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Abstract: RNA-protein (RNP) interactions play essential roles in many biological processes, such as
regulation of co-transcriptional and post-transcriptional gene expression, RNA splicing, transport,
storage and stabilization, as well as protein synthesis. An increasing number of RNP structures would
aid in a better understanding of these processes. However, due to the technical difficulties associated
with experimental determination of macromolecular structures by high-resolution methods, studies
on RNP recognition and complex formation present significant challenges. As an alternative,
computational prediction of RNP interactions can be carried out. Structural models obtained by
theoretical predictive methods are, in general, less reliable compared to models based on experimental
measurements but they can be sufficiently accurate to be used as a basis for to formulating functional
hypotheses. In this article, we present an overview of computational methods for 3D structure
prediction of RNP complexes. We discuss currently available methods for macromolecular docking
and for scoring 3D structural models of RNP complexes in particular. Additionally, we also review
benchmarks that have been developed to assess the accuracy of these methods.

Keywords: ribonucleoprotein; RNP; macromolecular complex; computational modelling;
structural bioinformatics

1. Introduction

Ribonucleic acid (RNA) plays major roles in various biological processes including protein
synthesis and gene regulation at the transcriptional and post-transcriptional level. RNA molecules are
involved in catalysing biological reactions, controlling gene expression, or sensing and communicating
responses to cellular signals [1–3]. The majority of the known RNAs exert their function in conjunction
with proteins to form RNA-protein (RNP) complexes, at one or more stages of their life cycle.
The strength of these complexes can vary from being stable, like in the case of the individual subunits
of the ribosome [4], or being able to undergo extensive rearrangements like the spliceosome [5] to being
transient, enabling their assembly and disassembly as is observed in the exon junction complex [6].
RNA-protein complexes are involved in many cellular processes, including the maintenance of
chromosome ends, transcription, RNA transport and processing, regulation of gene expression, protein
synthesis [1–3,7], alternative splicing [8], RNA modification and polyadenylation [9,10]. Moreover,
the protein non-coding RNAs (ncRNAs) act as scaffolds during macromolecular assembly [11].
For instance, 7SK ncRNA acts as a scaffold for the formation of multiple RNPs and is a major player
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in the regulation of eukaryotic transcription [12]. Furthermore, RNPs help govern the association of
sister chromatid cohesion proteins with genes and enhancers [13]. Defects in RNP interactions are
implicated in many diseases ranging from neurological disorders to cancer [14,15]. RNP interactions
are thus essential for the critical aspects of cellular metabolism.

RNA-binding proteins (RBPs) often contain structurally and functionally distinct modules.
For instance, in all enzymes that act on RNA, RNA-binding is a common feature of catalytic domains
that assume various well-defined three-dimensional (3D) structural folds. Some of these domains can
bind RNA on their own, while others require dedicated RNA-binding domains (RBDs), which enable
the recognition of substrate RNAs [16,17]. Examples of well-studied RBDs include the RNA recognition
motif (RRM) [18], the heterogeneous nuclear ribonucleoprotein K homology domain (KH) [19], the
double-stranded RNA-binding motif (dsRBM) [20] and the zinc finger domain [21], to name a few.
RNA-binding domains are also typical components of proteins involved in the formation of large RNP
complexes such as the ribosome or the spliceosome [22,23] and they also occur in proteins that regulate
the function of RNAs [24]. Proteins that simultaneously bind multiple sites in RNA often include
multiple RBDs [24,25]. Here, we point our readers to a review from the Varani group, on the various
RNA-binding strategies of RBPs that exploit the modular nature of RBDs [16]. Apart from RBDs with
well-defined 3D structures, RNAs can also be recognized and bound by structurally disordered regions,
as in ribosomal proteins, which assume folded conformation only upon binding RNA [26].

Three dimensional structures of RNP interactions have provided important insights into the
molecular intricacies governing these interactions, including the specificity of mutual recognition
by protein and RNA components and assist in studying the physicochemical principles of RNP
interactions. Although 3D structure-derived information is important for understanding biological
roles of RNP interactions, experimental determination of RNP complex structures is a slow and
laborious process [27,28]. Firstly, many RNA-protein interactions are transient resulting in formation
of short-lived complexes. Secondly, there are difficulties associated with the chemical character of
the RNA component(s) of the complex. RNA is conformationally more flexible than proteins, and
RNA molecules are often structurally heterogeneous. In addition, RNAs are often elongated in shape
and in contrast to proteins, exhibit few elements that can stabilize crystal contacts hindering crystal
packing. Furthermore, the negatively-charged sugar-phosphate backbone contributes to the repulsion
between the molecules. These factors collectively make RNA and RNP structure determination more
challenging than protein structure determination.

Until the end of the 20th century there were only a handful of high-resolution structures of RNP
complexes available but the number of such structures has exponentially increased over the past
decade due to significant improvements in established techniques such as X-ray crystallography [29],
as well as the advent of newer technologies like electron microscopy (EM). Several groups developed
hybrid techniques and for instance combined the nuclear magnetic resonance (NMR), small angle
scattering (SAS), analytical ultracentrifugation (AUC), and/or electron paramagnetic resonance (EPR)
experiments [30–32]. Despite all these advances, the number of structures for RNP complexes is much
lower compared to that of DNA-protein complexes. As of April 2018, 4265 DNA-protein complex
structures were available in the Protein Data Bank (PDB). On the other hand, only 2194 macromolecular
complexes involving both protein and RNA components (but excluding RNA/DNA hybrids) were
available in the PDB. Of these structures, 1642 were solved by X-ray crystallography, 426 by EM, 120
by solution NMR spectroscopy and 6 by other methods such as fibre diffraction. These structures
contained 51,101 protein chains interacting with RNAs but many proteins were highly similar to each
other. After removing redundant protein chains with sequence identity >90% or >40%, only 2862 or
1302 experimentally-determined RNA-bound proteins respectively, remained.

