

HHS Public Access

Author manuscript *FEBS Lett.* Author manuscript; available in PMC 2021 August 25.

Published in final edited form as: *FEBS Lett.* 2020 December ; 594(23): 3767–3775. doi:10.1002/1873-3468.13935.

Structural and functional diversity calls for a new classification of ABC transporters

Christoph Thomas¹, Stephen G. Aller², Konstantinos Beis^{3,4}, Elisabeth P. Carpenter⁵, Geoffrey Chang⁶, Lei Chen^{7,8}, Elie Dassa⁹, Michael Dean¹⁰, Franck Duong Van Hoa¹¹, Damian Ekiert¹², Robert Ford¹³, Rachelle Gaudet¹⁴, Xin Gong¹⁵, I. Barry Holland¹⁶, Yihua Huang¹⁷, Daniel K. Kahne¹⁸, Hiroaki Kato¹⁹, Vassilis Koronakis²⁰, Christopher M. Koth²¹, Youngsook Lee²², Oded Lewinson²³, Roland Lill²⁴, Enrico Martinoia^{25,26}, Satoshi Murakami²⁷, Heather W. Pinkett²⁸, Bert Poolman²⁹, Daniel Rosenbaum³⁰, Balazs Sarkadi³¹, Lutz Schmitt³², Erwin Schneider³³, Yigong Shi³⁴, Show-Ling Shyng³⁵, Dirk J. Slotboom²⁹, Emad Tajkhorshid³⁶, D. Peter Tieleman³⁷, Kazumitsu Ueda³⁸, András Váradi³¹, Po-Chao Wen³⁶, Nieng Yan³⁹, Peng Zhang⁴⁰, Hongjin Zheng⁴¹, Jochen Zimmer⁴², Robert Tampé¹

¹Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Germany ²Department of Pharmacology and Toxicology, University of Alabama at Birmingham, AL, USA ³Department of Life Sciences, Imperial College London, London South Kensington, UK ⁴Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot, UK ⁵Structural Genomics Consortium, University of Oxford, UK ⁶Skaggs School of Pharmacy and Pharmaceutical Sciences and Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA, USA ⁷State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, China ⁸Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China ⁹Institut Pasteur, Paris Cedex 15, France ¹⁰Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Gaithersburg, MD, USA ¹¹Department of Biochemistry and Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada ¹²Department of Cell Biology and Department of Microbiology, New York University School of Medicine, NY, USA ¹³Faculty of Biology, Medicine and Health, The University of Manchester, UK ¹⁴Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA ¹⁵Department of Biology, Southern University of Science and Technology, Shenzhen, China ¹⁶Institute for Integrative Biology of the Cell (I2BC), Université Paris-Sud, Orsay, France

Supporting information

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. http://creativecommons.org/licenses/by/4.0/

Correspondence C. Thomas and R. Tampé, Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt/M., Germany, Tel: +49-(0)69-798-29468; +49-(0)69-798-29475, c.thomas@em.uni-frankfurt.de (CT); tampe@em.uni-frankfurt.de (RT).

Author contributions

CT and RT wrote the manuscript with contributions from all coauthors. This review is the quintessence of a resumed discussion that started at the FEBS Advanced Lecture Course on the Biochemistry of Membrane Proteins in Budapest (2019) and continued at the FEBS Conference on ATP-Binding Cassette (ABC) Proteins in Innsbruck (2020). The discussion included a vivid exchange of thoughts *via* hundreds of emails and remote video sessions during the global COVID-19 pandemic. In addition to the authors listed, we received positive feedbacks on our proposed classification from several further leading scientists in the ABC transporter field. Yet, as they felt that their contribution was too small, they decided not to accept authorship.

Additional supporting information may be found online in the Supporting Information section at the end of the article.

¹⁷National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China ¹⁸Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA ¹⁹Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Japan ²⁰Department of Pathology, University of Cambridge, UK ²¹Structural Biology, Genentech Inc., South San Francisco, CA, USA ²²Division of Integrative Bioscience and Biotechnology, POSTECH, Pohang, Korea ²³Department of Biochemistry, The Bruce and Ruth Rappaport Faculty of Medicine, The Technion-Israel Institute of Technology, Haifa, Israel ²⁴Institut für Zytobiologie, Philipps-Universität Marburg, Germany ²⁵Department of Plant and Microbial Biology, University Zurich, Switzerland ²⁶International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, China ²⁷Department of Life Science, Tokyo Institute of Technology, Yokohama, Japan ²⁸Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA ²⁹Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, The Netherlands ³⁰Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA ³¹Institute of Enzymology, Research Center for Natural Sciences (RCNS), Budapest, Hungary ³²Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany ³³Department of Biology/Microbial Physiology, Humboldt-University of Berlin, Germany ³⁴Institute of Biology, Westlake Institute for Advanced Study, School of Life Sciences, Westlake University, Hangzhou, China ³⁵Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, USA ³⁶Department of Biochemistry, Center for Biophysics and Quantitative Biology, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, IL, USA ³⁷Department of Biological Sciences and Centre for Molecular Simulation, University of Calgary, AB, Canada ³⁸Institute for Integrated Cell-Material Sciences (WPI-iCeMS), KUIAS, Kyoto University, Japan ³⁹Department of Molecular Biology, Princeton University, NJ, USA ⁴⁰National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China ⁴¹Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA ⁴²Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, USA

