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Abstract: A decanuclear silver chalcogenide cluster, [Ag10(Se){Se2P(OiPr)2}8] (2) was isolated from a
hydride-encapsulated silver diisopropyl diselenophosphates, [Ag7(H){Se2P(OiPr)2}6], under thermal
condition. The time-dependent NMR spectroscopy showed that 2 was generated at the first three
hours and the hydrido silver cluster was completely consumed after thirty-six hours. This method il-
lustrated as cluster-to-cluster transformations can be applied to prepare selenide-centered decanuclear
bimetallic clusters, [CuxAg10-x(Se){Se2P(OiPr)2}8] (x = 0–7, 3), via heating [CuxAg7−x(H){Se2P(OiPr)2}6]
(x = 1–6) at 60 ◦C. Compositions of 3 were accurately confirmed by the ESI mass spectrometry. While
the crystal 2 revealed two un-identical [Ag10(Se){Se2P(OiPr)2}8] structures in the asymmetric unit, a
co-crystal of [Cu3Ag7(Se){Se2P(OiPr)2}8]0.6[Cu4Ag6(Se){Se2P(OiPr)2}8]0.4 ([3a]0.6[3b]0.4) was eventu-
ally characterized by single-crystal X-ray diffraction. Even though compositions of 2, [3a]0.6[3b]0.4

and the previous published [Ag10(Se){Se2P(OEt)2}8] (1) are quite similar (10 metals, 1 Se2−, 8 ligands),
their metal core arrangements are completely different. These results show that different synthetic
methods by using different starting reagents can affect the structure of the resulting products, leading
to polymorphism.

Keywords: chalcogenide; hydride; silver; copper; inverse coordination

1. Introduction

In pursuit of metal chalcogenide clusters, Group 11 elements (Cu, Ag, Au) are fre-
quently employed in the synthesis of novel clusters [1–4]. Silver chalcogenide clusters have
rich structural varieties which can be synthesized by many different approaches [5–11].
The primary strategy is the reaction of different Ag(I) precursors with highly reactive
silylated chalcogen reagents E(SiMe3)2 (E = S, Se, Te) [5], which can afford S2−/Se2−/Te2−

in the construction of high-nuclearity silver chalcogenide clusters stabilized by phos-
phine, chalcogenolate, halide, carboxylate, or alkynyl ligands [6–11]. Under this guide-
line, Fenske and his co-workers have structurally characterized many remarkable silver
chalcogenide clusters [6,7]. For example, [Ag114Se34(SenBu)46(PtBu3)14], which contains
a distorted cubic structure, was synthesized involving the reaction of C11H23CO2Ag,
nBuSeSiMe3 and PtBu3 at low temperature (<−20 ◦C) [6]. Different diphosphine lig-
ands (bis(diphenylphosphinol)propane, dppp) used in the previous reaction at −30 ◦C
produce [Ag172Se40(SenBu)92(dppp)4], which not only increases the cluster nuclearity
but also keeps similar cross sections of Ag2Se as that found in Ag114Se34 [6]. Another
mega cluster synthesized by the reaction of CF3CO2Ag, dppm, PhS(SiMe3) and S(SiMe3)2
at −40 ◦C yielded [Ag70S20(PhS)28(dppm)10](CF3CO2)2 [7]. Compared with those gi-
ant silver chalcogenide clusters which are the kinetic products formed in different re-
action temperatures, smaller silver chalcogenide clusters encapsulated with a single
S2−/Se2− are rarely reported [12–22]. The as-synthesized chalcogenide anion can eas-
ily insert in the metal clusters to achieve a high coordination number, i.e., µ8-Se in
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[Ag8(Se){Se2P(OiPr)2}6] [15,16], µ9-Se in [Ag11(Se)(X)3{Se2P(OR)2}6] (X = I, Br; R = Et, iPr,
2Bu) [17,18], µ10-Se in [Ag10(Se){Se2P(OEt)2}8] [19] and µ12-S in [Cu12(S){S2CNR2}6{C≡CR’}4] [22].
These hyper-coordinated anions, which become the coordination center surrounded by an
array of metal atoms, are examples of inverse coordination, an emerging concept coined by
Ionel Haiduic [23,24]. Nevertheless, efficient controls on both the amount of chalcogenide
generated in situ and the size of clusters remain challenging. Herein, we report a new syn-
thetic pathway leading to the formation of M10(Se)L8 (L = diisopropyl diselenophosphate,
dsep) via a cluster-to-cluster transformation. In addition, intriguing structural isomers
identified in the M10(Se) core are also presented.