Over the past decade, various research groups have utilized different tools and techniques
to estimate the total number of RBPs in the human proteome. The database of RNA-binding
protein specificities (RBPDB) database documents 397 manually curated examples of RBPs from
the literature [33]. In 2012, independent reports from the Landthaler and Hentze groups identified
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797 and 860 mRNA-binding proteins (mRBPs) in the human proteome, from the HEK293 and the
HeLa cells, respectively [34,35] Many of these proteins lack typical RBDs or motifs, or are known to
exhibit other functions not related to RNA metabolism [36]. On the one hand, this could indicate
that many proteins take part in RNP formation as a part of their life cycle; while on the other hand,
such large-scale experimental screens may identify proteins that interact with RNA indirectly, for
example, as components of larger protein-protein complexes. The Zhou group used the approach of
fold recognition for protein structure prediction and the SPOT-seq technique for binding affinity-based
RNA-binding prediction. Using these techniques, they identified 2937 RBPs in humans [37], with a
43.6% coverage of the experimentally reported mRBPs by the Hentze group [35]. More recently, the
Tuschl group has consolidated a list of 1542 RBPs in the human genome that have been identified by
a combination of bioinformatics approaches and curation of experimental data from literature [38].
Work done by the Sowdhamini group has resulted in the computational prediction of 2625 RBPs
in the human proteome [39]. The hRBPome database compares and contrasts the RBPs as reported
by the above studies [40]. In 2016, work done by the Preiss, Ørom and Ostareck-Lederer groups
have reported 1148 RBPs in cardiomyocytes, 382 RBPs in the nucleus and 402 RBPs in macrophages,
respectively [41–43]. Obviously, for the majority of these complexes, no structural data is available.

Given the scarcity of experimentally-determined structures of RNP complexes, computational
techniques can complement existing data to help elucidation of RNP complex 3D structures. However,
while the methodology for prediction and modelling of 3D structures for individual proteins and
protein-protein complexes is very well established [44–49], there are much fewer methods for predicting
and modelling 3D structures of RNA molecules and RNP complexes [50–53]. In this article, we review
computational approaches for modelling of RNP complex structures. We focus on RNP docking,
scoring functions and on methods for evaluating the accuracy of predictions, in particular, docking
benchmarks and affinity datasets.

2. Computational Modelling of RNA-Protein Complex Structures

The prediction of 3D structures of macromolecular complexes is usually done by the
computational docking approach, which requires detailed knowledge of structures for all individual
components of the complex. Ideally, the docking should be based on the knowledge of high-resolution
atomic structures of the components, for example, determined by X-ray crystallography or NMR.
However, in many cases, experimentally determined structures of components of the complex
are not available. For many applications, these can be substituted by computationally-modelled
structures. To this end, a large number of computer programs have been developed, which now allow
for reasonably accurate and practically useful predictions of protein 3D structures and reviewing
them is beyond the scope of this article. The state-of-the-art in protein 3D structure prediction
has been systematically assessed by the Critical Assessment of protein Structure Prediction (CASP)
experiment [54]. More recently, the RNA Puzzles experiment has been initiated to assess the
state-of-the-art in RNA 3D structure prediction [54,55]. The reader is referred to the most recent
articles describing progress in these areas, for example, CASP Round XII [54–56] and RNA Puzzles
Round III [57].

In computational biomolecular docking, the receptor refers to the larger molecule, while the ligand
refers to the smaller one. The docking protocol comprises two steps: (i) conformational sampling,
that is, searching for possible conformations and mutual orientations of the docking components that
leads to the generation of docked models (called poses or decoys) and (ii) scoring of docked poses:
assessing them by a mathematical function that aims to distinguish between models with different
degrees of similarity to the unknown “true” structure [58]. Some of the existing docking methods
combine both sampling and the scoring steps [59–61], while others only specialize in the assessment of
docked poses [62–65].

A major challenge in computational docking is related to the observation that structures of binding
partners often undergo conformational changes during association, in a process known as induced
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fit. Despite the recent advancement of methods that take macromolecular flexibility into account [66],
dealing with conformational changes involving backbone and loop rearrangements still remains the
biggest challenge in the modelling of macromolecular complexes [67] (Figure 1). Docking methods
differ in the details with which they model conformational changes in the receptor and the ligand.
Certain methods model such changes explicitly, making such analyses computationally demanding,
whereas the other set of programs focus less on molecular details and introduce a certain level of
‘fuzziness’ [68]. This can be addressed by generating ensembles of conformers. Different research
groups have adopted their own strategies towards accomplishing this, such as molecular dynamics
(MD) simulations, Monte Carlo (MC) simulations, Normal Mode Analysis (NMA) and use of PDB
structure homologs [67].
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Figure 1. Overview of challenges in RNA-protein (RNP) docking. (A) “easy” docking of tRNA
pseudouridine synthase B (1R3F:A) and a small RNA fragment (1K8W:B); the protein undergoes a small
conformational change to form the RNP complex (1K8W:A–1K8W:B). (B) “medium difficulty” docking
of the Tu elongation factor (1TUI:A) and cysteinyl tRNA (1U0B:A); both components undergo a moderate
conformational change to form the RNP complex (1B23:P–1B23:R). For many of the currently available
docking tools, it is challenging to model this degree of conformational change. (C) “difficult” docking
of L-seryl-tRNA (Sec) kinase (3A4M:A) and selenocysteine tRNA (3ADB:C); the protein undergoes a
large conformational change movements to form the RNP complex (3ADB:A–3ADB:C). For most of the
currently available docking tools, it is nearly impossible to model such large conformational changes.

