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A linear time-invariant model based on statistical time series analysis in the Fourier domain for single subjects is further developed
and applied to functional MRI (fMRI) blood-oxygen level-dependent (BOLD) multivariate data. This methodology was originally
developed to analyze multiple stimulus input evoked response BOLD data. However, to analyze clinical data generated using a
repeated measures experimental design, the model has been extended to handle multivariate time series data and demonstrated
on control and alcoholic subjects taken from data previously analyzed in the temporal domain. Analysis of BOLD data is typically
carried out in the time domain where the data has a high temporal correlation. These analyses generally employ parametric models
of the hemodynamic response function (HRF) where prewhitening of the data is attempted using autoregressive (AR) models for the
noise. However, this data can be analyzed in the Fourier domain. Here, assumptions made on the noise structure are less restrictive,
and hypothesis tests can be constructed based on voxel-specific nonparametric estimates of the hemodynamic transfer function
(HRF in the Fourier domain). This is especially important for experimental designs involving multiple states (either stimulus or

drug induced) that may alter the form of the response function.

1. Introduction

The study of human brain cognitive function has been greatly
enhanced by advances made in functional magnetic reso-
nance imaging (fMRI) over the past few decades. The most
important technique developed for this purpose utilizes
changes in blood oxygen level instigated by stimulus-induced
neuronal activation [1]. These changes in blood-oxygen levels
produce localized variations in magnetic susceptibility and
can be seen in T2"-weighted MRI time series data [2, 3].
These time series data, referred to as blood-oxygen-level-de-
pendent (BOLD) fMRI, typically have a low temporal signal-
to-noise-ratio (SNR) [4] as well as high temporal correlation
[5] that can make them difficult to analyze.

Functional MRI data analysis from its initial development
has largely been implemented in the time domain [6, 7]. The
major temporal focused fMRI analysis software packages are
AFNI, SPM, and FSL [7-9] although many other analysis
packages are also available and in current use. Generally these
temporal domain focused analyses have been extended, to
incorporate the statistical methodology of general linear
models (GLMs) [8, 10, 11]. While almost exclusively used to
analyze group data, GLMs have also been used for individual
subject analysis [12]. In either case, the GLM approach re-
quires a number of important assumptions be meant [13], that
include foremost that the noise in the time series be inde-
pendent and identically distributed (i.i.d), that is, ~N(0,0T).
Since BOLD fMRI data has significant autocorrelation, it is
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necessary to attempt to remove the correlation in the data or
incorporate into the GLM analysis a model for the noise that
takes this into account. These corrections generally take the
form of prewhitening techniques [8, 10], autoregressive (AR)
models [14], and restricted maximum likelihood (ReML)
methods [15, 16]. However, prewhitening or AR modeling
of the fMRI BOLD data has been shown to have limitations
[17] and these methods may in many instances only reduce
nonwhite residual to about 40% of the total voxels [13, 18].

Besides the autocorrelation problem, there are additional
major sources of error in modeling BOLD responses that arise
in “standard” temporal-based analysis of fMRI time series
data. Primarily, a priori assumptions as to a general paramet-
ric form of the hemodynamic response function (HRF) are
often required [19] that could vary over the brain or from
experimental conditions [20]. Seldom are these assumptions
tested as to their validity for each new experimental design or
at every voxel to be analyzed. This incorrect modeling of the
HREF can lead to increased variance in the coefficients of tem-
poral-based GLM analyses ultimately affecting the power to
detect changes in the BOLD response and in general degrad-
ing the validity of the model [21, 22]. Furthermore, it is often
the case that additional parametric functions and regression
coeficients are typically included in temporal-based GLM
models to correct for other perceived confounds. These
effects can include those of signal drift, head motion [23, 24],
and time shifts errors seen in multislice acquisition of fMRI
data [25]. However, it has been stated that even small errors
in modeling can result in the loss of statistical power [21], and
the inclusion of inappropriate effects can lead to an increase
of activated voxels yet reducing the validity of the model [26].

Many of potential sources of error associated with apply-
ing the GLM framework in the temporal domain can be elim-
inated or mediated by implementing the GLM in the Fourier
or spectral domain. An important advantage of a Fourier-
based methodology [27, 28] is that the statistics at different
frequencies are asymptotically independent so that statistical
tests in the complex domain, that parallel those for the real
domain, can be more easily and directly constructed. In par-
ticular, Brillinger [29] developed a spectral domain approach
for evoked response experiments that can be adapted to the
analysis of single subject BOLD fMRI time series data. In this
publication, in response to experimental designs that include
repeated measure data, we extend the Fourier-based method-
ology previously developed to analyze fMRI data for multiple
input (stimuli) and single output (one fMRI run). This exten-
sion enables us to analyze evoked responses fMRI BOLD data
for single subjects that have multiple stimulus inputs and
multiple outputs (that is repeated runs fMRI data which we
will refer to as “states”). The corresponding mathematical
extensions to the theory provide the first full multivariate
approach in the Fourier domain of the GLM as applied to
evoked response fMRI BOLD data.

