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Abstract

The extent and strength of epistasis is commonly unresolved in genetic studies, and
observed epistasis is often difficult to interpret in terms of biological consequences or overall
genetic architecture. We investigated the prevalence and consequences of epistasis by
analyzing four body composition phenotypes—body weight, body fat percentage, femoral
density, and femoral circumference—in a large F2 intercross of B6-/it/lit and C3.B6-lit/lit
mice. We used Combined Analysis of Pleiotropy and Epistasis (CAPE) to examine interac-
tions for the four phenotypes simultaneously, which revealed an extensive directed network
of genetic loci interacting with each other, circulating IGF1, and sex to influence these phe-
notypes. The majority of epistatic interactions had small effects relative to additive effects of
individual loci, and tended to stabilize phenotypes towards the mean of the population rather
than extremes. Interactive effects of two alleles inherited from one parental strain commonly
resulted in phenotypes closer to the population mean than the additive effects from the two
loci, and often much closer to the mean than either single-locus model. Alternatively, combi-
nations of alleles inherited from different parent strains contribute to more extreme pheno-
types not observed in either parental strain. This class of phenotype-stabilizing interactions
has effects that are close to additive and are thus difficult to detect except in very large inter-
crosses. Nevertheless, we found these interactions to be useful in generating hypotheses
for functional relationships between genetic loci. Our findings suggest that while epistasis is
often weak and unlikely to account for a large proportion of heritable variance, even small-
effect genetic interactions can facilitate hypotheses of underlying biology in well-powered
studies.

Author Summary

The role of statistical epistasis in the genetic architecture of complex traits has been of
great interest to the genetics community since Fisher introduced the concept in 1918.
However, assessing epistasis in human and model organism populations has been
impeded by limited statistical power. To mitigate this limitation, we analyzed bone and
body composition traits in an unusually large mouse intercross population of over 2000
mice, paired with a recently-developed computational approach that leverages
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information to detect interactions across multiple phenotypes. We discovered a large net-
work of highly significant genetic interactions between variants that influence complex
body composition traits. Although epistasis was abundant, the interaction network was
dominated by epistasis that stabilizes phenotypes by reducing phenotypic deviation from
the parent strains. Nevertheless, the observed network provides an overview of genetic
architecture and specific hypotheses of how QTL combine to affect phenotypes. These
findings suggest that epistatic effects are generally of lesser magnitude than main QTL
effects, and therefore are unlikely to account for major components of variance, but also
reinforce genetic interaction analysis as a potent tool for dissecting the biology of complex
traits.

Introduction

The relevance of epistasis in genetic architecture is yet unresolved. In genetic screens of model
systems, the evidence for genetic interaction is abundant [1-4] and has been proven biologi-
cally relevant [5-7]. However, the situation is less clear in human populations as epistasis is dif-
ficult to detect with confidence due to multiple testing across a high number of variants,
underpowered samples, evolutionary history, imperfect model selection, or unmeasured con-
founding variables or noise [8, 9]. While most studies detect only additive variance, recent
studies have demonstrated a role of epistasis in the genetics of gene expression [10, 11] and
occasionally link genetic interactions to disease [12]. Thus the extent to which genetic interac-
tions contribute to unexplained variance or provide biological insight in population-based
studies is unclear. One strategy to address this problem is controlled experiments in mamma-
lian model systems, in which genotypes are artificially determined and environmental variation
is minimized [13-16].

In this work, we used a multi-trait strategy to investigate the role of epistasis in regulating
complex traits in a large mouse intercross. Bone mineral density (BMD) is a complex trait regu-
lated by the interaction of many genetic and environmental factors [17-19], and is the best
known surrogate measure of fracture risk in patients with osteoporosis [20-22]. Human and
rodent studies have implicated many candidate quantitative trait loci (QTL) in influencing
BMD [17-19, 23-27]. Many of these loci are pleiotropic and have been found to influence
body weight [28], body fat [29-31], and bone size [32] in addition to bone density. Epistatic
interactions are also common among loci affecting BMD [26, 33, 34]. A deep understanding of
the genetic regulation of BMD, as well as possible intervention points for therapeutics, requires
addressing this complex genetic architecture. Assessing genetic interactions and their relation
to multiple phenotypes provides an overall picture of the genetic network regulating BMD and
related phenotypes. We used a recently developed method, Combined Analysis of Pleiotropy
and Epistasis (CAPE) [35], to integrate information across multiple phenotypes to infer
directed genetic interactions between loci.

We integrated genetic interactions influencing BMD, femoral circumference, body weight,
and body fat percentage in a mouse intercross population [36-39]. In particular, we were inter-
ested in investigating the genetic architecture of these phenotypes in a population with reduced
levels of circulating insulin-like growth factor I (IGF1). IGF1 is a major factor involved in bone
development and mineralization [40-43]. Analysis in a population with reduced IGF1 can
reveal aspects of bone density that vary at severely reduced levels of IGF1 [44], thereby
unmasking more subtle genetic loci involved in this phenotype [45, 46]. To avoid major effects
of the IGF1/growth hormone (GH) axis we used mice homozygous for the “little” or lit
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mutation [47], a null mutation in the gene coding for growth hormone releasing hormone
receptor (Ghrhr). GH levels, and consequently circulating IGF1 levels, in mice homozygous for
the /it mutation are reduced to about 10% of wild type levels [37, 47, 48]. These mice also
exhibit reduced growth, increased fat mass, and decreased bone mass relative to heterozygotes
and wild type mice [49]. Thus /it homozygotes offer the opportunity to study the genetics
related to both bone growth and body fat composition in a population in which one of the
major hormonal axes regulating these phenotypes is greatly reduced.