2. Results and Discussion
2.1. Synthetic Strategy

In our previous study, a decanuclear silver cluster, [Ag10(Se){Se2P(OEt)2}]8 (1), was
isolated from the reaction of [Ag(CH3CN)4]PF6 and NH4[Se2P(OEt)2] in a 1:1 molar ratio
at −20 ◦C for 24 h (Scheme 1a) [19]. The encapsulated selenide anion was generated from
the slow decomposition of dsep ligands. Herein we introduced a new strategy, which is
inspired by the thermal-induced self-redox reaction of [Ag7(H){S2P(OiPr)2}8] leading to
the generation of a two-electron silver superatom, [Ag10{S2P(OiPr)2}8] [25]. In this work,
the Se-analogue of [Ag7(H){S2P(OiPr)2}8] [26] as precursors under heating (Scheme 1b)
can yield [Ag10(Se){Se2P(OEt)2}]8 (2). The composition of 2 (10 Ag+ + 1 Se2− + 8 dsep
ligands) has been characterized by X-ray diffraction, which is the same as 1 but with a
completely different solid-state structure. At 60 ◦C the cleavage of P-Se bond of dsep
ligands occurs to generate Se, which can be reduced to Se2− by the interstitial hydride in
[Ag7(H){Se2P(OiPr)2}8]. Unlike the reactions used silylated chalcogen reagents to generate
considerable amount of chalcogenide anions, this new method can control the Se2− ratio in
a relatively small range so that smaller size of metal chalcogenide clusters can be generated.
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Scheme 1. (a) The synthetic pathway of previous published [Ag10(Se){Se2P(OEt)2}8] (1). (b) A new
pathway for the synthesis of [Ag10(Se){Se2P(OiPr)2}8] (2) and (c) [CuxAg10−x(Se){Se2P(OiPr)2}8]
(x = 0–7, 3).

Following the same strategy, a diselenophosphate-stabilized bimetallic Cu/Ag hy-
dride, [CuxAg7-x(H){Se2P(OiPr)2}6] (x = 1–6) [26] was used instead of [Ag7(H){Se2P(OiPr)2}8]
(Scheme 1c), to form a selenide-centered decanuclear bimetallic cluster, [CuxAg10−x(Se){Se2
P(OiPr)2}8] (x = 0–7) (3). This methodology provides a facile route to produce anion-
encapsulated heterometallic clusters via a cluster-to-cluster transformation. However, this
method cannot predict the exact position where the heterometals will possibly occupy.
Nevertheless, it opens up many possibilities to generate structural isomers. Compound 3,
which the entire metal core is completely different from that of 1 and 2, has been structurally
characterized by XRD. The structural analysis will be discussed in the following section.

2.2. Structural Analyses

All three M10(Se)L8 clusters (1–3) are composed of ten metal atoms, one selenide
anion and eight dsep ligands. Although three structures have similar compositions, their
geometries are strikingly different. In the previously published structure 1, the selenide
anion is encapsulated in a distorted, cis-bicapped trapezoidal-prismatic Ag10 framework
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(Figure 1a), which is surrounded by eight dsep ligands (Figure 1b) [19]. Short contacts are
observed between the encapsulated Se2− (Seencap) and ten peripheral silver atoms where
Seencap-Ag distances are in the range of 2.6312(19)–3.187(2) Å (avg. 2.939(2) Å).

