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Nonrigid image registration is a prerequisite for various medical image process and analysis applications. Much effort has been
devoted to thoracic image registration due to breathing motion. Recently, scale-invariant feature transform (SIFT) has been used
in medical image registration and obtained promising results. However, SIFT is apt to detect blob features. Blobs key points are
generally detected in smooth areas which may contain few diagnostic points. In general, diagnostic points used in medical image
are often vessel crossing points, vascular endpoints, and tissue boundary points, which provide abundant information about vessels
and can reflect the motion of lungs accurately. These points generally have high gradients as opposed to blob key points and can
be detected by Harris. In this work, we proposed a hybrid feature detection method which can detect tissue features of lungs
effectively based on Harris and SIFT. In addition, a novel method which can remove mismatched landmarks is also proposed. A
series of thoracic CT images are tested by using the proposed algorithm, and the quantitative and qualitative evaluations show that
our method is statistically significantly better than conventional SIFT method especially in the case of large deformation of lungs
during respiration.

1. Introduction

Lung cancer is the most common cause of cancer-related
death all over the world, with exceeding 1 million deaths
annually [1]. Image-guided radiation therapy (IGRT) plays an
important role in both the curative and palliative treatment
of lung cancer, and precise targeting of lung tumors is an
essential step in IGRT [2]. However, it is difficult to target
tumors in lungs by taking into account respiration and
tumor motion. Deformable or nonrigid image registration
has been recognized as a key technology to locate position
of tumor precisely [3]. By definition, image registration is
a process of establishing spatial correspondences between
two images. It can be classified into rigid registration and
nonrigid registration.As themotion and shape change of lung
is nonlinear, it is appropriate to register the lung CT images
by using nonrigid registration.

Various nonrigid image registration methods have been
applied for the lung CT images. In general, the registration

methods can be divided into intensity-based and feature-
based methods. There are a lot of intensity-based methods
used in the thoracic CT image registration, such as fast
intensity-based freeform registration [4], multiresolution
optical flow technique [5], regional narrow shell model
[6], and demons algorithm [7]. However, intensity-based
methods tend to misregister small structures in the lung
like vessels and airways as they only rely on image intensity
[8]. Feature-based methods are typically applied when the
local structural information is distinctive and salient, and the
performance of feature-based registration is closely related to
the accuracy of feature extraction and matching in images.

In feature-based registration methods which were com-
monly used in thoracic images, both Rohr [9] and Coselmon
et al. [10] used manually extracted landmarks and an approx-
imating thin-plate spline to describe the mapping function.
However, manual landmark extraction often takesmuch time
and is tedious, and the accuracy greatly depends on the expe-
rience of doctors. Han [2] proposed a hybrid method that
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used features detected by Forstner operator as constrains to
guide an intensity-based deformable registration. Gorbunova
et al. [11] combined intensity, curves, and surfaces to register
lung CT images. These methods were hybrid techniques
that combined feature-based and intensity-based methods.
Recently, Xie et al. [12] and Urschler et al. [8] showed the
feature-based registration based on scale-invariant feature
transform (SIFT) [13] and thin-plate spline (TPS) achieved
promising results in thoracic CT images. The robustness of
SIFT has been properly evaluated, which shows well perfor-
mance and stability under arbitrary affine transformations
for MR, CT, and ultrasound images due to its distinctive
and superior advantages in feature detection and description
[14, 15]. However, the accuracy of extracted key points and
thematching strategy have not been fully explored. Our work
mainly focuses on these two questions.

In the present work, we develop a hybrid feature extrac-
tion method that can detect anatomic tissue features of lungs
effectively based on Harris and Stephens [16] and SIFT. To
effectively remove the mismatched features, a novel method
based on cross-correlation and structural invariance is also
proposed.

2. Methods

The proposed method consists of four major steps: tissue
feature detection, feature description, feature matching and
mismatched points removing, and thin-plate spline (TPS)
transformation [17]. We will illustrate the method in the
following sections in detail. As the voxel spacings in three
directions are different, we first preprocess the images into
a volume with isotropic spacing. This process can improve
computation speed and reduce memory usage due to the
increase of voxel spacing of each slice. In addition, having
an isotropic voxel spacing can increase the accuracy of SIFT
descriptor.

2.1. Tissue Feature Detection. The SIFT algorithm detects
key points of extremes in the scale space, and the detected
key points are blob features which cannot fully reflect the
movement of lungs.The features that we need to find are lung
boundaries, vessel bifurcations, and alveoli. These features
usually have high intensity gradient; thus we use Harris
algorithmwhich can find points with high intensity gradient.

