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Abstract

Background: A common approach to the application of epidemiological models is to determine a single (point
estimate) parameterisation using the information available in the literature. However, in many cases there is
considerable uncertainty about parameter values, reflecting both the incomplete nature of current knowledge and
natural variation, for example between farms. Furthermore model outcomes may be highly sensitive to different
parameter values. Paratuberculosis is an infection for which many of the key parameter values are poorly understood
and highly variable, and for such infections there is a need to develop and apply statistical techniques which make
maximal use of available data.

Results: A technique based on Latin hypercube sampling combined with a novel reweighting method was
developed which enables parameter uncertainty and variability to be incorporated into a model-based framework for
estimation of prevalence. The method was evaluated by applying it to a simulation of paratuberculosis in dairy herds
which combines a continuous time stochastic algorithm with model features such as within herd variability in disease
development and shedding, which have not been previously explored in paratuberculosis models. Generated sample
parameter combinations were assigned a weight, determined by quantifying the model’s resultant ability to
reproduce prevalence data. Once these weights are generated the model can be used to evaluate other scenarios
such as control options. To illustrate the utility of this approach these reweighted model outputs were used to
compare standard test and cull control strategies both individually and in combination with simple husbandry
practices that aim to reduce infection rates.

Conclusions: The technique developed has been shown to be applicable to a complex model incorporating realistic
control options. For models where parameters are not well known or subject to significant variability, the reweighting
scheme allowed estimated distributions of parameter values to be combined with additional sources of information,
such as that available from prevalence distributions, resulting in outputs which implicitly handle variation and
uncertainty. This methodology allows for more robust predictions from modelling approaches by allowing for
parameter uncertainty and combining different sources of information, and is thus expected to be useful in
application to a large number of disease systems.

Background
Simulation studies provide a useful insight into the
dynamics of epidemiological systems and can be used to
obtain a variety of predictions, such as the relative gains
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expected from different types of control. Difficulties often
arise in the parameterisation of such models, as results
may depend critically on parameters whose values are
poorly understood, or which vary greatly between indi-
vidual populations. A lack of knowledge of the value of a
parameter is referred to here as uncertainty, and may rep-
resent either a lack of appropriate experimental studies or
limitations in current methods for measurement. Even if
it were possible to know the value of each parameter in
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any given location or population, there may be variabil-
ity in their values between locations or populations, as
well as variability arising from inherent unpredictability in
the system even for fixed parameters (stochasticity). An
example of an infection exhibiting a high degree of uncer-
tainty and variability in parameter values is that of paratu-
berculosis, or Johne’s disease, a chronic inflammation of
the intestine caused by the presence of Mycobacterium
avium subsp. paratuberculosis (Map).

The low sensitivity of diagnostic tests and problems
associated with culturing Map bacteria and with carrying
out experimental infections make laboratory studies diffi-
cult. Furthermore the disease has a long and variable incu-
bation period of many months or even years and generally
clinical cases within a given herd occur only sporadically;
indeed many infected animals may never be recognized as
such. The most important source of infection is the faeces
of infected animals [1], so differing environmental condi-
tions combined with the long incubation times are likely
to contribute to a high degree of variability between farms.
For example, the survival of Map in pasture, or the rela-
tionship between levels of bacterial contamination and the
animal-level force of infection, are likely to vary greatly on
different farms, depending on factors such as soil acidity,
micro-climate and details of the management practices of
the farm. It is essential that such uncertainty and parame-
ter variability are properly accounted for when evaluating
potential control options.

We have developed an individual based model which
incorporates key aspects of the stochastic dynamics
of paratuberculosis transmission in combination with a
detailed description of the management practices applica-
ble to a typical Scottish dairy herd. Stochastic individual
based modelling techniques have been applied with con-
siderable success to epidemiological systems [2]. Stochas-
tic models can show considerable differences from their
mean field equivalents [3], particularly in cases with a
high degree of nonlinearity (when fluctuations can give
rise to divergences from deterministic models), cases in
which it is required to have a model of the inherent vari-
ability in the system, or situations with low prevalence
where the statistics of disease extinction are of interest
[4]. The stochastic nature of the model described here
accounts for within-farm variability in the processes of
disease transmission, progression and detection, and pro-
vides a suitable example with which to illustrate the use of
the statistical methodology which we have developed to
compare the impacts of control options.