Abstract

Members of the ATP-binding cassette (ABC) transporter superfamily translocate a broad spectrum of chemically diverse substrates. While their eponymous ATP-binding cassette in the nucleotidebinding domains (NBDs) is highly conserved, their transmembrane domains (TMDs) forming the translocation pathway exhibit distinct folds and topologies, suggesting that during evolution the ancient motor domains were combined with different transmembrane mechanical systems to orchestrate a variety of cellular processes. In recent years, it has become increasingly evident that the distinct TMD folds are best suited to categorize the multitude of ABC transporters. We therefore propose a new ABC transporter classification that is based on structural homology in the TMDs.

Keywords

ABC transporters; ATPases; cryo-EM; membrane proteins; molecular machines; phylogeny; primary active transporters; sequence alignment; structural biology; X-ray crystallography

We suggest a new classification of the ABC transporter superfamily that is based on the TMD fold. Historically, first hints of the ABC protein superfamily came from sequence alignments of bacterial proteins that revealed highly conserved motifs in their ATPase domains [1]. The superfamily of ABC proteins was subsequently divided into three main classes [2-4]: exporters, nontransporter ABC proteins, and a third class consisting primarily of importers. The mammalian ABC systems, in particular, were grouped into seven subfamilies (ABCA to ABCG), based on NBD and TMD sequence homology, gene structure, and domain order [5-7]. It should be noted that ABCE and ABCF are not transporters, but exist as twin-NBDs without TMDs and are involved in mRNA translation control [8]. Detailed membrane topology and sequence analyses of exporters uncovered that, in contrast to the NBDs, the TMDs are polyphyletic and can serve as references to categorize ABC transporters into three distinct types (ABC1-3) [9,10]. According to this classification, the cystic fibrosis transmembrane conductance regulator (CFTR), the transporter associated with antigen processing (TAP), and the drug efflux pump Pglycoprotein (P-gp) belong to the ABC1 transporters; ABCG2 and ABCG5/G8 are members of the ABC2 group, which also comprises importers; and the macrolide translocator MacB is categorized as an ABC3 system. Yet, another classification scheme currently in use differentiates between the three types of importers predominantly found in prokaryotes [11-14] and two types of exporters, exemplified by Sav1866 [15] and ABCG5/8 [16], in addition to the LptB₂FG-type [17,18] and MacB-type [19-22] transporters.

Our motivation for proposing a revised nomenclature stems from the recent wealth of ABC transporter structures determined by X-ray crystallography and single-particle cryo-electron microscopy, which has unveiled a remarkable diversity of TMD folds and evolutionary relationships between bacterial and eukaryotic/mammalian transporters [16-21,23-26]. This affluence of structural information provides the opportunity to introduce a universal nomenclature that combines previous phylogenetic analyses with the new findings coming from high-resolution structures. The nomenclature groups ABC transporters into distinct types, I–VII, based on their TMD fold (Fig. 1, Tables 1 and 2). This classification is supported by quantitative analyses using TM-scores based on pairwise structural alignment of TMDs (Tables S1-S6, Fig. S1). The classification focuses on the transporter-forming TMDs and does not consider additional membrane integrated domains, as for example observed in TAP1/TAP2 [27,28].

As before, types I-III of the new nomenclature cover the three different importer architectures (Fig. 1, Table 1, Tables S2 and S3; TM-score for pairwise structural alignment between the type III systems CbiQ (PDB code 5X3X) and EcfT from *Lactobacillus brevis* (PDB code 4HUQ): 0.736). It is noteworthy that prokaryotic importers typically operate with periplasmic, extracellular, or membrane-embedded substrate-binding proteins whose structural features correlate with the type of TMD fold [29].

Based on the characteristic structure of the founding member Sav1866, which includes a domain-swapped TMD arrangement, type IV members of the new nomenclature have previously been classified as type I ABC exporters [15]. However, a significant and growing number of these ABC proteins have nonexporter functions, i.e., the gated chloride channel CFTR, the regulatory K_{ATP} channel modules SUR1/2, the lysosomal cobalamin (vitamin B₁₂) transporter ABCD4 [30], the bacterial siderophore importers YbtPQ and IrtAB, and the cobalamin/antimicrobial peptide importer Rv1819c [31-33], as well as several type IV systems with importer functions in plants [34-39]. This striking functional diversity mediated by the same structural framework (Fig. 1, Tables 1 and 2, Tables S4 and S5) makes the type IV ABC transporters stand out and is also the main reason why we suggest the more universal taxonomy based on structural principles.

According to the new classification, type V systems are ABC transporters of the ABCG/ ABCA/Wzm type (Fig. 1, Tables 1 and 2, Table S6). They include channel-forming biopolymer secretion systems in bacteria [25,26]. Remarkably, although many type V systems are exporters, this type also comprises transporters with import function, including the retina-specific importer (flippase) ABCA4 (rim protein) [40,41] and importers in plants [42-44].