Moreover, as previously mentioned, the use of parametric
models for the hemodynamic response function (HREF),
somewhat separate from the statistical analysis of fMRI data
is another drawback in temporal-based analysis of f{MRI data
[19, 20] that is naturally addressed in a spectral domain
approach. As the Fourier-based GLM incorporates voxelwise
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nonparametric estimates of the hemodynamic transfer func-
tion (HTF) (HRF in the frequency domain) and is focused
on hypothesis testing of this estimation. Additional positive
consequences of performing hypothesis testing of the HTF in
the spectral domain is that signal drift corrections as imple-
mented in the temporal domain are unnecessary as the signal
mean differences are not tested; time shift errors are also of
no importance since the analysis is carried out in the spectral
domain; and finally motion artifacts should be mediated since
the BOLD response generally has a spectral power distribu-
tion that is different than that for head motion.

Whereas it should be mentioned that some earlier papers
have also used Fourier-domain-based approaches to analyze
BOLD fMRI time series data, they have been of limited scope.
One of the earliest attempts at a Fourier-based analysis of
fMRI was that by Lange and Zeger [30] that focused on the
analysis of data obtained from a block experimental design
and used a parametric form of the HRFE. Another early paper
that analyzed fMRI data in the frequency domain was by
Marchini and Ripley [31]; however, it was restricted to peri-
odic stimuli. A more recent paper, based on the work by
Brillinger [27], is that by Bai et al. [32]. It focused on obtain-
ing unbiased estimates of the HRF using stochastic rather
than deterministic input stimuli (the usual design for fMRI
experiments). It uses a weighted estimate of the transfer func-
tion and appropriate chi-square statistics to analyze sample
data from an fMRI experiment with a “simple” design. In
contrast, our paper has deterministic inputs or stimuli and an
unweighted estimate of the transfer function, an approach
that provides estimates with minimum mean square error
and focuses on inference testing. Thus, the paper by Bai et al.
[32] is attempting to find the best estimate to the transfer
function, but not necessarily carrying out multivariate sta-
tistical hypotheses testing. Therefore, as previously stated the
development in this paper is toward a full “multivariate”
approach for hypothesis testing to perform signal detection in
the spectral domain using an extension of the general linear
model methodology in the complex domain.

2. The General Linear Model in the Fourier
Domain for Multivariate Qutput

2.1. Model. Previously, a general linear model in the Fourier,
domain to model single or univariate fMRI time series was
presented [33-35]. In this model, a simple scalar quantity,
s(t), represented the fMRI time series. In order to model a
repeated measures experimental design with multiple fMRI
time series for a single subject, the model is extended to incor-
porate multivariate output as follows. Let

st)=p+rt)xa(t)+e(t), 1)

where s(f) now represents a matrix of size 1 x S whose
elements consist of multiple (S) time series or repeated BOLD
fMRI runs for a single subject collected at discrete time points
t (t = 1---T) and spatial coordinate x = (x, y,z) (or voxel
position, implicit). g is a matrix (size 1 x S) whose entries
consist of constant values (with respect to time) for each time
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series. The fixed deterministic input stimuli represented by
r(t) have no spatial dependency. Multiple (R) input stimuli
require that r(¢) be represented by a 1 x R size matrix, and
correspondingly the response function a(t) is represented by
a matrix of size R x S. The symbol * represents a convolution
of the entries of the matrix product of r(¢) and a(¢). Thus,
each stimulus input type and repeated BOLD fMRI run has a
single response function represented by a single matrix entry
in a(t) and calculated at every spatial coordinate x (implicit).
Each entry of the 1 X R matrix r(¢) is a time series having the
same length as the collected fMRI time series and consists of
0s or 1s at each time point t, where a value of 1 represents
a stimulus presentation at that time. The error in the data is
represented by &(f) a matrix of size 1 x S and assumes that
the noise is stationary with zero mean for each corresponding
fMRI BOLD time series collected.

Transforming this model (via the complex Fourier trans-
form) to the frequency domain, we have

§(A) =T(A)a(d) +2(A), ()

where A, = 27k/T and k represents the wave or frequency
number. a(A;), the HRFs representation in the Fourier do-
main is henceforth referred to as the hemodynamic transfer
function or HTE Periodograms [36] are constructed from the
spectral forms of the stimulus input ¥(A,) and BOLD outputs
$(A;) matrices as follows:

Lg (A) = @nT) &) B (M), (3)

where «, 8 = {r,s}, A, = 2nk/T and the superscript H refers
to the Hermitian transpose. Estimates of the cross-spectral
functions are then constructed [27] as follows:

m

£V =m+ )7 Y LML), (4)

k=—m

where A denotes the center frequency of a band of frequencies
2m + 1 in width and provides stable estimates of the cross-
spectral functions. The cross-spectral functions take a slightly
different form [27] for the band centered at zero frequency.
However, in applications to fMRI time series data, this band
is discarded because it includes artifacts (e.g., low-frequency
motion drift) and is not used in this paper. The band size
chosen is based on statistical power considerations and the
spectrum of the input power [34].