3. RNP Docking Methods (Conformational Sampling with or without Scoring)

Many protein-protein docking methods have been assessed in the Critical Assessment of
PRediction of Interactions (CAPRI) experiment, analogous to CASP [69]. In comparison to
protein-protein docking, RNP docking has received less attention from computational method
developers. However, the number of groups participating in the CAPRI for scoring RNP complexes, as
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well as the number of available methods for RNP docking, has increased steadily over the years [67,70].
Most of the methods for RNP docking have been developed as modifications to existing protein-protein
docking methods, in order to accept nucleic acids as receptors and/or ligands. In order to adapt
protein-protein docking methods to RNP docking, the following modifications are necessary: (i)
a representation for RNA molecules has to be added to the docking algorithm for data handling
purposes (some of the protein-protein docking methods handle only amino acid residues) and (ii)
the scoring function has to enable evaluating RNA-protein interactions (some of the protein-protein
docking methods can handle non-protein molecules such as RNA but they are unable to take into
account RNA-specific interactions). Table 1 lists various RNP docking tools that are freely available as
standalone programs or web servers.

Table 1. Comparison of existing RNP docking methods. The majority of these methods are modified
from existing protein-protein docking methods. The type of docking algorithm (rigid or flexible) and
their availability (web server and/or standalone) are indicated.

Name
Modified from
Protein-Protein

Docking Method

Docking Method
(Rigid/Flexible)

Availability
References

Web Server Standalone

3dRPC × Rigid
√ √

[64,71]
ClusPro

√
Rigid

√
× [59]

FTDock
√

Rigid ×
√

[72]
GRAMM

√
Rigid

√ √
[73]

Hex
√

Rigid
√ √

[74]
ICM

√
Rigid ×

√
[75]

NPDock × Rigid
√

× [60]
PatchDock

√
Rigid

√ √
[76]

PEPSI-DOCK
√

Rigid ×
√

[77]
pyDock

√
Rigid

√ √
[78]

RosettaDock
√

Rigid
√ √

[79]
ZDOCK

√
Rigid

√ √
[80]

ATTRACT
√

Flexible
√ √

[81]
HADDOCK

√
Flexible

√ √
[61,82]

HDOCK × Flexible
√

× [83]
PIPER

√
Flexible ×

√
[84]

Prime
√

Flexible ×
√

[85]

Existing docking methods can be divided into two general classes: (i) rigid and (ii) flexible
(Figure 2). Upon RNP complex formation, protein, RNA or both may undergo conformational changes
in the backbone (large-scale domain motions and movements in disordered regions) and/or the
sidechains. Flexible docking methods attempt to account for these conformational changes in order
to predict near-native biological associations. Rigid docking methods do not account explicitly for
conformational changes in the structure of the input protein and/or RNA but they may represent these
structures in a ‘fuzzy’ way to embody the uncertainty of the bound conformation.

Rigid body docking methods are usually the first method of choice, especially if little is known
beyond the structures of the components. By virtue of compromising on computing cost for
conformational flexibility, such methods are capable of exploring a bigger search space to identify
potential binding sites on the protein and RNA molecules. For example, FTDock developed by the
Katchalski-Katzir group generates orthogonal grids to represent the components for docking and then
performs a global scan of the search space (translational and rotational) to generate a quick approximate
solution of the prediction problem [72]. The results can be, however, only as accurate as allowed by the
difference between unbound and bound conformations. In other words, any conformational changes
associated with binding contribute to the deterioration of the accuracy of models generated by rigid
docking. Thus, apart from the first quick screen of docking solution, rigid docking is recommended
only for cases where no major conformational changes are expected to occur.
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Flexible docking can simulate conformational changes; however, its utility is also correlated
with the degree of the structural change between the unbound and bound forms. It is a method
of choice for cases in which the conformational search space is relatively small or for the purpose
of local structure refinement. In fact, none of the typical docking methods can reliably predict the
structures of complexes that undergo large and complex conformational changes during binding—for
this, multi-scale methods are a recommended solution (see below). An example of a popular flexible
docking method is HADDOCK, developed by the Bonvin group. It can take the information from
user-defined restraints (for example, from experimental data) to drive the docking [86], as well as take
into account the flexibility of both the protein and the nucleic acid [87]. Unlike many other methods,
HADDOCK can use the nucleic acid both as a receptor, as well as a ligand. A user-defined set of
residues are allowed to be conformationally flexible during the docking process. Thus, HADDOCK is
capable of performing well in cases where there are local rearrangements in and around these residues.
The program is available as a web server [61] and also as a standalone tool [82]. HDOCK, developed by
Huang group, differs from the other existing methods, in being able to accept both protein structures
and sequences as input [83]. However, it can only accept input RNA structures (and not sequences)
for the docking protocol. In case of a protein sequence input, HDOCK performs a sequence similarity
search against the PDB using the HHSuite package [88] to identify a homologous structure, which is
then used as the template for a subsequent MODELLER-based modelling step [89]. The theoretical
model of the protein structure is then used for the docking step.

4. Other Methods for Three Dimensional Structure Prediction of RNP Complexes

The 3D structures for RNP complexes can be modelled by methods that do not involve explicit
docking, or in which the docking is only a minor component of calculations.