In structure 2, the metal array is quite different from 1. There are two clusters in the
asymmetric unit and their structures are slightly different. Considering the two Ag10(Se)
cores in crystal 2 as cluster A (Figure 1c) and cluster B (Figure 1d), both clusters have
six out of ten Ag atoms (Agchair) arranged in a chair-like metallo-ring conformation with
one Se2− anion sitting above its center. The rest of four Ag atoms are located above the
(Agchair)6Se unit to constitute the whole Ag10(Se) framework. Since the positions of the ten
silver atoms in clusters A and B are slightly different, two Ag10(Se) cores are pseudo-mirror
images. This also affects the distances of Ag-Seencap, resulting in different coordination
modes of the central Se atom in clusters A and B. Se1 has eight short contacts to the
adjacent Ag atoms ranging from 2.5113(13) to 3.0596(12) Å (avg. 2.7586(13) Å) in cluster
A (Figure 1c); seven short contacts between Se2 and Ag in cluster B (Figure 1d), which
range from 2.5279(12) to 3.0496(12) Å (avg. 2.8271(12) Å). Both Seencap-Ag distances in
2 are slightly shorter than those in 1, indicating stronger interactions between Ag and
Seencap. The average Ag-Ag distances in clusters A (3.0780(12) Å) and B (3.0786(13) Å)
are not much different. The eight dsep ligands in clusters A (Figure 1e) and B (Figure 1f)
have roughly the same locations around the Ag10Se core, i.e., P7 and P16, P8 and P10, etc.
However, their coordination patterns at relatively similar position are not the same due
to the different metal sites in each Ag10(Se) core. For example, the dsep ligand on P8 is
trimetallic (Ag1, Ag10, Ag9) triconnectivity, but P10 is tetrametallic (Ag15, Ag18, Ag13,
Ag12) tetraconnectivity. Nine of the ten Ag atoms are three-coordinated and one Ag atom
(Ag3) are two-coordinated to Se on the dsep ligands in cluster A; eight of the ten Ag atoms
are trigonal- and two Ag atoms (Ag14 and Ag16) are digonal-coordinated in cluster B.
There are 29 and 28 connectivities between dsep ligands and Ag10(Se) core in clusters A
and B, respectively, which Se-Ag distances are in the range of 2.5368(13)–3.0478(14) Å (avg.
2.6672(13) Å) in cluster A and 2.5496(13)–3.0811(12) Å (avg. 2.693(2) Å) in cluster B. Cluster
1 displays 30 Se-Ag connectivities with slightly longer distances ranging from 2.577(3) to
3.127(3) Å (avg. 2.685(3) Å). These metric data strongly suggest that 1 and clusters A, B of 2
exhibit not only minute different dsep-silver bonding patterns on the outer shell but also
intrinsically different Ag10(Se) cores, leading to unusual polymorphism.

The molecular formula in structure 3, [CuxAg10−x(Se){Se2P(OiPr)2}8] (x = 3.4), was
determined by X-ray diffraction. Non-integer Cu atoms were satisfactorily refined, which
corresponded to the co-crystallization of 60% of [Cu3Ag7(Se){Se2P(OiPr)2}8] (3a) and 40%
of [Cu4Ag6(Se){Se2P(OiPr)2}8] (3b). Hence, the crystal structure can be best represented
as [Cu3Ag7(Se){Se2P(OiPr)2}8]0.6[Cu4Ag6(Se){Se2P(OiPr)2}8]0.4 ([3a]0.6[3b]0.4). It is worth-
while to mention that the phenomenon of co-crystallization is frequently observed in
heterometallic clusters [26–31] especially for two heterometals occupying the same site.
The copper atoms in M10(Se) are distributed in six positions, where two Cu are fully occu-
pied at two brown ellipsoids (Figure 1g) and the rest Cu atoms are randomly disordered at
four cyan ellipsoids (see Figure S1). Compared with 2, the bottom six metal atoms display a
M6 boat conformation with a Se2− anion at its center. The other two metals are on the top of
the M6(Se) motif and two Cu atoms on each side. It shows that the Se2− anion binds to the
six Mboat atoms and two metals on the top with Seencap-M distances of 2.425(2)–3.127(2) Å
(avg. 2.778(2) Å). Distances of Se17-Cu5B(Ag5) and Se17-Cu6B(Ag6), 2.842(2) and 2.908(2)
Å, are relatively long, exhibiting weaker interactions while Cu occupation. Distances
between the fully occupied Cu and the Seencap atom are approximately 4.7 Å which are
much longer than the distances (3.6–4.2 Å) of three un-bonded Ag atoms to Seencap in 2.
Noticed that the M10(Se) framework in [3a]0.6[3b]0.4 (Figure 1h, bottom) is partially similar
to the
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Figure 1. (a) The Ag10(Se) core and (b) the total structure of previously published
[Ag10(Se){Se2P(OEt)2}8] (1). (c) The Ag10(Se) cores of cluster A and (d) cluster B in newly char-
acterized [Ag10(Se){Se2P(OiPr)2}8] (2). (e) The total structure of cluster A and (f) cluster B in 2. (g) The
CuxAg10-x(Se) (x = 3.4) core and (h) the total structure of [3a]0.6[3b]0.4. (Thermal ellipsoid plots were
drawn at 30% probability with isopropoxy groups omitted for clarity).