An estimate of the hemodynamic transfer function (HTF)
[27, 34, 37] is given by

AW =[f, W] TV RxS, )

where the matrix size is included for clarity. Note that a matrix
entry (K(A))U in (5) contains the HTF associated with the ith
stimulus input and the jth repeated run.

2.2. Hypothesis Testing of the Hemodynamic Transfer Function.
Consider the hypothesis

H,:Ba(\)C" =0, (6)

where B is the matrix that allows us to construct hypothesis
test for multiple input stimuli and has size b x R, where b
can range from 1 to R. For example, setting the B matrix to
the identity matrix I (size R x R) would test whether any
input stimuli would evoke a response in the BOLD signal.
C is a matrix of size ¢ x S where ¢ ranges from 1 to S. This
matrix allows us to construct hypothesis tests associated with
the S repeated runs for each subject. For example, taking
B=[1 0]and C = [0 1 0] would test the HTF associated
with the BOLD response to the first stimulus type and the
second repeated run on a subject. Of particular interest is the
case for which the B and C matrices are identity matrices, of
sizes Rand S, respectively. We refer to this case as the omnibus
case, that is, Fy;.,,(A; B = I,C = I) which is related to how
well the model generally fits the BOLD fMRI data [34].

The test of the null hypothesis (6) takes the form of the
following F-distribution:

hi1-UuWY h _
Fypeon (M) = ET()UL = e [U(/\) v _ 1] , @

where
bt -4
d: \]—b2+62_5 b2+C2¢5
1 b+ =5, (8)
h= [2m+1—R—<C_b—+l>]d—@+1
2 2

at each spatial position (implicit) and band (represented by its
center frequency A). This F-distribution simplifies to a more
easily recognizable form [34] in the univariate or single fMRI
run case, that is the ratio of the explained (by the HTF) to
unexplained variance.

The construct for the current F-distribution is based on
Rao’s approximation to the U-statistics [38]. The form of the
complex U-statistics for the model presented is based on an
extension of the multivariate general linear model [39] from
the real to complex domain. It has the following form:

U )= — G 9
2b;2¢;2(2 m+1+b—c—R) - det [GC (/\) +H (/\)] > ( )

G.(M)=CGWN)C", cxg (10)

where

GM)=Q2m+1)

x{t, W -, W[, W] T}, sxs,

(1)
H) =2m+DED[V)ITED), cxe,  (12)
where
EN)=BAWMNCT, bxe,
(13)

vV =B[f, W] B, bxb,



Factors of 2, associated with the degrees of freedom in (7) and
(9), are required to account for the cross-spectral estimations
having both real and imaginary parts. Note that all terms
in (12) except that for £, (1) and correspondingly V(A) are
implicit functions of the spatial coordinates x = (x, y,z) or
voxel position.

3. Methods

3.1. Experimental Design and Data Acquisition. The exper-
iment consisted of the following paradigm. An alcohol-de-
pendent and control subject taken from a larger study using
event-related fMRI [40] was investigated. The experiment
consisted of obtaining three separate BOLD fMRI images per
subject. During each acquisition, which we will henceforth
refer to as a state, the exact same visual input stimulus se-
quence was presented to the subject. These visual images were
chosen from the International Affective Picture System [41].
Each image was presented for two seconds with a random
interstimulus interval from 0 to 8 sec. Each subject was then
asked to evaluate the visual stimuli, having either positive
(pos) or negative (neg) valence using one of two buttons avail-
able for them to press using three separate criteria (counter-
balanced order).

Specifically, subjects were asked to:

(i) evaluate the environment of the presented image
(whether it is indoor or outdoor) for which the col-
lected BOLD time series is referred to as the cognitive
state;

(ii) evaluate the emotional valence of the presented
image, if you liked it or did not like it, for which the
collected BOLD time series is referred to as the emo-
tion state;

(iii) do not evaluate the image and simply press a button
when presented with an image for which the collected
BOLD time series is referred to as the passive state.

Henceforth, we will refer to the three BOLD fMRI time series

collected for each subject as the cognitive (cog), emotion
(emo), or passive (pas) state.

3.2. Experimental Scanning Parameters. Images were col-
lected on a 3T GE MRI scanner (General Electric, Milwaukee,
WI, USA), using a standard quadrature head coil. The fMRI
scans consisted of 156 temporal volumes (64 x 64 x 16) con-
sisting of 5 mm thick slices with in-plane sampling of 3.75 x
3.75 mm using a T2" -weighted echo-planar sequence with TR
=25, TE = 40 ms, and flip angle 30°. Structural scans were
acquired using a T1-weighted MP-RAGE sequence with TR =
100 ms, TE = 7 ms, and flip angle 90°.