Template-based modelling of complexes (in which the structure of one complex is modelled
based on the structure of a related complex used as a template) is widely used for protein-protein
interactions [90] but less investigated for the modelling of RNP complexes. Protein RNA Interaction
ModEling (PRIME) [91] is one such method for predicting RNP complex structures, based on
structurally similar complexes with experimentally determined structures. The structural similarity
of the individual components to the those in the “template” structure is important to ascertain the
binding mode with certainty. It performs well in cases where “free” docking fails (demonstrated
by the authors by testing the method on the RNP docking benchmark set of the Fernandez-Recio
group) and is capable of accounting for conformational changes upon binding [91]. RStrucFam, from
the Sowdhamini group, is a method for predicting cognate RNA partners for RBPs, based on their
sequence similarities with the protein components of known RNP complex structures [92].
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Another strategy in the prediction of RNP complex structures is MD simulations [93]. The protein
and RNA can be driven to bind by placing them in appropriate force fields with restraints but in
general, MD is incapable of accurately simulating binding events and large conformational changes
that occur on time-scales larger than microseconds [94]. On the other hand, near-native docked
poses generated by macromolecular docking can be used as starting structures for MD, allowing the
system to readjust to the minimal energy. Moreover, including MD force fields in scoring can improve
docking [95]. Work done by the Kameda group in 2016 demonstrated an improved accuracy for RNP
complex prediction by a rigid protein-protein docking method [95], ZDOCK, which originally was
not parameterized for RNA. The following modifications in the ZDOCK method were introduced by
the authors: (i) derivation of the physicochemical properties of nucleic acids (such as partial charge of
atoms, Van der Waals radii etc.) from MD simulation force fields for nucleic acids (such as, AMBER
and CHARMM) and (ii) introduction of electrostatic interactions into the scoring function based on the
AMBER94 force field. The Wang group applied a combination of docking and MD followed by binding
energy calculations to identify the binding mode of RNA to carbon storage regulator A protein (CsrA),
which was previously unknown [96]. The authors calculated binding free energies using molecular
mechanics combined with the generalized Born and surface area continuum solvation (MM/GBSA)
method [97]. This study has identified the binding pockets in CsrA that could be targeted by small
molecules to prevent RNA binding, without interacting with the RNA [96].

Another class of methods have been developed to model multi-scale resolution models of large
macromolecular complexes. These methods often represent components as rigid bodies or as flexible
forms, depending on the availability of information about their structure and dynamics. They
usually rely on additional information encoded in the form of spatial restraints to define interactions
between the components. The M3 framework from the Carlomagno group uses sparse and hybrid
experimental data to model structures of macromolecular complexes, starting from 3D structures of
individual domains, monomers and subcomplexes. These components can undergo rearrangements
and yet retain their overall 3D structure upon complex formation [98]. The experimental data are
used to derive interatomic distances and/or molecular shapes, to guide the modelling process.
The Integrative Modelling Platform (IMP) software package from the Sali group [99] is an example
of a hybrid method. It performs modelling of simple biomolecules, as well as large macromolecular
assemblies, by integrating data from various experiments. The preparation of the input data for
IMP requires advanced knowledge of the system analysed. Recently, our group developed PyRy3D
(http://genesilico.pl/pyry3d/), a multiscale modelling method that enables the construction of models
for very large macromolecular complexes with components of known or unknown 3D structure.
PyRy3D aims at cases of data-driven modelling of complexes where the users have only limited
knowledge about the system analysed and wish to test alternative hypotheses. PyRy3D applies a MC
search to sample the space of solutions restricted by various spatial restraints that determine 3D shapes
or interactions between subunits of complexes. It has been used to model RNPs such as the complex
between the 2′-5′-oligoadenylate synthetase OAS1 and the 3′-terminal region of the West Nile Virus
(WNV) RNA genome [100].

5. Standalone Scoring Methods for RNA-Protein Complexes

For the modelling of RNP complex structures, it is often useful to consider predictions from
different modelling methods, followed by a ranking of the alternative poses using external scores.
Scoring functions are essential for distinguishing between models of various accuracy, in particular, to
discriminate between models that are close enough to the “true” structure to provide useful functional
information and models that are inaccurate and could lead to wrong conclusions. Standalone scoring
methods are invaluable for comparison of models obtained with different modelling approaches that
rely on different internal scoring functions. The scoring of 3D structural models may be based on the
following considerations: (i) verification to what extent the given decoys agree with independently

http://genesilico.pl/pyry3d/
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obtained information (for example, with experimental data or with independent computational
predictions) and (ii) evaluation of the overall quality of fitting between the protein and RNA structures.

For scoring of models with an independent dataset, a large number of approaches exist. A variety
of experimental methods can be applied to study RNA, protein and RNA-protein complex structures,
which can be translated into spatial restraints. Furthermore, numerous computational methods
are available for predicting RNA-binding residues in proteins [101,102]. Once the models of RNP
complexes become available, scoring based on external information (including experimental data) can
be performed with various computational tools. As an example, FILTREST3D [103] allows scoring of
decoys based on a combination of distance restraints with other factors such as local or global structure
or molecular shape. It also allows the use of logical operators to enable sets of alternative restraints.
pyDockRST also uses the percentage of satisfied distance restraints derived from experimental data,
along with electrostatics and desolvation binding energy, to score and rank docking poses [104].