A population of 2054 F, male and female mice derived from a cross between B6-/it/lit and
C3.B6-lit/lit parental strains [36-39] were analyzed. Compared to B6 mice, C3H mice have 20-
30% higher circulating IGF1 levels, higher volumetric bone density, higher rates of bone forma-
tion, lower rates of bone resorption, and greater breaking strength of bones [50-52]. These
strain differences persist in the lit/lit homozygotes [52]. We investigated the genetic interac-
tions influencing body weight, percent body fat, femoral circumference and femoral density in
the near absence of one of the major contributors to these phenotypes.

Materials and Methods
Ethics Statement

All animal procedures followed Association for Assessment and Accreditation of Laboratory
Animal Care guidelines and were approved by Institutional Animal Care and Use Committee
(The Jackson Laboratory, Protocol #99111).

Mice

Inbred mouse strains used in this study were obtained from our research colonies at The Jack-
son Laboratory, Bar Harbor, Maine. Mice were produced and housed as described in [76].
Briefly, the mice were housed in same-sex groups of 2-5 per cage in a 14:10 light:dark cycle.
The mice had free access to acidified water (pH 2.5 with HCI to retard bacterial growth) and
irradiated NIH 31 diet (Purina Mills International, Brentwood, MO).

Construction of Congenic Strain and F Intercross

To investigate heritable factors that control BMD in a model where circulating IGF1 levels are
reduced, we used a spontaneous mouse mutation, /it, with a non-functional growth hormone
releasing hormone receptor (GHRHR). We generated a congenic strain by transferring the /it
mutation from the low-BMD C57BL/6] (B6) strain on which it arose to the high-BMD C3H/
HeJ (C3H) strain by backcrossing for eighteen generations. In both C57BL/ 6J-Ghrhr"™"] (B6-
lit/lit) and C3H.B6-Ghrhr"™"/] (C3.B6-lit/lit) mice, circulating GH is undetectable, serum
IGF1 is low, and femoral volumetric BMD by pQCT, femur length, and body mass are reduced
compared to heterozygous lit/+ mice [37, 47, 48]. Although C3.B6-lit/lit mice are of the same
body weight and femur length as B6-/it/lit mice, C3.B6-lit/lit mice have higher BMD. Crosses
between B6-lit/lit and C3.B6-lit/lit F; mice produced the 1008 male and 1062 female F, GH/
IGF1 deficient mice analyzed here.

Genetic Analyses

Mice were genotyped at 100 markers using PCR of oligonucleotide primer pairs (MIT markers,
www-genome.wi.mit.edu/cgi-bin/mouse/index) from Research Genetics (Birmingham, AL) as
described in [76, 77]. The pairs amplified strain-specific sequence length polymorphisms,
allowing identification of parental strain of origin. Genotypes at each locus were identified as
B6/B6, B6/C3H, or C3H/C3H.
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Phenotype Measurements

Body weight and femur length. Anesthetized mice were weighed using a routinely cali-
brated Ohaus electronic scale. Femur length was measured using a digital caliper (Stoelting,
Wood Dale, I11).

Percent body fat by PIXImus. Data were collected on anesthetized mice using the PIXI-
mus small animal DEXA system (LUNAR, Madison, WI), software version 1.43.036.008 as
described in [78]. The machine was calibrated daily with a phantom of known density. Mea-
surements of BMD showed low variability: less than 1% for whole body measurements, and
about 1.5% for specialized regions. Body fat (BF) and percent body fat (%BF) were derived
from measurements of total body weight (TBW), total lean mass (TLM), and total body min-
eral content (TBM) as follows: BF = TBW—(LBM + WBM); %BF = BF/TBW.

Femoral BMD and periosteal circumference by pQCT. The XCT 960M was used to mea-
sure total BMD at 2-mm intervals as described in [77] and [79]. Periosteal circumference was
determined at midpoint of the total femur length. Precision of these measurements was deter-
mined to be 1.2% through repeated measurement of a single femur. Hydroxyapatite standards
(0.050-1.000 mg/mm®) were used for calibration. The correlation between measured density
and actual standard density was r = 0.997.

Serum IGF1. Serum IGFI was measured by radioimmunoassay (RIA) (ALPCO, Wind-
ham, NH) as described in [80].

Combined Analysis of Pleiotropy and Epistasis

CAPE is a strategy that detects epistasis and interprets it in terms of directed enhancing and
suppressing influences between genetic loci [81]. It has been released as an R package suitable
for mouse intercross studies [35]. The method uses regression on pairs of loci to detect interac-
tion effects from each locus pair on each phenotype. It then combines model parameters across
phenotypes to infer directed, QTL-to-QTL influences that replace the interaction effects on
each phenotype. The result is a pair of directed coefficients modeling how the two loci influ-
ence each other’s activity, rather than how each pair independently affects each phenotype.