Ag10(Se) framework in 1. If the two Cu atoms in [3a]0.6[3b]0.4 and the two Ag atoms
from the back in 1 are removed, respectively, the leftover M8(Se) motifs are in similar
atomic arrangement (Figure S2). Nevertheless, the arrangement of eight dsep ligands
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in [3a]0.6[3b]0.4 has no similarity to the eight ligands in 1. The top two metals are two-
coordinated and the rest eight metals are three-coordinated to Se atoms of dsep ligands
(Figure 1f). Se-M distances range in 2.351(2)–2.8797(19) Å (avg. 2.593(2) Å) are shorter
than those in 1 and 2, which can be attributed to the smaller covalent radii of the partially
doped Cu atoms. Interestingly, structures 2 and [3a]0.6[3b]0.4 display a unique Ag6 chair
and a M6 boat in the metal array, respectively. The averaged adjacent, Agchair-Agchair and
Mboat-Mboat distances are 3.0622(14) Å (cluster A in 2), 3.0987(12) Å (cluster B in 2) and
3.076(2) Å (in [3a]0.6[3b]0.4), indicating strong metallophilic interactions. Selected bond
lengths are summarized in Table 1.

Table 1. Selected bond lengths of 1, 2 and [3a]0.6[3b]0.4.

Comp. 1 2 [3a]0.6[3b]0.4

Ag-Ag/M-M (Å)
2.957(3)–3.378(2),

avg. 3.083(3)
Clust. A 2.8786(12)–3.3004(11),

avg. 3.0786(13)
2.8625(15)–2.7856(18),

avg. 3.036(2)
Clust. B 2.9186(11)–3.3321(11),

avg. 3.0780(12)

Seencap-Ag/Seencap-M
(Å)

2.6312(19)–3.187(3),
avg. 2.939(2)

Clust. A 2.5279(12)–3.0496(12),
avg. 2.8271(12)

2.425(2)–3.127(2),
avg. 2.778(2)

Clust. B 2.5113(13)–3.0596(12),
avg. 2.7586(13)

Se-Ag/Se-M (Å)
2.557(3)–3.127(3),

avg. 2.685(3)
Clust. A 2.5496(13)–3.0811(12),

avg. 2.693(2)
2.351(2)–2.8797(19),

acg. 2.593 (2)
Clust. B 2.5368(13)–3.0478(14),

avg. 2.6672(13)

2.3. ESI Mass Spectroscopy

The positive-ion ESI-MS spectrum of 2 (Figure 2a) shows an adduct ion peak at m/z
3722.0682, corresponding to the whole cluster with an additional silver ion, [2 + Ag+]+