The Harris detector is based on the local autocorrelation
function of a signal, which measures the local changes of the
signal with patches shifted by a small amount in different
directions [18]. In 3D images, the local autocorrelation is
defined as
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denote the intensity gradient in 𝑥-, 𝑦-,

and 𝑧-axises.
The eigenvalues of the matrix contain enough local infor-

mation related to the neighborhood structure, and points
with three high eigenvalues are selected as the features. To
reduce computational complexity and get a good distribution
of feature points in the lungs, the strategy we used is to select
the key points which have three high eigenvalues and each
key point has a distance larger than a threshold with others.

2.2. Local SIFT Feature Descriptor. The SIFT descriptor
is robust to local deformations and to errors in feature
detection. It is considered as one of the most effective
descriptors currently available [19]. For each detected feature,
a distinctive local SIFT feature descriptor is built [20, 21].
The 3D SIFT descriptor is characterized by using the gradient
orientation distribution in a 16 × 16 × 16 grid surrounding
the feature position, and the cube is divided into 4 × 4 × 4
subregions. The descriptor structure is shown in Figure 1.

Each voxel has two values which represent the direction
of the gradient in three dimensions. One is from 0∘ to 360∘,
and the other is from −90∘ to 90∘. To build the orientation
histograms, each bin indicates 45∘. Thus each subregion has
an 8 × 4 bins histogram to summarize the gradients of the
voxel in it.Therefore, a total of 2048 vectors are calculated for
a given feature.

2.3. Feature Matching and Removing Mismatched Points. In
the process of feature matching, the best candidate match for
each key point is found by identifying its nearest neighbor in
the dataset of key points from images. The nearest neighbors
are defined as the key points with minimum Euclidean
distance from the given descriptor vector. The probability
that a match is correct can be determined by taking the
ratio of distance from the closest neighbor to the distance
of the second closest [13]. To find corresponding feature
points, we first convert the histograms of a feature to a single
vector and compare the 𝑙2 distance between a feature vector
in template image against every feature vector of the target
image. Suppose 𝑆

1
and 𝑆
2
are the best match (which has the

lowest distance) and the second best match of feature 𝑆, and
𝑑
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are the corresponding distance between features 𝑆

1
,
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(1) Let Q be a set of point pairs; 𝑄

1
, 𝑄
2
be sets of points.
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(3) for 𝑖 ← 1 to 𝑛
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(7) if 𝑛
1
> 𝜏 then

(8) 𝑄 ← Point 𝑖 and its corresponding point
(9) end if
(10) end for
(11) Return 𝑄

Algorithm 1: Structural invariance removing method.

Figure 1: The 3D SIFT descriptor covers a 16 × 16 × 16 voxel
region, the whole region divided into 4 × 4 × 4 subregions. For
each subregion, 8 × 4 bins histogram is calculated to summarize the
gradient orientation of 4 × 4 × 4 voxels in the subregion.

𝑆
2
with 𝑆. If the ratio 𝑟 = 𝑑

1
/𝑑
2
is below a threshold 𝜏,

then 𝑆
1
is chosen tentatively as the corresponding feature of

𝑆.The threshold 𝜏 Lowe [13] rejected all matches in which the
distance ratio 𝜏 is greater than 0.8, which eliminates 90% of
the false matches while discarding less than 5% of the correct
matches. In our tests, we set 𝜏 to be 0.8 experientially. To
further improve the accuracy of above vector matching, we
perform the matching process twice by reversing the roles of
the two volumes and consider only those matches as valid for
which the features are still matched from volume𝑉

1
to𝑉
2
and

from 𝑉
2
to 𝑉
1
. However, there are still many wrong matched

pairs after the above process.
To remove these mismatched points, we proposed a

novel method based on cross-correlation and structural
invariance for the matching verification. Cross-correlation
is a similarity metric between two signals. We can remove
those mismatches which have slightly large differences in
the neighborhood areas around candidate corresponding key

points by cross-correlation.The correlation coefficient of two
corresponding features is calculated according to
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where (𝑖, 𝑗, 𝑘) are the coordinates of voxels within a distance
𝑑 surrounding the features position,𝐴 and 𝐵 are the intensity
values of corresponding voxel, and 𝐴 and 𝐵 are the mean
intensity values. These intensity values are weighted by a
Gaussian window and normalized. If the correlation coeffi-
cient CC is larger than a threshold, we deem that they are
similar to each other. We experientially set d to be 5 voxels.

Even by using cross-correlation, there are still some
mismatched points. As we know, the relative position of
structures in lungs would not change too much during
respiration. Therefore, if there are a number of key points
surrounding a feature in the lung during inspiration, these
key points would remain surrounding this feature during
expiration. The approach based on structural invariance
consists of two steps. First, a number of points are selected
which have the shortest distance to the tested feature in
an image. Second, the same number of points are selected
which are nearest to the corresponding feature in the other
image. If the number of the matched point pairs is larger
than a given threshold, we affirm that the tested features are
corresponding. This process is illustrated in Algorithm 1.