In the approach taken here some of the parameters
whose values are considered to be the most poorly known
or to be the most variable between farms were assigned
independent distributions of values. Parameters which
have been treated in this manner shall be referred to as
sampled parameters. We used independent distributions

because the literature typically does not provide infor-
mation on the correlations between parameters. Latin
Hypercube Sampling (LHS) is an efficient means of sam-
pling and combining parameters to generate a collection
of K sample parameter sets, which gives coverage of the
entire distribution for each parameter (see e.g. [5]). This
is achieved by dividing each distribution into K equally
probable intervals, which can then be sampled and com-
bined into the parameter sets for running the model using
a Latin hypercube design. A recent review [6], highlight-
ing a number of important features which have yet to be
explored in paratuberculosis modelling research empha-
sised treatment of parameter uncertainty and model vari-
ability as key areas for improvement. Previous attempts
to model the epidemiology of paratuberculosis in cattle
have ranged from the largely theoretical (e.g. Collins and
Morgan, 1991 [7], where parameterisation was not con-
sidered in depth), to more detailed exercises which used
published literature and expert opinion to parameterise
models [8-11], although a more recent model has carried
out a more detailed sensitivity analysis [12,13].

In order to account for correlations between parame-
ters and to incorporate additional information available
from observed prevalence data, a statistical methodol-
ogy was developed which assigns weights to the sampled
parameter sets by quantifying the model’s resultant ability
to reproduce the prevalence data. Outputs were subse-
quently obtained by running the model for all sampled
parameter vectors with the outputs renormalized accord-
ing to the assigned weights. Once the parameterisation
and weightings are in place the model can be used to
investigate the impact of control strategies on the infec-
tion. This involves modelling the test procedure and
applying it to individual model realisations, prior to the
subsequent reweighting of the results. The reweighting
was carried out using the weights obtained in the ‘refer-
ence scenario’ in which the only control strategy in place
was the removal of clinical animals, in order to reflect the
conditions under which the data were collected. In this
way we have been able to produce probabilistic assess-
ments of different control strategies that combine model
assumptions, uncertain information about parameter val-
ues found in the literature and limited data on within-herd
prevalence.

In section “Paratuberculosis model design” we describe
the model of paratuberculosis infection dynamics that has
been designed for this study, and present its behaviour
for a fixed set of parameters. The test models and infec-
tion management measures which were evaluated are
also described. In section “Latin hypercube sampling and
reweighting parameter sets” we go on to describe in detail
how the parameter uncertainty has been factored into
the model by the use of the reweighted Latin hyper-
cube sampling scheme. In section “Results and discussion”
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the results before and after the reweighting process are
compared, showing how the reweighted results provide
a close reproduction of the prevalence data upon which
the weighting is based. We then examine the impact of
test and cull control strategies, both with and without
husbandry measures in place to control the spread of
infection between individuals.

Methods
Paratuberculosis model design
The key aspects of paratuberculosis infection that we
intended to capture in our model were the impact of herd
management practices, the spread of infection through
the environment, vertical and pseudo-vertical transmis-
sion from dam to calf, and the influence of imperfect tests
on the effectiveness of control strategies.

A continuous time stochastic model was developed by
assigning mean rates to the various possible events, from
which inter-event times can be generated using the Gille-
spie algorithm [2]. Although the infection model is in
continuous time, management decisions are taken on a
discrete time basis, with a time step of one week, in
order to reflect typical farm routines. Individuals are
assigned one of four management states (calf, heifer, preg-
nant and non-pregnant productive animals) as well as
one of five infection states (susceptible, infected but not
shedding, low shedding, high shedding and clinical). As
the approach is computationally intensive, the model and
reweighting procedure were constructed in the C pro-
gramming language.

Herd Management
The herd was assumed to be closed (new animals are not
introduced to the farm). Control methods which are found
to be appropriate in the closed case will still be useful in
the open herd situation if coupled with sensible purchas-
ing strategies to minimize the risk of importing infection
into the herd. The converse is not true, since the long-term
epidemiological state of an open herd will be critically
driven by the level of infection imported into the herd.
Therefore we have considered the long-term behaviour
of the epidemic following the introduction of a single
infected animal onto the farm. For the purposes of the cur-
rent study a herd size of 90 dairy cattle was used, a figure
which reflects average herd sizes in Scotland circa 2000
[14], as well as the mean of 81 animals in the data set [15]
used in the reweighting procedure, described in section
“Latin hypercube sampling and reweighting parameter
sets”. A spread rather than seasonal calving strategy was
assumed, where individual births can occur at any point
in the year so that no seasonal variation was included in
the model. At birth, it was assumed that 50% of individ-
uals are male, with these individuals being immediately
culled. Furthermore 8% of female calves are born dead

or abnormal and removed from the model. After a fixed
time span of 6 months individuals are moved into the next
management state, “heifer”, in order to form a supply of
new animals for the milking herd. A calf mortality rate
μc of 0.0085 per animal per month was assumed, corre-
sponding to an overall calf mortality of 5% over 6 months,
as given by the Milk Development Council [16].