In the absence of independent data, structural models of RNP complexes can be evaluated with
generic scoring functions, which can be broadly categorized into three types: force field, empirical
and knowledge-based. Force fields are the functional form and parameter sets used to calculate
the potential energy of a system of atoms or coarse-grained points. Empirical scoring functions are
based on counting the number of various types of interactions at the interface of RNP complexes.
Knowledge-based scoring functions, also known as statistical potentials are mathematical functions
derived based on statistical observations of interactions at the interface of known RNP complexes.
A list of methods available for computational scoring of RNP complexes is presented in Table 2.

Table 2. List of scoring methods for RNP docking. The representation of the molecules (all-atom
or coarse-grained), the type of statistical function and the availability of these methods (web server
and/or standalone) have been listed in this table.

Name Structure
Representation Scoring Method

Decoy
Discrimination

Threshold
(RMSD)

Availability as
a Standalone

Tool
Reference

Varani’s
H-bonding
potential

All-atom H-bonding potential <3 Å × [105]

Varani’s all-atom
potential All-atom All-atom distance-dependent <5 Å × [106]

Fernandez’s
potential Coarse-grained Pairwise residue-ribonucleotide

propensity <10 Å × [107]

dRNA All-atom Volume-fraction corrected DFIRE
energy function NA * × [108]

DARS-RNP and
QUASI-RNP Coarse-grained

Quasi-chemical potential and
decoys as the reference state

potentials
<10–15 Å

√
[62]

Zacharias’
potential Coarse-grained

Distance-dependent,
coarse-grained force field for

protein–RNA interactions.
<8 Å × [109]

Wang’s potentials Coarse-grained
Pairwise residue-ribonucleotide

propensity with secondary
structure information

<10 Å × [63]

Deck-RP Coarse-grained Distance and environment
dependent <15 Å

√
[64]

ITScore-PR All-atom Pairwise distance dependent
atomic interaction potential <10 Å

√
[65]

RPRANK Coarse-grained Pairwise residue-nucleotide
RMSD <10 Å

√
[71]

* data not available
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The Varani group was one of the first groups to development scoring functions, for RNA-protein
interactions. Initially, they developed a statistical potential based on hydrogen bonding (H-bond)
at the RNP interfaces [105]. However, H-bonds represent only a portion of various types of
interactions occurring at the RNP interfaces [110,111]. Later, the same group developed an all-atom,
distance-dependent statistical potential for predicting sequence-specific recognition between RNA
and protein [106]. The Varani’s all-atom potential treats the interactions between chemically similar
atoms (based on the CHARMM atom definition) in the same way and as a result, it contains
only a distance-dependent multiple bin term. A coarse-grained, distance-dependent pairwise
residue-ribonucleotide propensity was derived by Fernandez-Recio group to score the docking
poses [107]. In their approach, the entire residue is represented as a single interaction centre and
therefore it uses a single bin (i.e., the presence or absence of interaction) to calculate the potential.
Zhou and co-workers developed dRNA [108]; a volume-fraction corrected distance-scaled, finite
ideal-gas reference (DFIRE) energy function for RNP interactions [112]. However, the dRNA method
requires known RNP complex structures as templates and has limited applications when the RBPs
used have novel binding modes different from those in the template structures. Our group developed
two knowledge-based potentials: the quasi-chemical potential (QUASI-RNP) and the Decoys As
the Reference State potential (DARS-RNP) [62]. These statistical potentials use a coarse-grained
representation, which ignores molecular details and hence is insensitive to minor conformational
inaccuracies. The reference states used in these two potentials differ. While QUASI-RNP uses mole
fractions of residues as a reference state, DARS-RNP uses decoys. Both these potentials have the
same mathematical base except for the references states and use multiple bins for distances as well
as orientations.

The Zacharias group developed a distance-dependent, coarse-grained force field for RNP
interactions [109]. During a testing of this potential, the authors observed during the testing of
this potential that it allowed moderate conformational changes. The potential allows protein-RNA
docking followed by energy minimization in the rotational and translational degrees of freedom of the
binding partners [108] Wang and co-workers developed four different pairwise residue-nucleotide
potentials. These potentials were derived from the pairwise residue-nucleotide propensities with
or without considering the protein and/or RNA secondary structural elements [63]. The authors
concluded that the RNA secondary structure information contributed more significantly than the
protein secondary structure in discriminating the correct 3D structures of RNP complexes.

The Xiao group developed a scoring function, Distance- and Environment-dependent
Coarse-grained and Knowledge-based potential for RNP complexes (DECK-RP), to evaluate the
docked poses generated by RPDOCK [64]. DECK-RP combined the advantages of both Wang’s
potential [63] and DARS-RNP [62]. The secondary structure context was considered for calculating the
pairwise propensities. DECK-RP uses a reference state, which includes a decoy-based component and
a mol-fraction corrected component. The Zou group developed a scoring function, ITScore-PR, based
on the atomic distance-dependent potentials derived from known RNP complex structures, which uses
a physics-based iterative algorithm [65]. The authors demonstrated that many algorithms performed
better for rigid body docking in which the components were derived from bound structure rather
than for flexible docking where the components were derived from the unbound structures. The Xiao
group developed a new knowledge-based potential, RPRANK. The conformation differences between
residue-base pairs between standard pairs from native structures and decoys were used to calculate
the statistical potential [71].

The approximate utility of various potentials, with respect to the accuracy of docking decoys
analysed, is indicated as a decoy discrimination threshold in Table 2. For instance, some of the
fine-grained or high-resolution (all-atom) methods are useful for discriminating decoys that exhibit
root mean square deviation (RMSD) to the reference structure <3 or <5 Å (decoys that are less accurate
exhibit essentially random score, not related to the accuracy) and some coarse-grained or low-resolution
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methods can discriminate decoys up to ~10–15 Å from the reference structure but they are usually not
appropriate for discriminating between decoys that are very close to the native structure.