We began the analysis by using R/qtl [82] to impute psuedomarkers in between each mea-
sured marker, increasing the number of markers from 100 to 194. We normalized all traits
(body weight, body fat percentage, femoral density, and femoral circumference) using rank Z
normalization. We then decomposed the normalized traits using singular value decomposition
(SVD) to obtain orthogonal eigentraits (ETs) that combined common signals across all pheno-
types. All markers were used in the pair-wise interaction scans. However, we filtered marker
pairs tested by linkage disequilibrium (LD) to avoid false positive interactions. We excluded all
pairs with genotype Pearson correlation r < 0.5. This reduced the number of pairs tested from
19,110 (all pairs from 194 markers and 2 covariates) to 18,576 pairs. Linear regression was then
performed on all filtered pairs of markers 1 and 2:

2
Ul = ﬂjo + Z‘xc,iﬁ]e + xl,iﬁjl + x2,iﬁ]2 + xl‘ix2,iﬁ]12 + ¢
=1 N—— N——
N e’ main effects interaction
covariates

where U represents ET's, and € is an error term. The index i runs from 1 to the number of indi-
viduals, and j runs from 1 to 3 (the number of ETs.) x; is the probability of the presence of the
C3H allele for individual i at locus j.

For each pair of markers, the regression coefficients are collected for all ETs and reparame-

trized to two new terms (6, and &,). These terms represent the additional activity of each
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variant when the other is present. For example, 6, is the additional effect that variant 1 has on
each phenotype when variant 2 is present. It should be noted that the & terms describe the
interaction coefficient between the marker pair independent of phenotype. The & are deter-
mined from the pairwise regression parameters via pseudoinversion as follows:

Bop1 s,

0,

[ ]— g ol |
g el g

To convert the & terms to directed influence variables, the following transformation was
applied:

-1

0, = my(1+9,), 6, =my(1+0,)

The sign of the m,, and m,, terms indicates how each marker influences the other in terms of
enhancement (positive) or suppression (negative). A negative value for m,, indicates that vari-
ant 1 reduces the activity of variant 2 on all phenotypes, whereas a positive value increases the
activity. To estimate variances of the new model parameters, error estimates were propagated
via second-order Taylor expansion [81, 83].

Permutation tests were used to calculate p-values for all model parameters. The pair of
markers being tested was permuted together relative to the covariates [84]. By combining per-
mutations across all marker pairs, we saved computation time while generating a single null
distribution indistinguishable from the null distribution generated by repeatedly permuting
each single pair. This null distribution was composed of 164,679 total permutations represent-
ing 3 permutations for each of 54,893 locus pairs.

Main effect significance was also determined through permutation testing. The maximum
main effect of each locus across all pairwise contexts was selected as the main effect for that
locus. All p-values were corrected for multiple testing using the Holm step-down procedure
[85] and all variant-to-ET main effects were translated to variant-to-phenotype effects through
multiplication by the singular value matrices from the original SVD.

Grouping Linked Markers

To define distinct QTL regions for the interaction network, adjacent markers were combined
into linkage blocks. We calculated the correlation matrix for all markers on each chromosome.
We used this similarity matrix as an adjacency matrix to construct a weighted network depict-
ing the similarity between all pairs of markers on a single chromosome. Using the fastgreedy
community detection algorithm [86] in R/igraph [87], we then calculated the community
membership of the vertices in the network. We assigned adjacent markers in the same commu-
nity to a single QTL region. This process ensured a robust grouping of markers based on their
genotypic similarity. A block was considered to have a significant effect on a phenotype if one
or more of the resident markers had a significant effect. After this point, we refer to linkage
blocks with significant associations as QTL or loci. See S3 Table for markers included in each
block.

Identification of Candidate Genes

Some of the groups of linked markers interacted significantly with IGF1, which is a sufficiently
specific interaction to allow a candidate gene search. For each QTL that interacted significantly
with IGF1 we generated a list of potential candidate genes by finding all genes in the QTL with
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annotations for bone density. To determine whether any of these genes interacted with IGF1,
we used the Integrative Multi-species Prediction tool [88] to generate a network between the
query genes and IGF1. We included the maximum of 50 additional genes and adjusted the con-
fidence of the interactions until IGF1 was included in a subnetwork of greater than two genes.
From this subnetwork, we extracted genes in the original QTL region, but which were not nec-
essarily included the original query relating to bone density. Candidate polymorphisms in C3H
alleles of these genes were identified using the Sanger SNP database [54]. Furthermore, we used
previously published expression data from hepatic tissue of chow-fed B6 and C3H mice [56] to
identify genes that were differentially expressed between the strains and pairs of genes that had
correlated expression. Because most observed regulation of gene expression is in cis, it is rea-
sonable to assume that the genetic variation that influences gene expression will influence
expression levels similarly wherever the gene is expressed. Differential expression was deter-
mined with Student’s ¢-test, and significance of correlation was the significance of the Pearson
correlation coefficient [89].