The herd was assumed to be operating under a set stock-
ing management practice, in which a constant number of
productive animals is maintained. Animals in the heifer
class are matured until they reach an age of 16 months.
During this period they have an instantaneous mortality
rate μh of 0.0011 per animal per month [17]. In order
to keep the spread calving pattern intact, the death of an
individual in the milking herd will result in the selection
of a replacement from those heifers in the age range of 14
to 16 months, with a view to calving occurring at around
24 months. Heifers which have not been selected by the
time they reach 16 months are culled [17,18], while if a
replacement is needed when the pool of 14 to 16 month
old animals is empty, a clean animal is bought in.

Productive animals are pregnant for a period of 9
months, and then left empty for 4 months [18]. In order
to calculate mortality rates for productive animals an
estimate for the annual replacement fraction in a typi-
cal Scottish dairy herd of 0.242 was used, based on the
Scottish Government Economic Report on Scottish Agri-
culture [14]. The proportion of culls which are due to age
related factors was taken from literature estimates of 0.11
[18] and 0.05 [19]. Combining these figures gave estimates
of the fraction of the herd culled annually for reasons
not related to age, q, of 0.216 and 0.230 respectively. As
this range is fairly narrow we take a fixed intermediate
value of q = 0.22. This proportion is further partitioned
into a fraction due to reproductive failure, taken as 0.292
[19], with the remaining 70.8% being assigned to other
non-age related causes. An exponential inter-event time
distribution was assumed, giving an instantaneous mor-
tality rate for non-pregnant animals μa = − ln(1−0.708q)

per year. As animals are pregnant for 9 months followed
by 4 months empty, the expected length of pregnancy
in a randomly selected 12 month block is 108/13. Using
this to generate the excess mortality μp associated with
pregnancy gives a total mean monthly rate for pregnant
animals of

μa+μp = − ln(1−0.708q)/12−13 ln(1−0.292q)/108.
(1)

An additional source of mortality in productive animals
is culling due to decline in milk yield. In this model it
was assumed that individuals are kept for a fixed number
of lactations, n, and culled upon reaching this limit. The
value of n is fixed for a particular farm or, equivalently,
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sample parameter set, but due to the wide range of values
quoted in the literature was treated as one of the sampled
parameters, with values between 5 and 12 lactations.

Infection model
Due to the long incubation period of paratuberculosis, it
was assumed that no calves are in the shedding states of
the model [20]. The principal route of transmission appli-
cable to all animals is by ingestion of bacteria from the
environment. In addition to the average level of environ-
mental bacteria, adult (heifer and productive) animals are
exposed to a further bacterial source term representing an
increased level around a clinical individual, whereas it was
assumed that calves have little direct contact with animals
other than their dam. Let c(t) be the level of bacteria in the
environment at time t and Za(t), Yah(t) and Yal(t) be the
number of clinical, high and low shedding adults respec-
tively. The number of sub-clinical individuals is denoted
by Xa(t) for adults and Xc(t) for calves.

Adult animals become infected at a rate
βd
Na

Za(t) + βai
Na

fa(c(t)), (2)

where βd and βai are parameters controlling the overall
rate of direct and indirect infection, while Na is the total
number of adult individuals. The function fa(c(t)) defines
the relationship between the level of bacteria in the envi-
ronment and the force of infection on a susceptible adult.
For calves, infection through the environment is modelled
in a similar manner to that in adults, with a rate

βci
Nc

fc(c(t)), (3)

where βci is a further parameter controlling the rate of
indirect infection of calves, and fc(c(t)) defines the rela-
tionship between the level of bacteria in the environment
and the force of infection on a susceptible calf.

Where a calf is born to a shedding animal both in utero
and post partum routes of infection were included. For
in utero infection, the probability piu of being infected at
birth is given by

piu =
{

log(αlow)

log(αhigh)
pmax for a low shedding animal

pmax for a high shedding animal
(4)

in which αlow and αhigh are shedding rates, defined below,
and pmax is a sampled parameter.