(calc. m/z: 3722.1350). Another intense peak at m/z 2741.6280 can be formulated as
[Ag8(Cl){Se2P(OiPr)2}6]+ (calc. m/z 2741.6542). Presumably, the chloride is from CH2Cl2
used to dissolve samples for the ionization. The spectrum of 3 (Figure 2b) showed a
wide distribution of [CuxAg10-x(Se){Se2P(OiPr)2}8 + Ag+]+ (x = 0–7) with the most in-
tense peak of x = 3. The inset spectra depict the experimental isotopic distribution
patterns of [Cu3Ag7(Se){Se2P(OiPr)2}8 + Ag+]+ (exp. 3591.3566, calc. 3591.2057) and
[Cu4Ag6(Se){Se2P(OiPr)2}8 + Ag+]+ (exp. 3547.3810, calc. 3547.2294), which are well-
matched with the calculated ones and structures of both species have been identified by the
single-crystal X-ray diffraction with the composition of [Cu3Ag7(Se){Se2P(OiPr)2}8]0.6[Cu4
Ag6(Se){Se2P(OiPr)2}8]0.4 ([3a]0.6[3b]0.4). Although the spectrum was measured by using
single crystals, we still observed the ion peak distributions (x = 0–7) depicted in the mass
spectrum. The results can be attributed to the metal exchange in the gas phase. Another
intense band around m/z 2474 can be assigned to [CuyAg8-y(Cl){Se2P(OiPr)2}6]+ (y = 0–8)
with the most intense peak (y = 3) at m/z 2474.8901 (calc. m/z: 2474.7998). Presumably,
the [M8(Cl)L6]+ species identified in the gas phase are the decomposition products of
M10(Se)L8 in the presence of chloro-solvent. In fact, the observed ion peak distributions for
bimetallic clusters are frequently reported in literature [25–28].
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simulated (orange) isotopic distribution pattern of [2 + Ag+]+. (b) The positive-ion ESI mass spectrum
of 3. The inset is the experimental (black) and simulated (orange) isotopic distribution pattern of
[Cu3Ag7(Se){Se2P(OiPr)2}8 + Ag+]+ and [Cu4Ag6(Se){Se2P(OiPr)2}8 + Ag+]+.

2.4. NMR Spectroscopy

The fact that a single resonance centered at 75.3 ppm flanked by one set of satellite
peaks (1JPSe = 669 Hz) in the 31P{1H} NMR spectrum (Figure S3) coupled with one set
of isopropoxy resonance (4.88 and 1.36 ppm) observed in the 1H NMR spectrum of 2 at
ambient temperature (Figure S6) strongly suggests its non-rigid structure in solution, which
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could be due to the labile Ag-Se bonds. The satellite peaks are due to the 31P nuclei coupled
with the 77Se nuclei (I = 1/2) in diselenophosphate compounds [32] in which the natural
abundance of 77Se is only 7.56%. The cluster-to-cluster transformation process can be
monitored by the time-dependent 31P{1H} and 1H NMR spectroscopy. In the reaction shown
in Scheme 1b, compound 2 which 31P resonance at 75.3 ppm was generated at the first
three hours (Figure 3a). The 31P resonance of [Ag7(H){Se2P(OiPr)2}6] at 83.1 ppm gradually
disappeared over time, then Ag7(H) was barely seen after 1.5 days. The consumption of
Ag7(H) can also be followed by the time-dependent 1H spectra (Figure 3b). That is, the
pseudo octet peak of central hydride originated from 1J(H, Ag) was gradually disappeared
and the chemical shift of methine proton on isopropoxy groups displayed a down-field shift
due to the different values of two species, Ag7H and Ag10Se. It can be assumed that the
slow decomposition of Ag7(H) prevents Se2− being released in large quantities at one time
followed by the cluster-to-cluster transformation. The fact that the coordinated hydride as
the reductant can be tracked by recognizing the in-situ generated H2, which resonates at
4.61 ppm (Figure S7). Fragment peaks from dsep ligand decomposition can also be observed
in the 31P{1H} NMR spectrum. The chemical shifts at 67.4 (1JPSe = 475, 848 Hz), 50.5 and
5.6 ppm belong to the resonance frequency of Se[P(Se)(OiPr)2]2, [SeOP(OiPr)2]− [33] and
phosphoric acid, respectively. It is noted that the diselenophosphates are thermally unstable
where its sulfur analogue is not so sensitive to heat [34].
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48 h (asterisks denote the fragments of dsep ligands after decomposition).