Motif Analysis

We examined the enrichment of three-node topological patterns, or network motifs [58], in
the set of all interactive genetic models. Although each interaction and main effect was inde-
pendently derived, we grouped the significant effects into a network to detect general patterns.
We combined interactions with main effects to generate three-node motifs, which included
two interacting variants and a single phenotype. We counted enhancing and suppressing
motifs either with two main effects of the same sign (coherent), or two main effects of the
opposite sign (incoherent). To determine whether each type of motif was significantly enriched
or depleted, we performed permutations by shuffling the signs of the significant interactions
independently of the signs of the main effects. This permutation scheme preserved the topol-
ogy of the network thereby acknowledging constraints caused by shared edges between motifs.
By permuting the main effect edges independently of the interaction edges, we prevented spuri-
ously enriching for enhancing or suppressing interactions simply because there were many
negative or positive main effects on a given phenotype. We permuted the edge signs 100,000
times to generate a null distribution for each type of motif. The directions of the interactions
were not taken into account for this analysis. We used linkage blocks as interacting units and
included all interactions and main effects that were significant at a Holm-corrected p < 0.01.

Results
Single-Locus Effects on Phenotypes

We used linear regression to determine the association of each locus with each phenotype (Fig 1,
S4 Table). Each of the phenotypes had multiple associated QTL, and these QTL often overlapped
across multiple phenotypes. For example, femoral density and femoral circumference shared a
large QTL on Chr 4, and body weight, percent fat and femoral circumference showed overlap-
ping QTL on Chr 17. These overlapping QTL indicate the possibility of common genetic factors
underlying multiple phenotypes, such that information can be combined across multiple pheno-
types to gain information about individual loci. Unique QTL were also observed, providing non-
redundant information to discern genetic factors with phenotypic specificity.

Single-Locus Effects on Eigentraits

We decomposed the normalized, mean-centered phenotypes into eigentraits (ETs) (Fig 2A).
The first ET represented an average of femoral circumference, percent body fat and body
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Fig 1. Single-locus associations with phenotypes. LOD scores for each locus and each phenotype for both males (blue) and females (brown). There are
significant QTL for each of the phenotypes, and males and females tend to share QTL.

doi:10.1371/journal.pgen.1005805.g001
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Fig 2. Single-locus associations with eigentraits. (A) Contributions of each phenotype to each eigentrait (ET). Brown squares indicate a positive
contribution while blue squares indicate a negative contribution. Gray bars show the percent variance accounted for by each ET. (B) Standardized effects (5/
o) from the linear regression performed on each locus and each ET, with sex and IGF1 as covariates. There are significant QTL for each of the ET. Horizontal
line represents the significance level at the permutation-based p = 0.05.

doi:10.1371/journal.pgen.1005805.9002

weight and captured 52% of the overall variance. The second ET represented the contrast
between femoral circumference and femoral density and captured 25% of the total variance.
The third ET captured 19% of the total variance and represented a contrast between femoral
circumference and percent body fat. The fourth ET captured only 4% of the total variance, and
described a contrast between body weight and percent fat. Because this ET captured a small
amount of the total variance, did not include strong contributions from the bone phenotypes,
and may add noise to the analysis, we excluded it from this analysis.

Single-locus associations with each ET detected multiple QTL (Fig 2B). Since ET are linear
combinations of traits, each QTL indicates a potentially pleiotropic association with varying
effect strengths on each trait. For example, data for body weight, percent fat and femoral cir-
cumference had overlapping QTL on Chr 17. These phenotypes also contributed substantially
to ET1, and there was a corresponding significant QTL for ET1 on Chr 17 representing the
common QTL.

An Extensive Network of Weak Genetic Interactions Influences Bone
and Body Composition

CAPE analysis of the first three ETs produced a large network of genetic interactions (Fig 3).
The high-confidence network (p < 0.0005) consisted of a single connected component
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doi:10.1371/journal.pgen.1005805.g003

including 67 QTL linked by 102 directed interactions. Each interaction was directed from a
source locus to a target locus and was either suppressing (negative), or enhancing (positive). In
suppressing interactions the presence of the C3H allele at the source locus reduced the pheno-
typic effect of the C3H allele at the target locus regardless sign of the main effect. In enhancing
interactions the presence of the C3H allele at the source locus increased the phenotypic effect
of the C3H allele at the target locus regardless of the sign of the main effect. The QTL were dis-
tributed across the four phenotypes as follows: body weight had 13 QTL; percent fat had 11
QTL; femoral density had 19 QTL; and femoral circumference had 24 QTL. Among the inter-
actions between QTL, 29 were suppressing and 73 were enhancing.

We also used standard linear regression to assess the effect of each marker pair interaction
on each normalized phenotype. We calculated the pairwise interaction coefficients for all
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doi:10.1371/journal.pgen.1005805.9004
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marker pairs including the two covariates, sex and circulating IGF1 levels. We calculated
empirical p-values from 50,000 permutations and corrected the p-values for multiple testing
using the Holm step-down procedure. No marker-marker or marker-covariate interactions
were significant using the standard epistasis analysis after correction for multiple testing.