3.3. Image Preprocessing. Preprocessing of the fMRI single
subject images consisted of the following steps.

(1) Spatial registration of all functional temporal volumes
to the tenth-time volume collected in the passive run
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using the AFNI [7] program 3dvolreg. The AFNI pro-
gram 3dAutomask was also used to construct a binary
mask (inside brain versus outside brain) for the func-
tional images.

(2) Within-slice (2-dimensional) spatial smoothing using
a Gaussian filter 8mm full width half-maximum
(FWHM) was applied to the coregistered images pro-
duced from step 1.

(3) Structural-to-functional MRI registration and
restricted-to-affine transformations within subject
using the AFNI program 3dAllineate [42] were per-
formed. That is, the tenth-time volume or BOLD
image from the passive run (see step 1) was registered
to the subject’s own structural MRI volume image.

Notably no other preprocessing of the data was made (and
none was required [34]) in contrast to standard preprocessing
of fMRI data in the time domain [23-25, 43].

3.4. Analysis of Multivariate Data in the Fourier Domain. All
statistical tests were performed on an Apple Mac Pro Dual-
Core 2.66 GHz computer using the SRView program (unpub-
lished) developed for general fMRI data analysis. SRView is
programmed in C++, with a X11-based GUI with embedded
functional calls or a batch mode that uses tcl/tk as a scripting
language. C shell scripts can also be used to invoke multiple
runs of SRView. Typical calculations that include all hypoth-
esis tests usually take twenty minutes or less.

Statistical tests of the null hypothesis (6) were carried out
using the corresponding F-statistics (7) with appropriate B
and C matrices chosen for a specific test. A band size of 13
frequencies (m = 6) was chosen based on the observed spec-
tral power distributions and from previously analyzed data
results [34, 35, 37]. Once a uniform band size was chosen the
partitioning of the Fourier frequencies into bands and asso-
ciated center frequencies was set. The band centered at zero
frequency (A = 0) was discarded because it contains a number
of low-frequency artifacts. These are most prominently asso-
ciated with motion and possibly signal drift. Therefore the
elimination of this band is equivalent to applying a high-pass
frequency filter to the time series data. After discarding this
zero-band and limiting the highest frequency band to have an
upper bound less than or equal to the Nyquist frequency, we
produced five bands of equal size. F-statistics (6) were then
calculated as a function of the center frequency A of these
bands.

Initially, model goodness of fit was explored using the
omnibus hypothesis test H, : A(A) = 0 using the F-test
statistic (7) with B and C matrices set as identity matrices.
These tests were carried out at every voxel within the scope
of the brain masks produced in the preprocessing steps (see
Section 3.3). These tests performed at every voxel indicated
whether any of the stimuli produced a significant response
at any center frequency. The resultant spatial patterns are
presented using multiple P-level mask (typical for reporting
fMRI activity in temporal-based analysis). A color look-
up-table (LUT) is used to present these threshold values.
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Input: Select multiple P-values P,, ..., P, and associated color values in LUT
Calculate corresponding F-value, F(P), ..., F(P,) | dof (2bc; 2h)
Loop over voxels within brain mask
Extract F-values at voxel, indexed by band numbers
Loop over band numbers
Get F for band
if (F < F(P,) maskPixel = 0
if (F > F(P,) and F < F(P,)) maskPixel =1
if (F > F(P,_,) and F < F(P,)) maskPixel =n
if (F > F(P,)) maskPixel =n + 1
End loop over band numbers
End loop over image voxels
Output: multi-value mask and associated color LUT
ALGORITHM 1
TaBLE 1: Compilation of omnibus and interaction hypothesis tests and associated matrices with resultant figures.
. . . Hypothesis matrices .
Test no. Sub]ect type slices presented Hypothe31s test c Figure no.
B
Subj: control I
1 Slices: Omnibus . . . 1 2
. (identity matrix)
occipital, language
Subj: alcoholic
2 Slices: occipital, Omnibus 1 1 3
language
Subj: control, alcoholic . 1 -1 0
3 Slices: all Interaction [1 _1] [O T See text

The algorithm for production of the multiple P-level mask in
the Fourier domain is shown in Algorithm 1.

To help control for multiple tests (that is limiting the
number of false positives), all voxels originally sampled
within the full brain mask were further restricted by statis-
tically based “voxel limiting” spatial masks as follows. The
omnibus F-test images (related to measure of model fit—see
Section 2.2) at each center frequency were strictly threshold at
P =.001 to produce binary masks for each band. These masks
were then combined using a Boolean OR operation to pro-
duce one spatial binary mask, henceforth referred to as the
omnibus mask. This mask enabled us to limit the number of
voxels looked at with the specific inference tests for inter-
action, main and simple effects for the ANOVA design pre-
sented. This yielded approximately 7% of the brain mask vox-
els for the alcoholic subject. Next, a mask based on the inter-
action hypothesis test was produced. The test for interaction
between stimuli and states produced a mask used to exclude
those voxels in which an interaction was seen. Additional
multivariate tests for state effects were also used to further
spatially restrict subsequent hypothesis tests. The algorithm
for application of these hierarchical embedded masks is pre-
sented in Figure 1, where we present the flow chart associated
with a voxel as it is either included or excluded in a mask,
whose construct is based on the specific criteria being tested.
Note that less stringent criteria were applied to univariate-
based hypothesis tests where only the simple omnibus test

based mask was applied so as to more easily compare the
results to the previously published analysis of this data [40].

