pretreatment radiomic models
predict rapid disease progression phenotypes, including hyper-
progression (AUCs ranging 0.804-0.865) among 228 NSCLC
patients treated with immunotherapy. Sun et al. (42) developed
a radiomic signature that predicts CD8 cell infiltration and used
the signature to predict immunotherapy outcomes among dif-
ferent cancers (AUC¼ 0.67); however, NSCLCs were only a small

subset (22%) of the dataset. Utilizing 123 NSCLC patients treated
with immunotherapy, Trebeschi et al. (43) developed a machine
learning model that discriminates progressive disease from sta-
ble disease and responsive disease (AUC¼ 0.83). This current
study represents one of the largest radiomics study of NSCLC
patients treated with immunotherapy.

We do acknowledge some limitations of this study. TMB in-
formation was not available for any of the patients, and PD-L1
IHC was only available for 8 patients in MCC1 and 29 patients in
MCC2. Thus, we are unable to verify the performance of TMB or
PD-L1 expression related to outcomes. However, recent studies
have shown that patients respond to immunotherapy regard-
less of PD-L1 expression (6,11), so inclusion of PD-L1 status may
add little or no improvement to our models. Although MCC1
and MCC2 were curated from the same cancer center, the OS of
the 2 cohorts were statistically significantly different
(Supplementary Figure 1, available online). These differences in
OS may be attributed to the MCC1 cohort comprised of clinical
trial patients who typically have higher performance status,
and the majority of patients in the MCC2 cohort were treated
with standard-of-care immunotherapy. However, the hazard ra-
tios were not appreciably modified in multivariable analysis
adjusting for covariates that differed between the 2 cohorts.
Lastly, clinical covariates were not available to validate the
clinical-radiomic model for the prognostic datasets that were
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Figure 5. Kaplan-Meier survival curves (overall survival) for the dichotomized radiomics feature (gray level co-occurrence matrix [GLCM] inverse difference). The same

dichotomized cut-point found in the MCC1 training cohort was used for the survival analyses (A-C) in the training and 2 validation cohorts, respectively, and (D-G) the

4 prognostic datasets (ie, gene-expression dataset, National Lung Screening Trial (NLST) dataset, Moffitt adenocarcinoma dataset, and Maastricht Radiation Oncology

Clinic (MAASTRO) adenocarcinoma dataset, respectively). The log-rank test was used to calculate 2-sided P values.
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not treated with immunotherapy. Despite these modest limita-
tions, this study yields one of the highest radiomic quality
scores of 22 (Supplementary Table 8, available online), which is
a stringent metric that quantifies the quality of analysis and the
potential clinical relevance of a radiomics study (25).

In conclusion, using standard-of-care imaging and clinical
covariates, we identified and validated a novel parsimonious
risk model that is associated with survival outcomes among
NSCLC patients treated with immunotherapy. The most infor-
mative radiomic feature was found to be positively associated
with CAIX, an important enzyme upregulated in hypoxic and
acidotic tumors, which is related to treatment resistance. The
potential clinical application of this work is that baseline radio-
mics and clinical covariates can identify patients who are un-
likely to respond to immunotherapy and eliminate unnecessary
treatments. Confirmation is required on the biological tumor-
hypoxia underpinnings of GLCM inverse difference.
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