Sex Interacts Significantly with Genetic Loci

Sex had significant main effects on all phenotypes. Males had substantially higher body weight
(males: 22.0 g, females: 17.5 g; p < 2 x 107'°) and percent body fat (males: 42%, females: 36%;
p <2 x107"'%). Males also had slightly, but significantly higher femoral circumference (males:
3.81 mm, females: 3.78 mm; p = 2.9 x 10*). Females had significantly higher BMD (males:
0.49 mg/mm?>, females: 0.51 mg/mm?; p <2 x 107'°).

We found several significant sex-QTL interactions, all of which were enhancing (Fig 3C).
From the single-locus regressions, potential sex-interacting loci were seen on Chrs 1, 6, 7, 10,
and 14 (Fig 1). We tested these conditional associations directly and confirmed genetic interac-
tions with sex on Chrs 1, 7, 10 and 14. For example, there was a larger sex difference in femoral
density among animals homozygous for the C3H allele at the Chr 1 locus than among animals
homozygous for the B6 allele (Fig 4). Thus the C3H status at this locus enhanced the negative
effect of the male sex on femoral density, as well as the positive effect of the male sex on cir-
cumference, giving females with this genotype increased bone density and reduced circumfer-
ence relative to males.

An apparent locus on Chr 6 (Fig 1) was not identified as interacting significantly with sex
because a consistent directional model could not be fit across all phenotypes. Several markers
on Chr 6 had relatively large interaction coefficients in the linear regression with sex, but none
of these interactions were significant after correction for multiple testing.

Residual IGF1 Interacts with Genetic Loci

Like sex, IGF1 had significant main effects on all phenotypes. Higher levels of circulating IGF1
were associated with higher body weight, body fat percentage, femoral density, and femoral cir-
cumference. IGF1 was also found to interact significantly with several QTL (Fig 3C). Interest-
ingly, all interactions from IGF1 to loci were suppressing, i.e. IGF1 suppressed the effects of
these loci. For example, one Chr 9 QTL had negative effects on both femoral density and femo-
ral circumference when IGF1 levels were low, but at high levels of IGF1 this effect was sup-
pressed, and the QTL had a positive effect on these phenotypes (Fig 5). Conversely, this locus
also enhanced the effects of IGF1. Looking at body weight as a function of IGFI, for example, it
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Fig 5. QTL interaction with IGF1. The effects of IGF1 are enhanced by QTL 9.2. IGF1 has a small positive effect on each phenotype in animals
homozygous for the B6 allele at this locus. This can be seen in the positive slope of the blue line in each panel, which shows that each phenotype increases
with increasing levels of IGF1. The effect of IGF1 on all phenotypes except femoral density is enhanced in heterozygotes (green line) and enhanced further in
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Shaded regions show 95% confidence interval for each slope.

doi:10.1371/journal.pgen.1005805.g005

can be seen that in the B6 homozygotes, IGF1 levels had a positive effect on body weight. There
was a slightly larger effect in the heterozygotes, and the largest positive effect of IGF1 on body
weight was in the C3H homozygotes (Fig 5). This general pattern is replicated across all

phenotypes.

The molecular specificity of an interaction with IGF1 offered the opportunity to search for
candidate genes in QTL interacting with IGF1, even though the regions were large (Methods).
The second QTL on Chr 10 yielded promising candidates. Using MouseMine, we found 19
genes in the region with annotations to bone density [53]. We used these genes as a query gene
set in the IMP tool. The IMP tool determines the likelihood that pairs of genes in a query set
interact. It uses databases of known physical interactions, genetic interactions, and correlated
expression to pull in additional genes though which genes in the query set may interact. The
result is a network of high-confidence interactions that relate the query genes to each other.
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IMP found a network of 45 genes that linked IGF1 with four bone density-related genes (Esr1,
Nrih4, Kitl, Ctgf) from the query gene set. The minimum confidence for interactions between
gene pairs in this network was 91%.

All four genes contain SNPs predicted to be functionally relevant between B6 and C3H [54],
including splice site variants, missense variants and variants in regulatory regions (S5 Table).
One of the genes, Kitl was differentially expressed in hepatic tissue between C3H and B6, with
C3H mice showing lower expression (Student’s ¢-test, p = 0.012) [55, 56]. Kitl expression also
showed a strong negative correlation with IgfI expression (r = —0.67, p = 0.016) [55, 56]. These
findings allow us to hypothesize that Kitl is a potentially causative gene in QTL 10.2. Another
potential candidate in this region, Biccl, was recently found to be related to bone density in
mice [57]. However, it was not differentially expressed in the hepatic tissue of C3H and B6
mice (Student’s ¢-test, p = 0.25) (S5 Table), and thus we consider it a less likely candidate in the
context of this study. Other candidate regions did not reveal promising causative candidates
when analyzed using the same methods.