Finally, in this analysis no attempt was made to investigate
the frequency structure of the response since the temporal
sampling rate or TR was relatively long and only a few bands
were available for testing. For a more detailed look at fre-
quency-specific hypothesis testing, see Rio et al’s work [34]
where the TR was 400 ms and the acquired fMRI series were
1400 time points long.

4. Results and Discussion

4.1. Omnibus Hypothesis Test and Test for Interaction. The
construction of the omnibus hypothesis test for the control
and alcoholic subjects is performed first. This consisted in
applying the F-test (6) with full-rank matrices B and C set
to I to test the hypothesis of whether any input stimuli or
output run produced a significant response. Table 1 lists the
test, and selected image slices (showing relevant results) are
presented in Figures 2 and 3. In both figures, we see significant
activation in the occipital regions of the brain that can
generally be attributed to the visual stimuli being processed.
Additionally, for the alcoholic subject, we see strong activa-
tion in the languages regions (both Broca’s and Wernicke’s
areas—bottom of Figure 3) as well as some more muted acti-
vation (associated with a larger P value) in the amygdala (top
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Section 4.1: Table 1;

within brain Figures 2, 3

Interaction
Section 4.1: Table 1
see text

Stimulus effect
Section 4.2: Table 2;
Figure 4, last row

Yes-reject null hypotheisis

No-accept null hypothesis

Apply whole
Apply brain mask m
(Ts it within?)
Hypot'hes1s Omnibus No
testing

Section 4.2: Table 2; Figure 4,

Yes

Difference for states
Section 4.2: Table 2;
Figure 4, rows 2-4

Yes

Univariate
Section 4.3: Table 3;

Figures 5-7

To compare with
previous papers

State effect

No
(]

top row

FIGURE 1: Diagram showing the sequential processing of a voxel in terms of hypotheses test applied. Only voxels for which the null hypothesis
is rejected (except in the case of the interaction) proceed to the next test. For a complete description of tests and associated figures, see the

indicated sections referred to in the flow chart.

of Figure 3). No such activation occurs in the control subject
in the language area or in the amygdala (Figure 2).

A test for interaction was also performed (see Table 1).
This test for parallel profiles based on the differential response

of positive to negative stimuli for the output vector of cogni-
tive, emotional, and passive states. This produced only a few
activated voxels (not shown in any figure) in the control
and alcoholic subjects. Most notably in the alcoholic subject
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Control subject
Multivariate hypothesis test

Omnibus test
Slice through
occipital region

and
amygdala

Omnibus test

Slice through
language region

i
b
4
{

":l':j!k_“ 3.

);',

P value and associated
F-value
I 0.0001 4.892

0.0003 4.337
0.0005 4.088
0.0007 3.927
0.001 3.758

FIGURE 2: Control subject: inference results for omnibus hypothesis test shows BOLD response in the occipital region of the brain, visual
stream. Note that the red blue and green lines indicate the correspondence between the orthogonal slices presented. There is no activation in
the language region for the slice presented or any other slice through the language regions (not presented).

a small loosely connected set of three voxels in the left insula ~ 4.2. Multivariate Repeated Measures Hypothesis Testing. The
region that was not seen in the control subject. Itis interesting ~ main effects were investigated using multivariate repeated
to note that this is an important region of the brain linked to ~ measures hypothesis tests (see Table 2). The images presented
emotion and cognitive functioning. in Figure 4 are those for a control and alcoholic subjects for
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Alcoholic subject

Multivariate hypothesis test

Omnibus test

Slice through
occipital region
and
amygdala

2
0.0001 4.892

0.0003 4.337

0.0005 4.088
0.0007 3.927
0.001 3.758

Omnibus test

Two slices through
language regions

FIGURE 3: Alcoholic subject: inference results for omnibus hypothesis test shows BOLD response in the occipital region of the brain, visual
stream. Note that the red blue and green lines indicate the correspondence between the orthogonal slices presented. Also interestingly, the
amygdala and language areas for the two slices presented show a BOLD response not seen in the control subject (Figure 2).