Finally, LptB₂FG and MacB are the founding members of type VI and type VII ABC transporters, respectively. We are aware that LptF and LptG have TMD folds that resemble type V members, and the TMD of MacB is reminiscent of type V systems and LptF/G. Yet, they exhibit distinct features that warrant classifications into separate groups. These include the lack of an amphipathic N-terminal 'elbow helix' and no extracellular reentrant helices between TM5 and TM6. In addition, MacB contains only four proper TM helices as well as an additional coupling helix, thereby defining a separate transporter architecture. In accordance with differences in TMD topologies, the LptFG and MacB transporters also display diverging dimerization interfaces. Thus, we have chosen to assign LptFG and MacB to separate types. This notion is corroborated by the TM-score-based quantitative analysis (Table S6 and Fig. S1). Of note, at the time of writing, publicly available, yet unpublished structures of the lipid transporter complex MlaFEDB of *Gram*-negative bacteria reveal some resemblance of MlaE to LptF/G and MacB. However, the number of TM helices differs between LptFG (six TM helices), MlaE (five TM helices), and MacB (four TM helices) [45-48] (Table S6 and Fig. S1).

We would like to point out that the classification of the mammalian ABC transporters into the ABCA-G subfamilies can be maintained as subcategories of type IV (subfamilies B–D) and type V (subfamilies A and G) within the new nomenclature (Table 2). We are also not proposing any changes to gene symbols. Most importantly, the new nomenclature based on TMD architecture can be universally applied to ABC transporters beyond their particular physiological functions and across the three domains of life. Hence, it allows any newly discovered transporter fold to be compared with the existing types and seamlessly incorporated into the classification scheme, possibly as a new type. Since the new nomenclature depends on TMD architecture, it requires structural information in order to classify new transporter systems. At the same time, we regard the nomenclature as a

dynamic platform that can be upgraded, adjusted, or refined whenever necessary due to novel insights that add extra dimensions to our understanding of ABC systems.

The recent advances in structural mapping of the diverse superfamily of ABC transporters have revealed a vast area of mechanistically uncharted territory. One key objective of future research should be to fully comprehend how type IV systems perform so many different functions, i.e., as importer, exporter, lipid floppase, ion channel, and regulator, by employing a single structural scaffold. However, we do not exclude that other types might turn out to be as functionally diverse as type IV systems. Exploring the different modes of operation and accompanying conformational landscapes [49] and the dynamics of the multifarious ABC systems will require integrative experimental approaches that include electron paramagnetic resonance (EPR), nuclear magnetic resonance (NMR), single-molecule techniques, and single-turnover experiments. We are confident that future studies of such kind will provide major new insights into the mechanisms of these fascinating molecular machines.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

K.B. acknowledges support by a grant of the Medical Research Council (MR/N020103/1). M.D. is supported in part by the Intramural Program of the NIH. V.K. acknowledges support by the Medical Research Council (MR/ N000994/1) and Wellcome Trust (101828/Z/13/Z). R.L. acknowledges generous financial support from German Research Foundation (LI 415/5). D.P.T. is supported in part by the Canada Research Chairs program. This work was supported by the German Research Foundation (SFB 807 and TA157/12-1 (Reinhart Koselleck Award Program) to R.T.).

Abbreviations

ABC	ATP-binding cassette
cryo-EM	cryogenic electron microscopy
NBD	nucleotide-binding domain
TMD	transmembrane domain

References

- Higgins CF, Hiles ID, Salmond GPC, Gill DR, Downie JA, Evans IJ, Holland IB, Gray L, Buckel SD, Bell AWet al. (1986) A family of related ATP-binding subunits coupled to many distinct biological processes in bacteria. Nature 323, 448–450. [PubMed: 3762694]
- 2. Dassa E and Bouige P (2001) The ABC of ABCS: a phylogenetic and functional classification of ABC systems in living organisms. Res Microbiol 152, 211–229. [PubMed: 11421270]
- Bouige P, Laurent D, Piloyan L and Dassa E (2002) Phylogenetic and functional classification of ATP-binding cassette (ABC) systems. Curr Protein Pept Sci 3, 541–559. [PubMed: 12370001]
- Saurin W, Hofnung M and Dassa E (1999) Getting in or out: early segregation between importers and exporters in the evolution of ATP-binding cassette (ABC) transporters. J Mol Evol 48, 22–41. [PubMed: 9873074]
- 5. Dean M, Rzhetsky A and Allikmets R (2001) The human ATP-binding cassette (ABC) transporter superfamily. Genome Res 11, 1156–1166. [PubMed: 11435397]