The Network Is Enriched for Stabilizing Motifs

In addition to individual interactions, we examined the enrichment of three-node patterns, or
network motifs [58] (Methods). Each motif consists of two interacting genetic loci and an
affected phenotype. At significance p < 0.01, we identified a total of 116 motifs influencing
body weight, 84 motifs influencing percent fat, 132 motifs influencing femoral density, and 274
motifs influencing femoral circumference (Fig 6). Motifs are classified as coherent, i.e. the
main effects are of the same sign, or incoherent, i.e. the main effects are of opposite signs. In
addition, motifs can be either suppressing, meaning that there is a suppressing interaction
between the genetic loci, or enhancing, with an enhancing interaction between the loci (Fig 6).
These different classes of motifs may speak to the general structure of the underlying biological
interactions [59-63]. For example, a motif with coherent main effects and a suppressing inter-
action between them indicates genetic redundancy and may result from proteins operating in
series in the same pathway or physical interaction between gene products [60, 61]. Alterna-
tively, a synergistic interaction exists in a coherent motif with an enhancing interaction
between the variants. In this case, the variants and the interaction between them all push the
phenotype in the same direction. Such an interaction may indicate regulatory interactions
between parallel regulatory pathways that affect the same process [60].

These motifs can be divided into those that stabilize phenotypes and those that destabilize
phenotypes. For example, incoherent enhancing motifs tended to have a stabilizing effect on
phenotype because the main effects drove the phenotype in opposite directions. This was the
largest class of motif represented in our network (42% of total motifs detected) and was signifi-
cantly enriched across all phenotypes except femoral density (Fig 6). In contrast, coherent
enhancing motifs tended to be destabilizing. The main effects of the interacting loci both drove
the phenotype in the same direction, and the enhancing interaction between these loci drove
the phenotype further in the same direction, generating extreme phenotypes. These enhancing
coherent motifs made up only 17% of the total motifs detected and were significantly depleted
across all phenotypes in our network (Fig 6).

Motifs with suppressing interactions were more evenly distributed. Coherent suppressing
motifs, which tended to stabilize phenotypes, made up 33% of the total motifs and were
enriched for all phenotypes except percent fat. Incoherent suppressing motifs, which tended to
be destabilizing, were the smallest class of motif (8%) and were enriched in body weight and
femoral circumference (Fig 6). In summary, the network overall consisted of weak interactions
(mean f = 0.2520.16) compared with the additive effects (mean § = 0.52+0.36), and the
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doi:10.1371/journal.pgen.1005805.g006

majority of the interactions (59%) were enhancing. Further, the two largest motif classes, mak-
ing up 75% of the total motifs, tended to be stabilizing.

Discussion

Bone density and body composition phenotypes, such as percent body fat, are complex traits
influenced by many genetic variants, both shared and distinct. Here we used combined analysis
of pleiotropy and epistasis (CAPE) to investigate how genetic loci interact in a large population
of mice to influence femoral density, femoral circumference, body weight, and percent body
fat. Using this exceptionally well-powered mouse intercross we detected many main-effect and
interacting QTL associated with these traits and found an extensive network of genetic loci
influencing the four phenotypes. These genetic interactions were not detectable through stan-
dard regression-based epistasis analysis. We were also able to infer both the directionality and
sign of the interactions, which improved our ability to identify candidate QTL genes and pro-
vided a uniquely broad view of the genetic architecture of bone and body composition pheno-
types. One of the notable features of the network was an asymmetric distribution of enhancing
and suppressing interactions, which was apparent for interactions between QTL, as well as for
QTL interactions with sex and circulating IGFI.
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13/22



@’PLOS | GENETICS

Epistasis Stabilizes Phenotypes

Sex showed a strong bias in both the directionality and sign of interactions (Fig 3B). Most (8
of 10) interactions were QTL that enhanced the phenotypic effects of the male sex on each phe-
notype. For example, the presence of the C3H alleles in QTL 1.1 increased the positive effect
that the male sex had on weight, percent fat, and femoral circumference, as well as the negative
effect the male sex had on femoral density. The remaining interactions (2 of 10) showed effects
in the opposite direction. For example, being male enhanced the positive main effect that QTL
4.2 had on femoral circumference and density (Fig 3C). Sex and sex hormones are known to
influence bone growth and density [64-66] and genetic loci that interact with sex to influence
bone phenotypes have also been previously identified in rodent models [23, 27, 33, 67, 68].
That the QTL were the sources and sex was the target of the majority of these interactions high-
lights how CAPE determines directionality and interpretation of interactions. Sex was widely
pleiotropic, affecting all phenotypes significantly (Fig 3A). An interaction in which sex is a tar-
get implies that the QTL influences all of these phenotypes to be identified by CAPE via its
modifications on sex. Conversely, sex can target a non-pleiotropic QTL to influence individual
phenotypes or a subset of phenotypes. It is possible that the sex-enhancing QTL contain vari-
ants in endocrine genes that globally affect sex effects. The two sex-enhanced QTL (4.2 and
13.1), which reciprocally enhance sex effects, are loci for which the uniform enhancement of
the sex effects was insufficient to fit all phenotypes simultaneously. These QTL are therefore
more likely to be involved in processes that differentially affect the phenotypes, suggesting
more specific roles in each phenotype that are responsive to sex difference. These findings
imply that interactions between sex and QTL are commonly due to genes that lie “upstream”
of processes that underlie sexual dimorphism, rather than “downstream” genes with functions
that are altered by sex hormones.