transversal slices that cut through the occipital region of the
brain posteriorly and through the amygdala in the medial
anterior. The first hypothesis tested is that for the state effect,
that is, whether the stimulus inputs, positive and negative,
showed a differential response in the state vector consisting of

the cognitive, emotional, or passive functional MRI runs. The
degrees of freedom for the F-distribution used in this test
are (4, 20) (with b = 1, ¢ = 2; see Table 2, Test no. 4 and
(7)). Next are presented the results for the following hypothe-
ses: the effect between the cognitive and emotional states;
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TaBLE 2: Compilation of multivariate repeated measures hypothesis tests and associated matrices with resultant figures.
Hypothesis matri )
Test no. Brief description of hypothesis test B ypothesis md r1cesC Figure no.
4 . .St.ate effect [1 1] 1 -1 0 4
differentiation between states 01 -1
State effect: cog versus emo [1 1] [1 -1 0]
State effect: emo versus pas [1 1] [0 1 —1] 4
State effect: cog versus pas [l 1] [l 0 —1]
Stimulus effect
8 - 4
differentiation between stimuli [1 1] [1 ! 1]
TaBLE 3: Compilation of univariate hypothesis tests and associated matrices with resultant figures.
. . . Hypothesis matrices .
Test no. Subject type; slices presented Hypothesis test B c Figure no.
9 Alcoholic; occipital Neg; emo versus pas [0 1] [0 1 —1]
10 Alcoholic; occipital Neg; cog versus pas [0 1] [1 0 -1] s
1 Alcoholic; occipital Neg; cog versus emo [0 1] [1 -1 0]
12 Control, alcoholic; occipital Neg; pas [0 1] 001
13 Control, alcoholic; occipital Neg; cog [0 1] 100
14 Control, alcoholic; occipital Neg; emo [0 1] [O 1 0] 6
15 Control, alcoholic; occipital Pos; emo [1 0] [0 1 O]
16 Control, alcoholic; occipital Stimulus effect; emo [1 —1] 010
17 Alcoholic; occipital State effect-cog [1 1 100
18 Alcoholic; occipital State effect-emo [1 1] [0 1 0]
19 Alcoholic; occipital State effect-pas [1 1] [0 0 1]
20 Alcoholic; language Neg; emo [0 1] [O 1 0] 7
21 Alcoholic; language Pos; emo [1 0 [0 1 O]
22 Alcoholic; language Stimulus effect; emo [1 —1] [O 1 0]

the effect between the emotional, and passive states and the
effect between the cognitive and emotional states. Finally, the
hypothesis for stimulus effect is presented, that is, whether a
differential response was seen between positive and negative
input stimuli across the state vector, that is, the cognitive,
emotional, or passive functional MRI runs. The degrees of
freedom for the F-distribution used in these test are (2, 22)
(with b = 1, ¢ = 1; see Table 2, Tests nos. 5-8 and (7)).
Generally, it is seen in Figure 4 that the alcoholic subject
shows a pattern of BOLD response not seen in the control
subject for any of the hypotheses tested, especially in the
amygdala (medial anterior brain structure). However, no
direct between-subject inference test is available for the single
subject analysis presented.

4.3. Univariate Simple Effects Hypothesis Testing. The remain-
ing hypothesis tests to be presented are simple effects tests
(see Table 3). In Figure 5, we focus generally on comparisons
between the output states in the amygdala, that is, the differ-
ential responses between the emotional, passive, and cogni-
tive states for the negative stimuli input in the alcoholic sub-
ject. The largest (that is spatially extended region) differences
occur between the emotional and passive states or the cogni-
tive and passive states in this alcoholic subject. The stimulus

effect hypothesis (bottom row of Figure 5 and also presented
in Figure 4) also shows a differential response between the
positive and negative stimuli in this same region.

We next present some simple effects of hypothesis test
results for both the control and alcoholic subjects in Figure 6
that again present results on a transversal slice that includes
the amygdala. These hypothesis tests, testing simple effects
associated with one or the other stimulus input and one of the
output states, passive, cognitive, or emotional, show minimal
activation except possibly for the emotional state. In Figure 6
(last row) is presented the activation mask associated with the
stimulus effect, that is, the differential response of the input
stimuli in the emotional run, which shows some differential
response to the stimuli in the amygdala.

Finally, in Figure 7 are presented the results for simple
effects univariate hypothesis tests. They include hypothesis
tests for the negative, positive, or stimulus effect (differential
response between the inputs, positive and negative stimulus
inputs) for the cognitive state, emotional state and passive
state for the alcoholic subject in both the amygdala and lan-
guage areas of the brain. Here, we see increased activation in
the emotional and passive runs as compared to the cognitive
run in the amygdala and the occipital region. Particularly in
the language regions, both Broca and Wernicke’s (bottom two
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FIGURE 4: Multivariate repeated measures hypothesis tests for the control and alcoholic subjects are presented for a slice representative of the
amygdala (media anterior) in the brain. The hypothesis tests show significant BOLD activation in the alcoholic subject in the amygdala for
both a state effect and stimulus effect. Differences between the cognitive, emotional and passive states are also seen. Finally, while no direct
hypothesis test between subjects can be made, we see in the control subject generally a more subdued BOLD response in all cases.

rows of images in Figure 7), we see substantial activation
for the positive or negative stimuli and a somewhat smaller
activated region for the stimulus effect (that is differential test
between input stimuli) for the emotional run. The cognitive
and passive runs were either not as active or generally inactive
for these simple effects hypotheses tests and are not presented.