The availability of different docking methods and scoring functions allows for various
combinations to be applied. Matching the docking procedure with a scoring function of a similar
resolution is recommended. For example, we developed NPDock, a web server for low-resolution RNP
structure prediction [60], which first performs rigid body RNP docking using GRAMM [73] and then
scores the decoys with different coarse-grained statistical potentials QUASI-RNP and DARS-RNP, also
developed by our group [62]. Likewise, pyDockWEB generates rigid-body docking orientations by
FTDock and evaluates them by the pyDock scoring function [78]. On the other hand, high-resolution
potentials that operate at the atomic level (e.g., the ones developed by the Varani group) are expected
to work well only with docking poses that are expected to be very close to the native structure, which
often can be generated only by the flexible docking methods that allow for precise modelling of
atomic interactions.

An important consideration in the selection of decoys is not only scoring individual models but
also finding ensembles of similar models [113]. In general, an ensemble of structurally similar models
with very good scores is often indicative of a more accurate prediction than a single model with the best
score. However, several clusters of solutions with similar scores may exist. Hence, docking methods
often report not just one best-scored model but representatives of several largest clusters (usually up
to three or five). Various clustering strategies exist and, so far, no comprehensive study was performed
to identify the best approach that could work with decoy datasets generated with different docking
methods and scored with different functions. The strategy adopted in our method NPDock is based on
grouping of decoys with low RMSD values. First, an RMSD matrix is generated for all pairs of decoys.
Second, the structures with RMSD values below a specified cut-off value are grouped into one cluster,
which is removed from the dataset and the process is iterated. The program reports the medoids of the
biggest three clusters as well as the model with the overall best score [62].

6. RNA-Protein Three-Dimensional Structure Datasets for Benchmarking the Computational
Docking Methods and Their Applications

Evaluating the performance of existing docking and scoring methods requires datasets of 3D
atomic coordinates of RNP complexes that serve as references (“true” structures) for validating
the predictions. In this section, we discuss the various benchmark datasets curated by different
groups (Table 3, Figure 3). The different benchmarks employ different criteria for selecting the
complex structures and the corresponding unbound structures. The first benchmark dataset for
RNP docking was assembled by the Bahadur group, which only included structures determined
by X-ray crystallography [114]. This benchmark consists of 45 non-redundant RNP complexes and
their corresponding unbound structures. There are nine unbound-unbound test cases for which both
the protein and RNA are available in an unbound form and 36 unbound-bound test cases for which
only protein is available in unbound form (Table 3). This benchmark is divided into four structural
classes: (A) complexes with tRNA (16 cases), (B) complexes with ribosomal proteins (three cases),
(C) complexes with duplex RNA (10 cases) and (D) complexes with single-stranded RNA (16 cases).
In addition, this benchmark divides the dataset into three categories based on the conformational
changes undergone by the interface Cα atoms: (R) rigid body (i-rmsdCα < 1.5 Å) with 34 cases, (S)
semi flexible (1.5 Å ≤ i-rmsdCα ≤ 3.0 Å) with eight cases and (X) full flexible (i-rmsdCα ≥ 3.0 Å) with
three cases. Here, i-rmsdCα is defined as the RMSD of the interface Cα atoms after superposing the
bound and unbound structures. The authors have calculated the interface residues using the PRince
webserver [115]. The benchmark from the Bahadur group was later updated with 126 non-redundant
RNP complexes [116]. This includes 21 unbound-unbound cases, 95 unbound-bound cases and 10 are
bound-unbound cases. Of the 21 unbound –unbound types, 12 are pseudo-unbound where the RNAs
are taken from a different RNP complex. The dataset is divided into four structural classes with 28, 5,
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40 and 53 cases in classes A, B, C and D, respectively. The current version of this benchmark consists of
72, 25 and 19 cases in R, S and X categories.

Table 3. List of RNP docking benchmarks. The number of unbound-unbound, unbound-bound and
bound-unbound test cases is listed in this table.

Benchmark Number of
Test Cases

Unbound-
Unbound

Unbound-
Bound

Bound-
Unbound References

Bahadur group 1 45 36 9 0 [114]
Bahadur group 2 126 95 21 10 [116]
Fernandez-Recio

group 106 81 25 0 [117]

Zou group 72 52 17 3 [118]

An extended benchmark including both experimental structures and homology models was
curated by the Fernandez-Recio group with 106 test cases. In this benchmark dataset, 71 out of 106
entries were taken from crystallography or NMR experiments, while 35 entries were built using
homology modelling [117]. Of the experimental structures available, there are nine unbound-unbound
cases and 62 unbound-bound forms. Among the nine unbound-unbound cases, four cases are
pseudo-unbound where the RNAs are taken from a different RNP complex. The homology-modelled
cases in this benchmark consist of five unbound–model, eight model-unbound, 19 model-bound and
three model-model protein-RNA cases. The benchmark is divided into three categories for docking
predictions based on the conformational changes undergone by the Cα and P atoms at the interface of
RNP complexes: easy (i-rmsdCα+P ≤ 2.5 Å) with 64 cases, intermediate (2.5 Å ≤ i-rmsdCα+P ≤ 5.0 Å)
with 24 cases and difficult (i-rmsdCα+P > 5 Å) with 18 cases.
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The Zou group developed another docking benchmark for RNP complexes with 72 cases, of
which, 52 are unbound-unbound cases, 17 are unbound-bound cases and three are bound-unbound
cases [118]. In bound-unbound cases, only RNA structures are available in an unbound form. Based
on the conformational changes undergone by the interface Cα and C4′ atoms and the fraction of
native contacts this dataset is classified into three categories: easy (i-rmsdCα+C4′ ≤ 1.5 Å or fnat ≥ 0.8)
with 49 cases, medium (1.5 Å < i-rmsdCα+C4′ ≤ 4.0 Å and 0.4 ≤ fnat < 0.8) with 16 cases and difficult
(i-rmsdCα+C4′ > 4.0 Å or fnat < 0.4) with seven cases.
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The docking benchmarks discussed in this section were widely used, i.e., to test
docking methods [79,83], to develop knowledge-based scoring functions for studying RNP
interactions [65,119,120], to predict RNA-binding sites in proteins [115,121,122], to investigate the role
of water molecules [123], to find the binding hot-spots and to predict binding affinities [124]. Besides,
the availability of bound and unbound structures assists in the development of new physicochemical
and structural parameters for quantifying the changes occurring in RNA-protein interaction sites upon
binding [110,125–127].