Circulating IGF1, which is reduced to 10% of wild type levels in this lit/lit population, had
both main effects and interaction effects. It suppressed the effects of four loci, whereas four loci
enhanced the effects of circulating IGF1 (Fig 3C). In contrast to sex, the interactions that IGF1
participates in are relatively balanced between incoming and outgoing interactions. This bal-
ance may reflect the fact that, unlike sex, IGF1 is a specific protein that physically interacts
with other proteins. We interpret the role of the loci suppressed by IGF1 to be compensatory
pathways influencing bone density when IGF1 levels are extremely low. At higher levels of cir-
culating IGF1 the effects of these loci are diminished because the role of the causal genes
becomes less relevant. For example, QTL 7.1 has a positive main effect on femoral density,
which is suppressed by the presence of density-promoting IGF1. Conversely, the loci that
enhance the effects of IGF1 may be targets of IGF1 that act to increase bone density and other
phenotypes when IGF1 is present. These QTL, e.g. QTL 10.2 discussed below, can therefore be
interpreted to contain genes in pathways that regulate and/or respond to IGF1 signaling. We
note that one QTL, Chr 9.2, acts as an enhancer of IGF1 and is suppressed by IGF1 (Fig 3C).
This QTL may therefore contain multiple genes involved in both IGF1 pathways and compen-
satory pathways, or be the result of a gene with an IGFI signaling role that also serves to trigger
alternative pathways in the absence of circulating IGF1.

Although our QTL intervals were too large to decisively identify positional candidate genes,
results for main effects and genetic interactions can be combined with prior data to reason
about potential candidates. As an example, our model for QTL 10.2 interaction with IGF1 illus-
trates how hypotheses of causal QTL genes can be generated by requiring consistency in both
main effects and interactions. Of the genes in QTL 10.2, Kitl had the best evidence to suggest a
role in interacting with IGF1 to influence bone density. In our study we found that the C3H
allele at QTL 10.2 had a negative main effect on femoral density. Prior work determined that
hepatic Kitl expression is lower in C3H mice than in B6 mice (Student’s t-test, p = 0.012) [56]
(Fig 7A) and that low expression is potentially associated with low femoral density [57]. Taken
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between the Kit/ C3H allele (green circle), the Kitl and Igf1 transcripts (teal pentagons), and femoral density. The C3H allele of Kit/ decreases the gene’s
expression resulting in the QTL 10.2 negative effect on femoral density. Independently, the /it mutation reduces the levels of Igf1 transcript and circulating
IGF1. Residual Igf1 transcript is negatively regulated by the Kitl transcript in B6 mice, but the reduced Kitl transcript levels in C3H mice permit increased IGF1
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doi:10.1371/journal.pgen.1005805.g007

together these data suggest that the C3H allele of Kitl may be a loss of function variant that
reduces Kitl transcript levels and consequently femoral density. Furthermore, this hypothesis
can account for the directional interaction between QTL 10.2 and IGF1, in which the C3H
allele at QTL 10.2 enhanced the positive effects of IGF1 on femoral density. The hepatic expres-
sion study found that Kitl and IgfI are negatively correlated (r = —0.67, p = 0.016) (Fig 7) [56]
(Fig 7B). We can therefore hypothesize that a decrease in Kitl expression from the C3H allele
corresponds to a rise in IGF1 activity and consequently its positive effects on femoral density.
Combining the evidence for an interaction between Kitl and circulating IGF1 with the main
effects of Kitl and QTL 10.2 suggests that increased Kitl transcript acts to reduce IGF1 activity
in the reference B6 genotype (Fig 7C). When the C3H allele is present Kit! expression
decreases, allowing residual IgfI transcript levels to remain relatively high and thereby enhanc-
ing the effect of IGF1 on femoral density in C3H mice relative to B6 mice. While speculative,
this capacity to generate specific molecular hypotheses by combining genetic interactions with
prior molecular results illustrates the importance of genetic interactions in hypothesis genera-
tion, even when they are a minor correction to additive effects. Such analysis is expected to be
especially effective in a study with greater genetic mapping resolution and fewer candidate
genes per QTL.

Our interaction network was derived in a population homozygous for the /it mutation, a
receptor variant that perturbs IGF1 levels. One possible consequence is that the measured phe-
notypes have been decanalized and some of the QTL we observed may correspond to cryptic
genetic variation [45, 46, 69] that only influence traits in the presence of the lit/lit mutation.
This release of cryptic variation may be due to IGF1 effects being reduced to the point that
minor genetic effects become observable. Alternatively, low levels of IGF1 induce activity in
pathways that are not used in non-/it mice for maintaining growth and bone density, thereby
making variation in the genes in these pathways relevant [46]. Potentially cryptic variants
could be identified as those which do not replicate in a similar analysis of standard B6 and
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doi:10.1371/journal.pgen.1005805.g008

C3H strains, although resolution of compensatory pathways would likely require a conditional
Igf1 knockout.