4.4. Hypothesis Testing in the Temporal Domain: A Sample
Result from a Previous Study. A previous temporal-based
analysis result for a slice that includes both Broca’s and Wer-
nicke’s language areas of the brain for the alcoholic subject
used in our Fourier-based fMRI analysis is presented. The
control subject’s result is not presented since our omnibus
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Univariate hypothesis test

Cognitive versus passive
g

Amygdala
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Negative
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Stimulus effect
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P 0.005 6.806
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0.01 5.719

Slice through occipital region and amygdala

FIGURE 5: Univariate simple effects hypothesis test results are presented for the alcoholic subject for a slice representative of the amygdala
(media anterior) in the brain. Focusing on the negative stimulus input and comparisons between the three output states, that is, emotional
versus passive states, cognitive versus passive states, and cognitive versus emotional states. For context, an additional hypothesis test result

(also see Figure 4) is presented showing the stimulus effect.

hypothesis test results (Figure 1) showed no activation in this
region. The result presented here is the exact single subject
analysis incorporated into the group analysis by Gilman et al.
[40] employed to produce a major result of that paper (see
Section 5). Comparison to the full group results is beyond
the scope of this paper; however, a qualitative comparison can
be made to the single subject alcoholic subject used in both
papers. The single slice (Figure 8) covers the same anatomical
regions as the slices presented in the two bottom rows of
Figure 7. Activation is seen in the language area of the brain,
similar to that produced in the group results [40] as well as
in other regions of lesser interest in this particular subject.
While no straightforward comparison of the F-statistic result
(Figure 7, bottom two rows) and the ¢-statistics result (Fig-
ure 8) is possible, multiple P value spatial results are shown
in both figures. Note that a region presented with a value of
.001 means that this includes all voxels in which the statistic
had a threshold in which P < .001. Using this as a guide, it is
possible to observe similar language regions seen in both
analyses; however, the temporal-based analysis seems to be

more generous in its assignments of activated region based
on P values tested, especially in the hypothesis test results for
the positive stimuli. This also gives rise to activated regions
for the stimulus effect (last image on the right) not seen in
the Fourier-based analysis method. The additional regions of
activation are typical in temporal-based analysis that use less
general forms for the noise error [13] and are not an indication
of increased sensitivity with these tests. In fact, the group
analysis using this subject corrects this problem where many
of these activated regions are no longer significant. On the
other hand, the language region for the emotional run, as seen
in the Fourier method, is one of the major activated regions in
the temporal-based group analysis that turns out to be impor-
tant.

5. Conclusion

Extensions have been developed and presented to the com-
plex general linear model with multiple inputs and outputs
that provides a statistically rigorous methodology to analyze



12

Control subject

Computational and Mathematical Methods in Medicine
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Univariate hypothesis test
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FIGURE 6: A sampling of univariate simple effects hypothesis test results at a slice level that includes the amygdala for the control and alcoholic
subjects. Focusing on the negative stimulus input for the three states (repeated BOLD fMRI image runs), passive, that is, cognitive, and emo-
tional in the first three rows. BOLD response is most extensive in the emotional state. The fourth row shows the positive stimulus, emotional
state BOLD response. Finally, in the last row is presented the stimulus response for the emotional state. See Table 3 for a description of all the

matrices used to test these hypotheses.

fMRI time series data for single subjects based on the theory
developed by Brillinger [27, 29]. In doing so, we have incorpo-
rated the standard notation of the general linear model in the
real domain as presented by Timm [39] for multiple subjects
and adapted it to the case of spectral bands. This approach
allows the stochastic portion of the data to be modeled by

a more general form for the noise and therefore fewer restric-
tions on the structure of the covariance matrix as compared
to current time-based analyses. This is especially important
in the analysis of single subject data where the assumptions
on the noise structure can be critical to the calculation of the
accompanying statistics [13].
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Alcoholic subject

Univariate hypothesis test

State effect
Cognitive

Slice through occipital region and
amygdala

0.001 9.612
P value and

State effect
Emotional

State effect
Passive

. 0.003 7.653
associated
F-value 0.005 6.806
0.007 6.27
0.01 5.719
Negative Positive Stimulus effect
Emotional Emotional Emotional

Slice through language region
Broca’s area

Slice through language region
Wernicke's area

FIGURE 7: Univariate simple effects hypothesis tests results for the alcoholic subject at three slice levels that include the amygdala and the
language areas of the brain are presented. Particularly note the increased activation shown in the emotional state in the amygdala. On the
bottom two rows are presented: the hypothesis tests for the emotional state for each individual input stimulus as well as the stimulus effect
through slices that include both Broca’s and Wernicke’s language areas of the brain. The resultants indicate that the emotional state was the
major contributor to the omnibus hypothesis test results shown in Figure 3 in the language area.