- Klein I, Sarkadi B and Varadi A (1999) An inventory of the human ABC proteins. Biochim Biophys Acta 1461, 237–262. [PubMed: 10581359]
- 7. Tusnady GE, Sarkadi B, Simon I and Varadi A (2006) Membrane topology of human ABC proteins. FEBS Lett 580, 1017–1022. [PubMed: 16337630]
- Gerovac M and Tampé R (2019) Control of mRNA translation by versatile ATP-driven machines. Trends Biochem Sci 44, 167–180. [PubMed: 30527974]
- Khwaja M, Ma Q and Saier MH Jr (2005) Topological analysis of integral membrane constituents of prokaryotic ABC efflux systems. Res Microbiol 156, 270–277. [PubMed: 15748994]
- Wang B, Dukarevich M, Sun EI, Yen MR and Saier MH Jr (2009) Membrane porters of ATP-binding cassette transport systems are polyphyletic. J Membr Biol 231, 1–10. [PubMed: 19806386]
- 11. Locher KP, Lee AT and Rees DC (2002) The E. coli BtuCD structure: a framework for ABC transporter architecture and mechanism. Science 296, 1091–1098. [PubMed: 12004122]
- Oldham ML, Khare D, Quiocho FA, Davidson AL and Chen J (2007) Crystal structure of a catalytic intermediate of the maltose transporter. Nature 450, 515–521. [PubMed: 18033289]
- 13. Wang T, Fu G, Pan X, Wu J, Gong X, Wang J and Shi Y (2013) Structure of a bacterial energy-coupling factor transporter. Nature 497, 272–276. [PubMed: 23584587]
- Xu K, Zhang M, Zhao Q, Yu F, Guo H, Wang C, He F, Ding J and Zhang P (2013) Crystal structure of a folate energy-coupling factor transporter from *Lactobacillus brevis*. Nature 497, 268–271. [PubMed: 23584589]
- Dawson RJ and Locher KP (2006) Structure of a bacterial multidrug ABC transporter. Nature 443, 180–185. [PubMed: 16943773]
- Lee J-Y, Kinch LN, Borek DM, Wang J, Wang J, Urbatsch IL, Xie X-S, Grishin NV, Cohen JC, Otwinowski Zet al. (2016) Crystal structure of the human sterol transporter ABCG5/ABCG8. Nature 533, 561–564. [PubMed: 27144356]
- Luo Q, Yang X, Yu S, Shi H, Wang K, Xiao L, Zhu G, Sun C, Li T, Li Det al. (2017) Structural basis for lipopolysaccharide extraction by ABC transporter LptB2FG. Nat Struct Mol Biol 24, 469–474. [PubMed: 28394325]
- Dong H, Zhang Z, Tang X, Paterson NG and Dong C (2017) Structural and functional insights into the lipopolysaccharide ABC transporter LptB2FG. Nat Commun 8, 222. [PubMed: 28790314]
- Fitzpatrick AWP, Llabrés S, Neuberger A, Blaza JN, Bai X-C, Okada U, Murakami S, van Veen HW, Zachariae U, Scheres SHWet al. (2017) Structure of the MacAB-TolC ABC-type tripartite multidrug efflux pump. Nat Microbiol 2, 17070. [PubMed: 28504659]
- Okada U, Yamashita E, Neuberger A, Morimoto M, van Veen HW and Murakami S (2017) Crystal structure of tripartite-type ABC transporter MacB from *Acinetobacter baumannii*. Nat Commun 8, 1336. [PubMed: 29109439]
- Crow A, Greene NP, Kaplan E and Koronakis V (2017) Structure and mechanotransmission mechanism of the MacB ABC transporter superfamily. Proc Natl Acad Sci USA 114, 12572– 12577. [PubMed: 29109272]
- 22. Yang HB, Hou WT, Cheng MT, Jiang YL, Chen Y and Zhou CZ (2018) Structure of a MacAB-like efflux pump from *Streptococcus pneumoniae*. Nat Commun 9, 196. [PubMed: 29335499]
- 23. Qian H, Zhao X, Cao P, Lei J, Yan N and Gong X (2017) Structure of the human lipid exporter ABCA1. Cell 169, 1228–1239.e10. [PubMed: 28602350]
- Taylor NMI, Manolaridis I, Jackson SM, Kowal J, Stahlberg H and Locher KP (2017) Structure of the human multidrug transporter ABCG2. Nature 546, 504–509. [PubMed: 28554189]
- 25. Bi Y, Mann E, Whitfield C and Zimmer J (2018) Architecture of a channel-forming O-antigen polysaccharide ABC transporter. Nature 553, 361–365. [PubMed: 29320481]
- 26. Chen L, Hou W-T, Fan T, Liu B, Pan T, Li Y-H, Jiang Y-L, Wen W, Chen Z-P, Sun Let al. (2020) Cryo-electron microscopy structure and transport mechanism of a wall teichoic acid ABC transporter. MBio 11, e02749–19. [PubMed: 32184247]
- 27. Koch J, Guntrum R, Heintke S, Kyritsis C and Tampé R (2004) Functional dissection of the transmembrane domains of the transporter associated with antigen processing (TAP). J Biol Chem 279, 10142–10147. [PubMed: 14679198]