While the 31P chemical shifts of both 1 and 2 are almost identical, their 77Se{1H}
NMR (Figure S4) spectra are different. A doublet at 103.3 ppm and a broad resonance at
−1292.4 ppm (Figure S5) corresponding to the resonance frequency of the dsep ligands and
the encapsulated Se2−, respectively, can be seen in the 77Se spectrum of 2. The resonances
are slightly different from that of 1 (108 ppm, dsep; −1395.4 ppm, Seencap) [19]. It could
be due to the stronger interactions between Seencap and Ag atoms in 2, resulting in the
downfield shift of the Seencap resonance. The 31P{1H} NMR spectrum of 3 shows multiple
resonances overlapping together at around 73.9–75.2 ppm (Figure S8), indicating the
multiple coordination environment of the dsep ligands. It is primarily arisen from the
randomly doped Cu atoms on multiple positions in structure 3. Unfortunately, no satisfied
signals can be detected in the 77Se NMR spectrum of 3 at ambient temperature.



Molecules 2021, 26, 5391 8 of 13

2.5. Photophysical Properties

The absorption spectrum of 2 exhibits a single low-energy LMCT band at 402 nm,
which is very close to 396 nm of 3 (Figure 4a). The doped Cu atoms found in the bimetallic
decanuclear cluster seem not to significantly perturb the characteristic absorption band.
It is assumed that both clusters 2 and 3 might have similar structures as that observed in
cluster 1 in solution leading to similar electronic transition energy even though their solid-
state structures are different (vide supra). Both compounds are not emissive at ambient
temperature but show orange emission at 77 K. Figure 4a depicts the emission spectra of 2
and 3 in 2-MeTHF glass, while their photophysical data are briefly summarized in Table 2.
Both emission profiles are structureless and the photoluminescence of 2 centered at 666 nm
is slightly blue-shifted, compared to 3 centered at 707 nm. The photoluminescence decay
curves of 2 (Figure 4b) and 3 (Figure 4c) can be well-fitted to a single exponential decay
function (red curve). The lifetimes of 2 (λex = 401 nm) and 3 (λex = 396 nm), 16 µs and 22 µs,
together with large Stokes shift (~10,000 cm−1), reflect their triplet excited state nature, a
spin-forbidden phosphorescence.
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glass recorded at 77 K.
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Table 2. Photophysical data of 2 and 3.

Comp. λabs/nm
(ε/cm −1 M−1)

λex/nm
(at 77K)

λem/nm
(at 77K)

Stoke
Shift/cm−1

Lifetime/
µs (at 77K)

2 402 (14,600) 384 666 9900 16
3 396 (11,500) 387 707 11,100 22

3. Materials and Methods
3.1. General Remarks

All chemicals were purchased from commercial sources and used as received. Sol-
vents were purified following standard protocols [35]. All reactions were performed
in oven-dried Schlenk glassware using standard inert atmosphere techniques. All re-
actions were carried out under N2 atmosphere by using standard Schlenk techniques.
[Ag7(H){Se2P(OiPr)2}6] and [CuxAg7-x(H){Se2P(OiPr)2}6] (x = 1–6) were prepared by the
procedure reported earlier in literature [26]. 1H, 31P and 77Se NMR spectra were recorded
on a Bruker Avance DPX-300 BBO probe spectrometer (Bruker BioSpin, MA, USA), op-
erating at 300.13 MHz for 1H, 121.49 MHz for 31P and 57.239 MHz for 77Se, respectively.
The chemical shift (δ) and coupling constant (J) are reported in ppm and Hz, respectively.
ESI mass spectrum recorded on a Fison Quattro Bio-Q (Fisons Instruments, VG Biotech,
Glasgow, UK). UV-visible absorption spectra were measured on a PerkinElmer Lambda 750
PerkinElmer, Inc., MA, USA) spectrophotometer using quartz cells with path length of 1 cm.
Luminescence spectra and lifetime were recorded on an Edinburgh FLS920 fluorescence
spectrometer (Edinburgh Instruments Ltd., Livingston, UK). The elemental analysis (C, H
and N content) of the new compounds was determined by Elementar UNICUBE elemental
analyzer (Elementar Analysensysteme GmbH, Langenselbold, Germany).