This methodology inherently incorporates voxel-specific
nonparametric estimation of the hemodynamic transfer
functions (hemodynamic response function in the time do-
main) that are central to the inference testing procedure.
Thus, this methodology is centered on hypothesis testing
of this transfer function for all constructed multivariate or

univariate tests and does not require separate and possibly
problematic a priori assumptions for the form of the hemo-
dynamic response function as often required in time-based
fMRI analysis [13, 19, 20]. In particular, the lack of a require-
ment to make a priori assumptions about the hemodynamic
response function form makes this method particularly
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Alcoholic subject

Univariate hypothesis test
in the temporal domain

Negative
Emotional

Slice through language regions
both Broca’s and Wernicke's areas

P value and
associated

t-value 0.01 2.609

Positive
Emotional

Stimulus effect
Emotional

FIGURE 8: Temporal t-based statistical hypothesis test results for the emotional run in the same alcoholic subject analyzed in the Fourier
domain (Figure 7, last two rows—Tests nos. 20-22). This exact single subject analysis was incorporated into the group of alcoholics used to
produce a major result in the original paper by Gilman et al. [40]. Activation in both Broca’s and Wernicke’s language areas of the brain is
shown in this single slice as well as a number of other regions of less interest.

useful in experiments designs where either drugs or the
experimental manipulation itself may alter the form of the
hemodynamic response function. This can, for instance
happen with the introduction of a vasoactive drug, such as
alcohol, to a subject during part of an experimental procedure
[20].

Finally, by limiting the number of preprocessing steps
and/or regressors, our Fourier-based GLM approach should
mediate or eliminate many potential sources of error for sin-
gle subject analysis addressed in the paper by Monti [13].

In regard to the comparison of this Fourier domain
approach to the usual temporal-domain-based analyses, we
can say the following. Hypotheses tested by these two meth-
ods are entirely different. In the temporal domain, a paramet-
rically defined HRF family of functions is used to produce
regressors associated with the stimulus input. Typically,
amplitudes of the associated HRFs for specific stimuli provide
the regression coefficients. Other regressors of noninterest
are included for motion, and detrending of the time series
data is also performed in this methodological approach.
Statistics are then constructed to test the null hypothesis,
essentially that the coefficient of the stimuli associated HRFs
are zero. In contrast, the Fourier-based method for single
subject hypothesis tests completely different. We focused on
comparing the entire shape of the HTFs rather than simply
comparing the amplitude of HRFs with a similar underlying
shape as is often done in the temporal domain. This is accom-
plished by constructing hypothesis tests is directly on the
HTF shape as represented by its spectral profile. Here voxel-
specific HTFs are estimated as a direct response to the stimuli
presented. That is, a spatially varying measure of the response
to the stimuli is presented by the hemodynamic system

associated with the brain. The specific and general advantages
to this approach are mentioned in previous paragraphs.

From an experimental design chosen to demonstrate the
use of this methodology, we have presented the analysis of a
single control and alcoholic subject. This design incorporated
multiple visual stimuli input and acquired multiple-output
state fMRI data. While not rigorously comparable, we see
that this analysis shows similar regions of BOLD response
to those seen in the original temporal-based group analysis
of this data. This can best be summed up by quoting from
the conclusion of the original paper by Gilman et al. [40],
“Alcoholic patients appear to use brain language areas more
than non-alcoholics while making judgments about the
setting or liking of emotionally arousing visual images. This
increased activation may reflect a compensatory recruitment
of brain regions to perform simple decision-making tasks.” Of
additional importance, the choice of this experimental design
for use in our demonstration has also allowed us to present a
systematic approach to avoiding bias in multivariate hypothe-
sis testing by incorporating hierarchical embedded restricting
masks. This is an important step in controlling the number of
false positives in multivariate-based analysis of fMRI imaging
data. Planned extensions would also incorporate a method of
false discovery proportion across voxels to further enhance
results.

In conclusion, the results obtained from this analysis pro-
vide additional confirmation that this methodological ap-
proach, previously applied to an experimental design with
multiple input stimuli and one output with a fast sampling
rate (TR = 400 ms) and Poisson’s distributed stimuli [34] can
be applied to an experimental design with a more typical
design matrix and slower sampling rate (TR = 2) that also
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incorporates multiple (or repeated) fMRI runs for each
subject. Having now incorporated multiple input and output
hypothesis testing into the Fourier-based GLM approach, this
paper provides a foundation to extend this development to
the analysis of subject groups in the Fourier domain. Finally
while group-based extensions to this methodology will be
presented in future publications, let us end by quoting a com-
ment made by Savoy [44], “That ironically it may someday
turn out that the information from a few brains, thoroughly
studied, will reveal more about universal aspects of human
brain function and organization than the current torrent of
studies from large collections of brains”
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