A number of studies covering the general properties of RNP complex structures used the
benchmark dataset developed by the Bahadur group, i.e., due to the stringent criteria on the resolution
(better than 3.0 Å) and redundancy (sequence identity ≤ 35%). Studies of RNA-protein binding sites
of complexes in this dataset included the analysis of the role of water molecules in RNP complex
formation [123], the study of sequence conservation at RNP interfaces [124] and the quantification
of solvent accessibility at interfaces of RNP complexes [125]. The Zou group benchmark used a
more relaxed resolution cut-off of 4.0 Å compared to other docking benchmarks. It included more
low-resolution structures, which may not be suitable for the development of high-resolution scoring
functions or evaluation of physicochemical parameters. However, the low-resolution structures may
be useful as templates for comparative modelling or for development of coarse-grained methods.
The benchmark developed by Fernandez-Recio group went even further, beyond pairs of bound and
unbound structures determined experimentally for the same protein and RNA molecules, to include
structures obtained by homology modelling in cases, where experimental structural data existed only
for related components [117]. This dataset allows to address some challenging problems, for which
low-resolution structures are sufficient. However, caution must be applied while using these structures,
as errors in structures obtained by modelling may affect the conclusions.

7. Datasets for Ribonucleic Acid-Protein Binding Affinity Prediction and Their Applications

RNA-Protein interactions are often affinity-driven processes, where the specificity of binding is
determined by the conformation adopted by the molecule to bind with its partner. The free energy
required for RNA and/or protein molecules, to adopt the particular conformation required for binding,
is a determining factor in such binding events.

The first RNP affinity benchmark was developed in 2013 by the Liu group with 73 cases [128].
A comprehensive and up-to-date affinity benchmark for RNP complexes is still missing. A dataset
of affinity values for alanine substitutions in protein components of RNP complexes was curated by
Bahadur group for 14 RNP complexes [124]. The changes in affinity values upon alanine substitutions
is indicative of the role of the corresponding residue in the binding process. The knowledge of affinity
values helps in defining the active residues for guided docking of RNP complexes. The dataset
reports 94 experimental affinity values for 14 native structures and 80 variants bearing single residue
alanine substitutions [124]. This dataset was later expanded by the Deng group to include 49 RNP
complexes [129]. The dataset reports 334 experimental affinity values for 49 native structures,
254 variants with alanine substitutions and 31 other substitutions. The dbAMEPNI dataset curated
by Mitchell and Zhu groups reports affinity data for 51 RNP complexes [130]. The dataset includes
experimental affinity values for 193 alanine substitutions in RNPs.

It is important to draw our readers’ attention to the fact that the bioinformatics methods discussed
in this review are for predicting the possibilities in which a given protein and an RNA interact with
each other and they assume that their interaction does happen. These methods are not appropriate for
ascertaining if the protein and the RNA interact or not, or for predicting which RNA binds to a given
protein or vice versa. Predicting the binding affinity would help us determine whether the molecules
bind to each other. Methods for computational prediction of binding affinities are however still in their
infancy. They require high-quality datasets of experimentally determined affinity values, which are
currently sparse. The affinity dataset curated by the Bahadur group was used in the development of
an algorithm to predict hot-spot residues within RNA-binding sites and is available as a web server
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HotSPRing [124]. The same dataset was used by Pires and Ascher to develop the mCSM-NA web
server, which uses graph-based signatures to predict the impact of single residue substitutions on
nucleic acid binding affinity [131]. The Deng group have developed PrabHot, another method to
predict the hot spot residues at RNA-protein interfaces [129].

8. Conclusions

Over the past decade, there has been a growing interest in investigating RNP interactions. This is
apparent from the increasing number of structures of RNP complexes that have been deposited in
the PDB database per year (197 in 2017 vs. 87 in 2007), as well as a greater number of publications
that appear each year in the PubMed database, with the keyword “RNA-binding proteins” (1405 in
2017 vs. 1278 in 2007). However, computational methods for prediction of RNP complex structures
using information from structures of the individual components or directly from sequences, have been
sought after due to the difficulties associated with the experimental determination of their structures.