- Thomas C and Tampé R (2020) Structural and mechanistic principles of ABC transporters. Annu Rev Biochem 89, 605–636. [PubMed: 32569521]
- 29. Scheepers GH, Lycklama ANJA and Poolman B (2016) An updated structural classification of substrate-binding proteins. FEBS Lett 590, 4393–4401. [PubMed: 27714801]
- Xu D, Feng Z, Hou WT, Jiang YL, Wang L, Sun L, Zhou CZ and Chen Y (2019) Cryo-EM structure of human lysosomal cobalamin exporter ABCD4. Cell Res 29, 1039–1041. [PubMed: 31467407]
- 31. Wang Z, Hu W and Zheng H (2020) Pathogenic siderophore ABC importer YbtPQ adopts a surprising fold of exporter. Sci Adv 6, eaay7997. [PubMed: 32076651]
- Arnold FM, Weber MS, Gonda I, Gallenito MJ, Adenau S, Egloff P, Zimmermann I, Hutter CAJ, Hürlimann LM, Peters EEet al. (2020) The ABC exporter IrtAB imports and reduces mycobacterial siderophores. Nature 580, 413–417. [PubMed: 32296173]
- Rempel S, Gati C, Nijland M, Thangaratnarajah C, Karyolaimos A, de Gier JW, Guskov A and Slotboom DJ (2020) A mycobacterial ABC transporter mediates the uptake of hydrophilic compounds. Nature 580, 409–412. [PubMed: 32296172]
- 34. Shitan N, Bazin I, Dan K, Obata K, Kigawa K, Ueda K, Sato F, Forestier C and Yazaki K (2003) Involvement of CjMDR1, a plant multidrug-resistance-type ATP-binding cassette protein, in alkaloid transport in Coptis japonica. Proc Natl Acad Sci USA 100, 751–756. [PubMed: 12524452]
- 35. Terasaka K, Blakeslee JJ, Titapiwatanakun B, Peer WA, Bandyopadhyay A, Makam SN, Lee OR, Richards EL, Murphy AS, Sato Fet al. (2005) PGP4, an ATP binding cassette P-glycoprotein, catalyzes auxin transport in Arabidopsis thaliana roots. Plant Cell 17, 2922–2939. [PubMed: 16243904]
- 36. Lee M, Choi Y, Burla B, Kim Y-Y, Jeon B, Maeshima M, Yoo J-Y, Martinoia E and Lee Y (2008) The ABC transporter AtABCB14 is a malate importer and modulates stomatal response to CO₂. Nat Cell Biol 10, 1217–1223. [PubMed: 18776898]
- Yang H and Murphy AS (2009) Functional expression and characterization of Arabidopsis ABCB, AUX 1 and PIN auxin transporters in *Schizosaccharomyces pombe*. Plant J 59, 179–191. [PubMed: 19309458]
- Kamimoto Y, Terasaka K, Hamamoto M, Takanashi K, Fukuda S, Shitan N, Sugiyama A, Suzuki H, Shibata D, Wang Bet al. (2012) Arabidopsis ABCB21 is a facultative auxin importer/exporter regulated by cytoplasmic auxin concentration. Plant Cell Physiol 53, 2090–2100. [PubMed: 23147222]
- 39. Shitan N, Dalmas F, Dan K, Kato N, Ueda K, Sato F, Forestier C and Yazaki K (2013) Characterization of *Coptis japonica* CjABCB2, an ATP-binding cassette protein involved in alkaloid transport. Phytochemistry 91, 109–116. [PubMed: 22410351]
- Allikmets R, Shroyer NF, Singh N, Seddon JM, Lewis RA, Bernstein PS, Peiffer A, Zabriskie NA, Li Y, Hutchinson Aet al. (1997) Mutation of the Stargardt disease gene (ABCR) in age-related macular degeneration. Science 277, 1805–1807. [PubMed: 9295268]
- Quazi F, Lenevich S and Molday RS (2012) ABCA4 is an N-retinylidenephosphatidylethanolamine and phosphatidylethanolamine importer. Nat Commun 3, 925. [PubMed: 22735453]
- Kang J, Hwang JU, Lee M, Kim YY, Assmann SM, Martinoia E and Lee Y (2010) PDR-type ABC transporter mediates cellular uptake of the phytohormone abscisic acid. Proc Natl Acad Sci USA 107, 2355–2360. [PubMed: 20133880]
- 43. Xi J, Xu P and Xiang CB (2012) Loss of AtPDR11, a plasma membrane-localized ABC transporter, confers paraquat tolerance in Arabidopsis thaliana. Plant J 69, 782–791. [PubMed: 22026747]
- 44. Kang J, Yim S, Choi H, Kim A, Lee KP, Lopez-Molina L, Martinoia E and Lee Y (2015) Abscisic acid transporters cooperate to control seed germination. Nat Commun 6, 8113. [PubMed: 26334616]
- 45. Coudray N, Isom GL, MacRae MR, Saiduddin MN, Bhabha G and Ekiert DC (2020) Structure of MIaFEDB lipid transporter reveals an ABC exporter fold and two bound phospholipids. bioRxiv 10.1101/2020.06.02.129247