3.2. Synthesis and Characterization of Compounds 2–3

3.2.1. Synthesis and Characterization of [Ag10(Se){Se2P(OiPr)2}8] (2)

[Ag7(H){Se2P(OiPr)2}6] (0.0604 g, 0.0232 mmol) was dissolved in chloroform (30 mL).
The temperature was elevated to 60 ◦C and kept stirring for 48 h. The solution was
dried under vacuum to get a yellow solid. The compound can be purified by thin-layer
chromatography (TLC) with a mixed solvent of dichloromethane and n-hexane in equal
proportions (50:50, v/v). Yield: 0.0187 g (31.8%, based on Ag).

31P{1H} NMR (121.49 MHz, d-chloroform, δ, ppm): 75.3 (s, 1JPSe = 669 Hz). 77Se NMR
(57.24 MHz, d-chloroform, δ, ppm): 103.3 (d, 1JPSe = 669 Hz, PSe2), −1292.4 (br, Ag10Se).
1H NMR (300.13 MHz, d-chloroform, δ, ppm): 4.88 (m, 16H, CH), 1.36 (d, 96H, CH3,
3JHH = 6 Hz). Anal. calc. for C48H112Ag10O16P8Se17·2(CHCl3): C, 15.59; H, 2.98; Found: C,
15.67; H, 2.90%. ESI-MS (m/z): exp. 3722.0682 (calc. for [2 + Ag+]+: 3722.1657).

3.2.2. Synthesis and Characterization of [CuxAg10-x(Se){Se2P(OiPr)2}8], x = 0–7 (3)

[CuxAg7−x(H){Se2P(OiPr)2}6] (x = 1–6) was prepared by the slightly modified proce-
dures reported earlier in literature [26]. ([Cu7(H){Se2P(OiPr)2}6] and [Ag7(H){Se2P(OiPr)2}6]
with molar ratio 1:1). Followed the same synthetic procedure of 2, [CuxAg7−x(H){Se2P(OiPr)
2}6] (0.050 g) was used as precursor instead of [Ag7(H){Se2P(OiPr)2}6]. It was dissolved in
chloroform (30 mL). The temperature was elevated to 60 ◦C and kept stirring for 48 h. The
solution was dried under vacuum to get a yellow solid. The compound can be purified by
thin-layer chromatography (TLC) with a mixed solvent of dichloromethane and n-hexane
in equal proportions (50:50, v/v). Yield: 0.017 g (based on single crystals).

31P{1H} NMR (121.49 MHz, d-chloroform, δ, ppm): 75.2 (s, 1JPSe = 667 Hz), 75.1 (s,
1JPSe = 669 Hz), 74.9 (s, 1JPSe = 669 Hz), 74.7 (s, 1JPSe = 668 Hz), 74.5 (s, 1JPSe = 666 Hz).
No satisfied signals can be identified in 77Se NMR spectrum at room temperature. 1H
NMR (400.13 MHz, d-chloroform, δ, ppm): 4.88 (m, 16H, CH), 1.36 (d, 96H, CH3, 3JHH = 6
Hz). ESI-MS (m/z) of [CuxAg10-x(Se){Se2P(OiPr)2}8 + Ag+]+: exp. 3411.3387 (calc. for x = 7:
3411.3034), exp. 3454.4462 (calc. for x = 6: 3454.2803), exp. 3499.4094 (calc. for x = 5:
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3499.2556), exp. 3547.3810 (calc. for x = 4: 3547.2294), exp. 3591.3566 (calc. for x = 3:
3591.2057), exp. 3633.3343 (calc. for x = 2: 3633.1827), exp. 3679.3110 (calc. for x = 1:
3679.1578), exp. 3728.4993 (calc. for x = 0: 3728.1321).

3.3. X-ray Crystallography

Single crystals suitable for X-ray diffraction analysis of 2 and [3a]0.6[3b]0.4 were ob-
tained by slow evaporation of acetone solution at ambient temperature within a week.
Single crystals were mounted on the tip of glass fiber coated in paratone oil and then
transferred into the cold N2 gas stream. Data were collected on a Bruker APEX II CCD
diffractometer (Bruker AXS Inc., WI, USA) using graphite monochromated Mo Kα radia-
tion (λ = 0.71073 Å) at 100K. Absorption corrections for area detector were performed with
SADABS [36] and the integration of raw data frame was performed with SAINT [37]. The
structure was solved by direct methods and refined by least-squares against F2 using the
SHELXL-2018/3 package [38], incorporated in SHELXTL/PC V6.14 [39]. All non-hydrogen
atoms were refined anisotropically. The detailed refinements of occupancy ratio on each
atomic site are listed in Figure S1. Selected X-ray crystallographic data are listed in Table 3.