Overall, the QTL-QTL interaction network in this study had significant enrichment of
enhancing interactions (Fig 6). Rather than instances of classic genetic synergy in which two
variants combine to amplify a common effect, these enhancing interactions were mostly
between variants with incoherent (opposing) main effects. We interpret these interactions as a
signature of similar phenotypes between B6 and C3H strains that arise from different combina-
tions of alleles. When alleles from two different strains are recombined in novel ways, unantici-
pated variation is introduced and extreme phenotypes result (Fig 8). Thus our enhancing
interactions indicate a reduction of extreme phenotypes when both loci are homozygous for
either parental allele. This moderating effect only occurs if the interaction between incoherent
variants is enhancing. For any given phenotype an enhancing interaction from a positive main
effect to a negative main effect is equivalent to a suppressing interaction in the reverse direction
(Fig 6). However, when this model is applied across multiple phenotypes it is more likely to
lead to high phenotype variability in the double homozygotes. This is because the suppressing
QTL reduces an opposing main effect thereby favoring its own main effect. In contrast, in the
enhancing model the enhancing QTL increases the opposing effect, thus balancing the effect of
the overall interaction and bringing the phenotype toward the parental mean.

Although additive genetic variance is usually sufficient to equalize opposing QTL effects,
when the positive and negative main effects are of unequal magnitude, genetic interactions are
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required to stabilize the phenotypes at the levels seen in the founders. Our network outcomes
suggest that genetic interactions in intercross populations will commonly have relatively weak
effects, since they are a fractional correction to main effects. This can be contrasted with
extreme phenotypes that arise from synergistic (coherent enhancing) interactions in which
interaction effects are of greater magnitude than main effects, such as in the classic case of
genetic buffering [70]. These interactions are significantly depleted in our network.

Enrichment for motifs that drive phenotypes toward founder values is consistent with previ-
ous observations of phenotypic variation in recombinant populations. In populations of mice
and Drosophila with introgressed genomic regions, simple additive contributions from all vari-
ants would result in phenotypic variance orders of magnitude greater than is observed between
founders. That the founders have reduced phenotypic variance between them suggests that
most interactions are less than additive [71-74]. Here, we see an enrichment of motifs leading
to a reduction of extreme phenotypes, namely, suppressing coherent motifs, and enhancing
incoherent motifs. While these effects are often weaker than main effects and therefore may
not substantially improve the heritability accounted for, they nevertheless indicate genes acting
together in a common pathway or process [60, 61]

Our analysis of a large intercross population has revealed a number of features that may be
generalized to the genetic architecture of complex traits. First, we have found that a sufficiently
powered study paired with a multi-trait analysis method can reveal a large network of genetic
interactions between QTL. The systematic patterns in this network, including interactions with
sex and a molecular marker, suggest that the interactions are signatures of the pathways and
processes involved in the regulation of complex physiological traits. Second, we have found
that the most common type of genetic interaction is a fairly subtle signal arising from allelic
combinations that drive phenotypes towards median rather than extreme values. These inter-
actions are either minor deviations from additivity or involve alleles with redundant effects,
with the former being particularly difficult to detect in all but the largest study populations.
These findings are consistent with recent work on a very large meta-analysis of twin studies
[75]. Third, we note that the genetic interactions detected here form a connected network
involving many interactions between the same subsets of QTL. We speculate that this is
because the casual variants reside in groups of co-functional genes that compose specific path-
ways or processes, and that these pathways vary at multiple points between the B6 and C3H
inbred strains. Since pair-wise combinations of C3H alleles have been shown to interactively
drive the phenotypes towards the median, we speculate that as more genomic regions from
C3H are inherited in a single individual, higher-order combinations of C3H alleles within
these pathways will further canalize toward the C3H phenotype rather than cause large pheno-
typic variation. This may contribute to higher-order epistasis, since many of the variants will
have strong effects in isolation that vanish in combinations. In sum, these findings suggest that
the most common forms of epistasis may often be difficult to detect, and that the analysis of
genetic interactions is nevertheless a powerful means to understand the genetics of the underly-
ing biological pathways and processes.

Supporting Information

S1 Table. Data used in this analysis formatted for CAPE. A comma-separated file containing
phenotypes and genotypes used in this analysis. The first six columns contain covariates (sex
and IGF1) as well as the phenotypes. The remaining columns contain the name, chromosome,
position, and genotypes for 100 MIT markers.

(CSV)
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S2 Table. A comma-separated file containing information for all tested pairwise interac-
tions and main effects. The table is sorted by decreasing effect size, and each row contains the
names of the source and target markers (or maker and phenotype for main effects), the effect
size of the interaction (or main effect), the standard error, the standardized effect size, the
empirical p-value as calculated from permutations, and the Holm-corrected p-value.

(CSV)

S3 Table. A tab-delimited file containing the markers assigned to each linkage block. The
first column displays the name of the linkage block, and subsequent columns show the names
of the markers in the linkage block. All marker names are prefixed with a chromosome label.
Markers designated “locX” are imputed pseudomarkers obtained from R/qtl (Methods).
(TXT)

$4 Table. Single-Marker Scan Information by Linkage Block. A tab-delimited file containing
information about linkage block effects in the single-marker scan. Information includes the
number of markers in each linkage block, genomic start and stop positions, standardized effect
sizes and significance levels for each eigentrait, as well as a gene count for the block. Only pro-
tein coding genes were included in the count.

(TXT)

§5 Table. Candidate Genes. A tab-delimited file containing information about genes that are
likely candidates for interacting with IGF1 to influence bone density. The table lists evidence to
support each gene’s candidacy.

(TXT)
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