- 46. Mann D, Fan J, Farrell DP, Somboon K, Andrew Muenks S, Tzokov S, Khalid F, Dimaio SM and Bergeron JRC (2020) Stuctural basis for lipid transpot by the MLA complex. bioRxiv 10.1101/2020.05.30.125013
- 47. Tang X, Chang S, Qiao W, Luo Q, Chen Y, Jia Z, Coleman J, Zhang K, Wang T, Zhang Zet al. (2020) Structural insight into outer membrane asymmetry maintenance of Gram-negative bacteria by the phospholipid transporter MlaFEDB. bioRxiv 10.1101/2020.06.04.133611
- 48. Chi X, Fan Q, Zhang Y, Liang K, Wan L, Zhou Q and Li Y (2020) Structural mechanism of phospholipids translocation by MlaFEDB complex. Cell Res. 10.1038/s41422-020-00404-6
- Hofmann S, Januliene D, Mehdipour AR, Thomas C, Stefan E, Brüchert S, Kuhn BT, Geertsma ER, Hummer G, Tampé Ret al. (2019) Conformation space of a heterodimeric ABC exporter under turnover conditions. Nature 571, 580–583. [PubMed: 31316210]
- 50. Korkhov VM, Mireku SA and Locher KP (2012) Structure of AMP-PNP-bound vitamin B12 transporter BtuCD-F. Nature 490, 367–372. [PubMed: 23000901]
- Nöll A, Thomas C, Herbring V, Zollmann T, Barth K, Mehdipour AR, Tomasiak TM, Brüchert S, Joseph B, Abele Ret al. (2017) Crystal structure and mechanistic basis of a functional homolog of the antigen transporter TAP. Proc Natl Acad Sci USA 114, E438–E447. [PubMed: 28069938]
- 52. Hohl M, Hurlimann LM, Bohm S, Schoppe J, Grutter MG, Bordignon E and Seeger MA (2014) Structural basis for allosteric cross-talk between the asymmetric nucleotide binding sites of a heterodimeric ABC exporter. Proc Natl Acad Sci USA 111, 11025–11030. [PubMed: 25030449]
- 53. Choudhury HG, Tong Z, Mathavan I, Li Y, Iwata S, Zirah S, Rebuffat S, van Veen HW and Beis K (2014) Structure of an antibacterial peptide ATP-binding cassette transporter in a novel outward occluded state. Proc Natl Acad Sci USA 111, 9145–9150. [PubMed: 24920594]
- Kieuvongngam V, Olinares PDB, Palillo A, Oldham ML, Chait BT and Chen J (2020) Structural basis of substrate recognition by a polypeptide processing and secretion transporter. Elife 9, e51492. [PubMed: 31934861]
- 55. Srinivasan V, Pierik AJ and Lill R (2014) Crystal structures of nucleotide-free and glutathionebound mitochondrial ABC transporter Atm1. Science 343, 1137–1140. [PubMed: 24604199]
- 56. Johnson ZL and Chen J (2017) Structural basis of substrate recognition by the multidrug resistance protein MRP1. Cell 168, 1075–1085.e9. [PubMed: 28238471]
- Morgan JLW, Acheson JF and Zimmer J (2017) Structure of a type-1 secretion system ABC transporter. Structure 25, 522–529. [PubMed: 28216041]
- Li J, Jaimes KF and Aller SG (2014) Refined structures of mouse P-glycoprotein. Protein Sci 23, 34–46. [PubMed: 24155053]
- 59. Oldham ML, Grigorieff N and Chen J (2016) Structure of the transporter associated with antigen processing trapped by herpes simplex virus. eLife 5, e21829. [PubMed: 27935481]
- 60. Olsen JA, Alam A, Kowal J, Stieger B and Locher KP (2020) Structure of the human lipid exporter ABCB4 in a lipid environment. Nat Struct Mol Biol 27, 62–70. [PubMed: 31873305]
- 61. Shintre CA, Pike ACW, Li Q, Kim J-I, Barr AJ, Goubin S, Shrestha L, Yang J, Berridge G, Ross Jet al. (2013) Structures of ABCB10, a human ATP-binding cassette transporter in apo- and nucleotide-bound states. Proc Natl Acad Sci USA 110, 9710–9715. [PubMed: 23716676]
- 62. Wang L, Hou WT, Chen L, Jiang YL, Xu D, Sun L, Zhou CZ and Chen Y (2020) Cryo-EM structure of human bile salts exporter ABCB11. Cell Res 30, 623–625. [PubMed: 32203132]
- 63. Mi W, Li Y, Yoon SH, Ernst RK, Walz T and Liao M (2017) Structural basis of MsbA-mediated lipopolysaccharide transport. Nature 549, 233–237. [PubMed: 28869968]
- Perez C, Mehdipour AR, Hummer G and Locher KP (2019) Structure of outward-facing PglK and molecular dynamics of lipid-linked oligosaccharide recognition and translocation. Structure 27, 669–678.e5. [PubMed: 30799077]
- 65. Liu F, Zhang Z, Csanady L, Gadsby DC and Chen J (2017) Molecular structure of the human CFTR ion channel. Cell 169, 85–95.e8. [PubMed: 28340353]
- 66. Martin GM, Yoshioka C, Rex EA, Fay JF, Xie Q, Whorton MR, Chen JZ and Shyng SL (2017) Cryo-EM structure of the ATP-sensitive potassium channel illuminates mechanisms of assembly and gating. Elife 6, e24149. [PubMed: 28092267]