Table 3. Selected X-ray crystallographic data of 2 and [3a]0.6[3b]0.4.

Compound 2 [3a]0.6[3b]0.4

Chemical formula C48H112Ag10O16P8Se17 C48H112Ag6.6Cu3.4O16P8Se17

Formula weight 3614.15 3463.43

Crystal System Triclinic Triclinic

Space group P(-)1 P(-)1

a, Å 14.7908(9) 14.8584(4)

b, Å 24.8040(16) 14.8871(5)

c, Å 27.5596(17) 25.6577(7)

α, deg. 83.563(2) 100.1735(13)

β, deg. 85.402(2) 96.5137(13)

γ, deg. 82.033(2) 115.4953(15)

V, Å3 9928.6(11) 4926.2(3)

Z 4 2

Temperature, K 100(2) 100(2)

$calcd, g/cm3 2.418 2.335

µ, mm−1 8.335 8.458

θmax, deg. 25.000 24.999

Completeness, % 97.5 100

Reflection collected/unique 53,934/34,122
[Rint = 0.0383]

167,862/17,346
[Rint = 0.2349]

Restraints/parameters 876/1888 382/937
a R1, b wR2 [I > 2σ(I)] 0.0490, 0.1010 0.0555, 0.1029
a R1, b wR2 (all data) 0.0714, 0.1082 0.1139, 0.1290

GOF 1.006 1.023

Largest diff. peak and hole, e/Å3 2.269 and −2.512 2.287 and −2.157
a R1 = Σ||Fo|−|Fc||/Σ|Fo|. b wR2 = {Σ[w(Fo

2 − Fc
2)2]/Σ[w(Fo

2)2]}1/2.

4. Conclusions

Two decanuclear clusters, [Ag10(Se){Se2P(OiPr)2}8] (2) and [CuxAg10-x(Se){Se2P(OiPr)2}8]
(x = 0–7) (3), have been successfully synthesized via the cluster-to-cluster transforma-
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tion from the starting reagents, [M7(H)(dsep)6], under thermal condition. The newly
developed synthetic methodology provides a facile way to produce both homometal-
lic and heterometallic chalcogenide clusters. Surprisingly, although the composition of
[Ag10(Se){Se2P(OiPr)2}8] (2) is almost identical to the previously published [Ag10(Se){Se2P
(OEt)2}8] (1), the whole molecular shape in 2 is completely different from 1. This can be
attributed to the use of different synthetic methods resulting in structural diversity. We
also identify polymorphism on 2, where two pseudo symmetric [Ag10(Se){Se2P(OiPr)2}8]
clusters are co-existed in the same asymmetric unit. Furthermore, a bimetallic chalco-
genide cluster 3 can be elegantly generated by using a bimetallic hydride as the precursor.
It is anticipated that a variety of metal chalcogenide clusters can be synthesized via a
cluster-to-cluster transformation in the near future.

Supplementary Materials: The following are available online. X-ray refinement, NMR spectra and
photophysical data. Figure S1: The M10(Se) framework of [3a]0.6[3b]0.4, (thermal ellipsoid plots were
drawn at the 30 % probability level), with the refined occupancy ratios on each position. Figure S2: (a)
The schematic representation of Ag8(Se) skeleton in 1 and (b) M8(Se) skeleton in [3a]0.6[3b]0.4. Figure
S3: 31P{1H} NMR spectrum of 2. Figure S4: 77Se NMR spectrum of 2. Figure S5: 77Se NMR spectrum
of 2. Figure S6: 1H NMR spectrum of 2. Figure S7: The magnified time-dependent 1H NMR spectrum
during the reaction of 2. Figure S8: 31P{1H} NMR spectrum of 3. Figure S9: 1H NMR spectrum of 3.
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