Computational prediction of RNP 3D structures can provide important information in cases
where standard approaches for experimental structure determination fail. In our own work, we
encountered numerous RNP systems, for which we or our collaborators attempted to crystallize
the complex but failed to obtain diffraction-quality crystals. Consequently, the available data (in
some cases including the crystal structure of the protein partner in the apo form) were used to guide
macromolecular docking and modelling of RNA-protein interactions, providing functional insight that
could not be obtained from structures of the components in isolation from each other. One example
includes the BsMiniIII endonuclease, which crystallized only in the apo form but not in complex
with its dsRNA substrate and for which an RNP complex structure was modelled [132] and used
to guide the successful engineering of substrate preference [133]. For CMTr2 methyltransferase, we
were unable to obtain sufficient amounts of protein for crystallization and had to model the structure
of the complex with a 5′-capped RNA substrate to obtain insights into the mechanism of substrate
recognition [134]. The structure of the archaeal tRNA methyltransferase Trm10 was obtained only in
the RNA-free form and the protein-tRNA complex had to be modelled, with additional experimental
data as restraints [135]. Finally, for several bacterial rRNA methyltransferases including ErmC’ [136]
RlmH [137] and NpmA [138] only the protein structure was known and while the ribosome structure
was known, the determination of the RNA-protein (or protein-ribosome) complex structure has proven
unsuccessful, hence the structural insight into their mechanism of action had to be obtained by
docking/modelling.

The approaches for modelling RNP complexes discussed in this paper, though capable of
providing practically useful predictions, suffer from various limitations. One of the biggest drawbacks
concerning RNA modelling is the relative scarcity of experimentally determined RNA and RNP
complex structures that can be used for training and testing the methods as well as templates in
comparative modelling approaches. The value of RNP structures for the community of computational
biologists can be illustrated by the repeated calls from organizers of the CAPRI and RNA Puzzles
initiatives to experimental researchers for proposing the newly determined structures as prediction
targets. One can hope that the significance of this problem will wane with the growing interest in RNA
structural biology, leading to an increase in the availability of solved structures solved each year.

In order to obtain biologically, chemically and physically relevant predictions, it may be
advantageous to combine various existing methods for docking and scoring. Such meta-prediction
was successfully applied in structural bioinformatics for modelling protein structures [139] and for
protein-protein docking [140]. Thus, RNP docking can be performed using different methods and
the top scored docking poses from each of these studies can be selected. The top decoys can be then
re-scored using various scoring functions. The top scored decoys from the various scoring experiments
can be chosen for further analysis, for example, clustering. If the scoring methods reach consensus, then
poses obtained from different methods can be clustered together. In the absence of a consensus scoring,
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top models proposed by different methods can be suggested as alternative solutions. The proposed
RNP meta-docking workflow is represented schematically in Figure 4.

Genes 2017, 8, x FOR PEER REVIEW  14 of 21 

 

One of the biggest challenges in docking (and in particular in RNA-protein docking) is the 
molecular flexibility [125] and the computational complexity associated with flexible docking. The 
current methods for scoring models of RNP complexes are quite accurate for evaluating poses 
generated by rigid docking methods. However, generating conformations that are closer to the bound 
conformation than the starting unbound structure and discriminating these conformations from all 
the others is a daunting task for computational methods. The existing computational docking 
algorithms seldom take into account conformational changes that may occur upon binding of the 
ligand to the receptor, in RNA and/or protein component(s). Similarly, the available scoring methods 
also have limited discriminative power to identify near-native structures when the binding protein 
and/or RNA undergoes large conformational changes. A possible solution to this issue is to combine 
the existing tools that enable template-free modelling of the protein and RNA components, with 
scoring functions for the assessment of intermolecular contacts. As a first step towards this approach, 
modelling techniques have been developed that accept models obtained by for example, rigid body 
docking of “unbound” protein and RNA structures as input and perform only local refolding of 
protein and RNA molecules directly involved in interactions. 

 

Figure 4. Schematic representation of the workflow for RNP docking. The docking strategy presented 
here combines the strengths of several docking and scoring methods. 

Figure 4. Schematic representation of the workflow for RNP docking. The docking strategy presented
here combines the strengths of several docking and scoring methods.

One of the biggest challenges in docking (and in particular in RNA-protein docking) is the
molecular flexibility [125] and the computational complexity associated with flexible docking.
The current methods for scoring models of RNP complexes are quite accurate for evaluating poses
generated by rigid docking methods. However, generating conformations that are closer to the bound
conformation than the starting unbound structure and discriminating these conformations from all the
others is a daunting task for computational methods. The existing computational docking algorithms
seldom take into account conformational changes that may occur upon binding of the ligand to the
receptor, in RNA and/or protein component(s). Similarly, the available scoring methods also have
limited discriminative power to identify near-native structures when the binding protein and/or RNA
undergoes large conformational changes. A possible solution to this issue is to combine the existing
tools that enable template-free modelling of the protein and RNA components, with scoring functions
for the assessment of intermolecular contacts. As a first step towards this approach, modelling
techniques have been developed that accept models obtained by for example, rigid body docking of
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“unbound” protein and RNA structures as input and perform only local refolding of protein and RNA
molecules directly involved in interactions.

The conceptual similarity of successful algorithms for structural modelling of protein and RNA
3D structures [141] suggests the feasibility of combining them into unified modelling methods.
Combining theoretical predictive methods with low-resolution experimental analyses is also expected
to provide synergy to such attempts. Recently, it was demonstrated that the structures of many
large RNP complexes, such as the spliceosome, may be modelled using cryo-EM maps as molecular
envelopes. The structures of components could be fitted into such envelopes, using restraints from
biochemical experiments and other bioinformatics-based predictions [142]. In order to achieve this, new
multi-resolution modelling methods and new ways of encoding experimental data are required [143].
We hope that the recent surge of interest in studying RNP interactions will encourage both biologists
and software developers alike, to use bioinformatics tools for obtaining structural insights into the
biological systems, guided by available experimental data, as well as in proposing and developing
new algorithms and their user-friendly implementations.
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