Page 8

67. Manolaridis I, Jackson SM, Taylor NMI, Kowal J, Stahlberg H and Locher KP (2018) Cryo-EM structures of a human ABCG2 mutant trapped in ATP-bound and substrate-bound states. Nature 563, 426–430. [PubMed: 30405239]

Fig. 1.

The different types within the ABC transporter superfamily. Members of the superfamily of ABC transporters can be grouped into distinct types based on their TMD fold. The TMDs of representative experimentally determined structures are depicted as cartoons, and their NBDs are shown in surface representation. The TMD architecture of the first structure of each type is illustrated by a topology diagram. The number of structures shown for each transporter type does not necessarily reflect the abundance or importance of the respective type, but highlights the common scaffold and functional diversity of the transporters. The two TMDs of each transporter are shown in green and blue, respectively, except for cases where the TMDs are part of the same polypeptide chain (uniform blue color). Please note that the type V ABC transporters also include the retina-specific importer ABCA4 and importers in plants. Substrate-binding components of type I-III folds are illustrated in orange, and auxiliary domains and additional (TM) helices are shown in red, salmon, and violet, respectively. Bound (occluded) nucleotides and Mg²⁺ ions in the NBDs are

shown as dark pink spheres. Transported substrates and inhibitors are shown in yellow (carbon) and in CPK colors (remaining atoms in small-molecule compounds), respectively. The directions of substrate transport are indicated by solid and dashed red arrows. The structures have the following Protein Data Bank (PDB) accession codes: MalFGK₂-MalE: 2R6G [12]; BtuC₂D₂-BtuF: 4FI3 [50]; EcfTAA'-FoIT: 4HUQ [14]; Sav1866: 2HYD [15]; TmrAB: 5MKK [51]; TM287/288: 4Q4H [52]; McjD: 4PL0 [53]; PCAT1: 6V9Z [54]; Atm1: 4MYH [55]; MRP1: 5UJA [56]; PrtD: 5L22 [57]; P-gp: 4M1M [58]; TAP1/2: 5U1D [59]; ABCB4: 6S7P [60]; ABCB8: 5OCH; ABCB10: 3ZDQ [61]; ABCB11: 6LR0 [62]; MsbA: 5TV4 [63]; PglK: 6HRC [64]; YbtPQ: 6P6J [31]; IrtAB: 6TEJ [32]; Rv1819c: 6TQF [33]; ABCD4: 6JBJ [30]; CFTR: 5UAK [65]; SUR1: 6BAA [66]; Wzm-WztN: 6OIH [25]; TarGH: 6JBH [26]; ABCG5/8: 5DO7 [16]; ABCG2: 6HCO [67]; ABCA1: 5XJY [23]; LptB₂FG: 5X5Y [17]; MacB: 5LJ7 [21]. ABC, ATP-binding cassette; β-jr, β-jellyroll-like domain; C, C terminus; CH, coupling helix; COH, connecting helix; EH, elbow helix; N, N terminus; NBD, nucleotide-binding domain; P2, extracytoplasmic loop; PG, periplasmic gate helix; PLD, periplasmic domain; TMD, transmembrane domain.

~
2
Ħ
Ъ
0
\leq
Ma
Man
Manu
Manus
Manuscr

Table 1.

Prokaryotic ABC transporters classified according to their TMD folds.