Figure 2 shows the result before and after using the above
method. These control point pairs are detected using Harris
detector and intensity thresholds are used to insure the main
points detected are in the region of lungs; we can see that the
abovemethod can removemismatched point pairs effectively.
Table 1 shows the number of key point pairs in the process of
matching verification using cross correlation and structural
invariance.
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Figure 2: (a) The matched pairs only using symmetrical nearest neighborhood method. (b) The retained pairs after using our method. (c)
The removed point pairs using our method. The red points are points detected in one thoracic volume, and the blue points are in the other.
The black lines link matched pairs.

Table 1: The number of key point pairs in the process of matching
verification.

Candidate
matching
pairs

Removed by
cross-

correlation

Removed by
structural
invariance

Retained
number

625 47 88 490

2.4. Thin-Plate Spline Transformation. The process of non-
rigid registration warps the template image to the target
image in a way that they can best match on a voxel-by-
voxel basis. Mathematically, this is an optimization problem,
in which a set of transformation parameters transform the
voxels in the template image to their corresponding voxels in
the target image [22].

To find the transformation matrix that maps an arbitrary
voxel on the template image to that on the target image, TPS
transformation is employed in this study.This method can be
used to establish voxel-to-voxel correspondence of a region
of interest according to the paired control points. A detailed

description of the TPS method can be found in the studies by
Bookstein [17].

3. Results and Discussion

The performance of the above method was evaluated by
a series of thoracic CT images. Each image had 80 slices,
and was reconstructed with a 2.5mm slice thickness. Each
CT slice was discretized into 512 × 512 voxels, and the
voxel spacing is 0.977mm. All the images are handled on
a personal computer with Pentium 2.8GHz Dual-Core and
3GB memory, and the proposed methods are implemented
using C++. Insight Segmentation and Registration Toolkit
(ITk) [23] is also used. Some programs are referred to Xie
et al. [12] and Cheung and Hamarneh [21]. The mean of
the square sum of intensity differences (SSD) and image
intensity cross-correlation coefficient (CC) is used to evaluate
the quality of the registration images quantitatively.

Figure 3(a) shows the fusion image of the template and
target phases before registration. Figure 3(b) shows the fusion
image of the two phases using the proposed approach. For
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Figure 3: Fusion images of two phases of digital phantom: (a) before registration, (b) after registration using the proposed method, and (c)
after registration using the conventional SIFT method.

Table 2: Comparison of the proposedmethod and the conventional
SIFT.

Assessment Before
registration

Conventional
SIFT

Proposed
method

SSD 104151 56727 37650
CC 0.472 0.646 0.740

comparison, the results of the conventional SIFT approach
are also shown in Figure 3(c). The red region stands for the
target image, and the green region stands for the template
image.

To be quantitative, we listed the results of these two
methods in Table 2. It is clear that by using the proposed
method, SSD was reduced from 56727 to 37650, and the CC
was increased from 0.646 to 0.740, demonstrating that the
proposed method is much better than the conventional SIFT.

We also choose 15 points to reflect the average errors
of the above registration methods. The results are listed in
Table 3. The errors are computed by point coordinates in
target images minus the point coordinates in register images.
On average, using our hybrid method, the mean absolute
deviation in three directions of the 15 points was reduced
from 1.6 to 0.6mm, from 1.9 to 0.7mm, and from 2.8 to
0.7mm, respectively. The standard deviation (SD) in three
directions of the 15 points was reduced from 2.6 to 0.9mm,
from2.2 to 1.0mm, and from5.2 to 1.2mm, respectively. From
the data in Table 3, it is clear that the proposed method is
more accurate than conventional SIFT.

Generally, the registration results by using TPS method
depend on the number and locations of the control points.

In our work, as we only use an intensity threshold rather than
a true segmentation to preprocess the volume, the detected
points by using SIFTwere spread in the phantom, only a small
part of them was located on the lungs. However, the detected
points by using proposed method were mostly on the lungs.
Both of these two methods got about 500 matched point
pairs (SIFT: 539 pairs, proposed method: 490 pairs). Though
the matched point pairs by using the proposed method
were fewer than those by using SIFT, the detected points on
the lungs by using the proposed method were statistically
significantly more than those by using SIFT. Figure 4 shows
results of detected feature points using these two methods.

4. Conclusions

In the present work, a hybrid feature-based nonrigid image
registration method is proposed. It can effectively detect the
tissue features. Promising results were obtained using clinical
thoracic data. Furthermore, our proposed method to remove
mismatched points is automatic and robust. It can guarantee
the correctness of point pairs and can be a significant
supplementary of former feature-based registrationmethods.
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Table 3: Errors of 15 representative points using the proposed and conventional SIFT.
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Figure 4: Feature point detection: (a) SIFT, (b) proposed method. The white dots stand for the detected feature points.
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