TMD fold	TM helix organization	Experimentally determined structures	PDB codes ^d	Function
Type I	$(5-6) + (5-6/8)^b$	MalFGK ₂ (-E)	2R6G, 3FH6, 3PUV, 3PUW, 3PUX, 3RLF, 4JBW	Maltose import
		$ModB_2C_2(-A)$	20NK, 3D31	Molybdate import
		MetNI(-Q)	3DHW, 3TUI, 3TUI, 3TUZ, 6CVL	Methionine import
		$Art(QN)_2$	4YMS, 4YMT, 4YMU, 4YMV, 4YMW	Amino acid import
		AlgM1M2SS-Q2	4TQU	Alginate import
Type II	10 + 10	$BtuC_2D_2(-F)$	1L7V, 2QI9, 4DBL, 4FI3, 4R9U	Cobalamin import
		MolBC	2NQ2	Import of molybdate and tungstate
		HmuUV	4G1U	Heme import
		BhuUV(-T)	5B57, 5B58	Heme import
Type III	4-8 (T) + 6-7 (S)	EcfTAA′-Fo1T	4HUQ, 5D3M, 5JSZ	Folate import
		EcfTAA'-PdxU2	4HZU	Pyridoxine import
		LbECF-PanT	4RFS	Pantothenate import
		CbiMQO	5X3X, 5X41	Co ²⁺ import
		ECF-CbrT	6FNP	Cobalamin import
Type IV	6+6 :	Sav1866	2HYD, 20NJ	Multidrug export
	Homodimer Heterodimer	MsbA	3B60, 3B5Y, 3B5Z, 5TV4, 6BPL, 6BPP, 6BL6, 6O30, 6UZ2, 6UZL	Lipid A/LPS flopping
	Single chain	NaAtm1	4MRR, 4MRS, 4MRV, 4MRN, 4MRP	Export of GSH, GSH-related compounds, and metal-GSH complexes
		TM287/288	4Q4A, 4Q4H, 4Q4J, 6QUZ, 6QV0, 6QV1, 6QV2	Daunorubicin export
		McjD	4PL0, 5EG1, 5OFR	Antimicrobial peptide export
		PCAT1	4RY2, 6V9Z	Polypeptide export
		PgIK	SC76, SC78, SNBD, 6HRC	Export (flopping) of lipid-linked oligosaccharides
		TmrAB	5MKK, 6RAF, 6RAG, 6RAH, 6RAI, 6RAJ, 6RAK, 6RAL, 6RAM, 6RAN	Peptide export
		PrtD	5L22	Polypeptide type-1 secretion system
		YbtPQ	6P61, 6P6J	Metal-siderophore import
		Rv1819c	6TQE, 6TQF	Import of cobalamin and bleomycin
		IrtAB	6TEJ	Iron-siderophore import
Type V	6 + 6 Homodimer	Wzm-WztN TarGH	60IH, 6M96	O-antigen export (flopping)

Author Manuscript

		Experimentally		
TMD fold	TM helix organization	determined structures	PDB codes ^d	Function
	Heterodimer Single chain	TarGH	6JBH	Export (flopping) of wall teichoic acid
Type VI	6 + 6 Heterodimer	LptB ₂ FG(C)	5X5Y, 5L75, 6MIT, 6MJP, 6MHU, 6MHZ, 6MI7, 6MI8, 6S8G, 6S8H, 6S8N	LPS extraction
Type VII	4 + 4	MacB	5GKO, 5WS4, 5LIL, 5LJ6, 5LJ7, 5XU1	Export of macrolides and polypeptide virulence factors
Cett altraction	Self-see	مامسمامهم		

GSH, glutathione; LPS, lipopolysaccharide.

 a Only PDB codes of structures with an overall resolution equal to or better than 4.5 Å were included.

 $b_{
m Conserved\ TMs\ in\ bold.}$

TMD fold	TM helix organization	Experimentally determined structures	PDB codes ^b	Function
Type IV	6 + 6	ABCB subfamily		
	Homodimer Heterodimer Single chain	P-gp (ABCB1)	4F4C, 4MIM, 4M2S, 4M2T, 4Q9H, 4Q9I, 4Q9I, 4Q9K, 4Q9L, 4XWK, 5KPD, 5KPI, 5KPI, 5KO2, 5KOY, 6C0V	Multidrug export
)	CmABCB1	3WME, 3WMF, 3WMG, 6A6M, 6A6N	Multidrug export
		ScAtm1 (ABCB7)	4MYC, 4MYH	Unknown substrate for Fe/S protein biogenesis
		TAP1/2 (ABCB2/3)	SUID	Peptide export
		ABCB4	6S7P	Lipid export
		ABCB8	SOCH	Unknown
		ABCB10	3ZDQ, 4AYT, 4AYW, 4AYX	Unknown
		ABCB11	6LR0	Bile salt export
		ABCC subfamily		
		MRP1 (ABCC1)	SUJA, SUJ9, 6BHU, 6UY0	Leukotriene, sphingolipid, and multidrug export
		CFTR (ABCC7)	5UAR, 5UAK, 5W81, 6D3R, 6MSM, 601V, 602P	Chloride channel
		SUR1 (ABCC8)	6BAA, 6C3O, 5YKE, 5YKF, 5YWC, 5YWD, 5YW7, 5YW8, 6JB1, 6JB3, 6PZ9,6PZA, 6PZC, 6PZ1	Regulatory module of K_{ATP} channel
		ABCD subfamily		
		ABCD4	6JBJ	Cobalamin import
Type V	6 + 6	ABCA subfamily		
	Homodimer Heterodimer	ABCA1	SXJY	Phospholipid/cholesterol export
	Single chain	ABCG subfamily		
		ABCG5/8	5D07	Sterol export
		ABCG2	SNJG, SNJ3, 6ETI, 6FEQ, 6FFC, 6HIJ, 6HCO, 6HBU, 6HZM, 6VXF, 6VXH, 6VXI, 6VXJ	Multidrug export

FEBS Lett. Author manuscript; available in PMC 2021 August 25.

 b Only PDB codes of structures with an overall resolution equal to or better than 4.5 Å were included.

Author Manuscript

Author Manuscript

Table 2.