In order to represent post partum infection an addi-
tional term is added to the in utero probability, so that the
total probability of vertical infection is given by

pv = piu + uφ (1 − piu) . (5)

Here u is a sampled parameter taken from a U(0, 1) dis-
tribution, representing the extent to which post partum
infection through routes such as infected milk/colostrum

is present in the model, while φ is a parameter which is
used to represent infection management on the farm by
limiting dam-calf contact, as will be discussed in section
“Control measures”. In the absence of management inter-
ventions (φ = 1) the probability of post partum infection
will range from piu to 1. It was assumed that calves have lit-
tle direct contact with animals other than their dam. Calf
to calf transmission has recently been demonstrated [21],
however we do not include this route as it is assumed to
be a low probability event given the low levels of shedding.

The response functions fa(c) and fc(c) describe the
infective impact of environmental bacteria. The true
infective impact of any environmental infection is diffi-
cult to model as it will depend on the distribution of the
bacteria and the grazing habits of the animals [22,23]. For
this reason it is more useful to assume a simple functional
form for this response, which will be nonlinear with a sig-
moidal form obeying the natural constraints f (0) = 0 and
limc→∞f (c) = K . The constant K can be set to 1 with-
out loss of generality as its value can be absorbed into
the values of βd, βai and βci. Given these constraints a
piecewise linear function was used, as this has relatively
few parameters involved and will allow more effective
sampling, hence

f (c(t)) =

⎧⎪⎨
⎪⎩

0 if c < cmin

c−cmin

cmax−cmin if cmin < c < cmax

1 if c > cmax
(6)

with different values cmin
c , cmax

c , cmin
a and cmax

a for calves
and adults. Using a different function fc(c(t)) for calf
infection from the environment allowed for calves to be
modelled as being at a higher risk of infection for a given
level of contamination. The models of [8-11] all assume
that initial infection can only occur up to one year of age,
whereas here it has merely been assumed that the rate of
infection is higher for calves.

Once infected each animal is assigned a sub-clinical
phase of duration Ti, which is drawn from a Gamma dis-
tribution �(νc, λc) for calves and �(νa, λa) for adults. The
parameters in these distributions were obtained by fitting
to published data [24-26]. The sub-clinical period for each
animal i is divided into the non-shedding phase of dura-
tion f1Ti, the low shedding phase of duration f2Ti and the
high shedding phase of duration (1 − f1 − f2)Ti. These
classes were designed to be analogous to those of [27],
with disease states also being similar to those used in [10].

Animals in the low shedding phase excrete bacteria at a
rate αlow, while those in the high shedding state do so at a
rate αhigh. In order to calculate these shedding parameters,
an underlying exponential shedding process for an animal
infected at time t0 of α(t − t0 − f1Ti) = Aeλ(t−t0−f1Ti)

was assumed. At the start of the low shedding phase, a
shedding rate α(0) = αmin was assumed, which is derived
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using the faecal test model described in section “Control
measures” assuming a mean detection probability for an
animal in the low shedding state equal to 0.2, as given
in [27]. The final shedding rate α((1 − f1)Ti) = αmax,
obtained when an animal reaches the clinical phase of
infection, is likely to be the most critical to the epidemi-
ology and was thus treated as a sampled parameter. Given
these values it is straightforward to calculate A and λ. The
values of αlow and αhigh were then calculated as averages
of the exponential process over the corresponding time
periods,

αlow = 1
f2Ti

∫ f2Ti

0
α(t − t0 − f1Ti), (7)

αhigh = 1
(1 − f1 − f2)Ti

∫ (1−f1)Ti

f2Ti
α(t − t0 − f1Ti). (8)

Explicitly modelling shedding in this manner, allowing
for some individuals to shed at extremely high rates, incor-
porates some of the issues addressed by Mitchell et al.
[11], although the current model only allows for vari-
ability in shedding rates between realisations, rather than
explicit inclusion of a small number of animals shedding
at an exceptionally high rate. It is likely that such ani-
mals would have a relatively limited impact on the long
term dynamics of infection as they would be easily picked
up by faecal tests [11], however they would contribute to
additional variability in the observed dynamics, a feature
which would not be observed in a deterministic model
such as that of Mitchell et al.

Individuals in the clinical state were assigned a disease
induced mortality μi which is added to their basic mortal-
ity rates, μh, μa or μa + μp, in order to reflect culling of
such animals. It was assumed that an animal is culled one
week after entering the clinical state, equivalent to a value
for μi of 2 per animal per month.

Environmental infection
Mitchell et al. do not model environmental infection, but
suggest that doing so would be worthwhile. The level
of environmental contamination c(t) was modelled as a
deterministic process with a linear decay rate δ, which is a
sampled parameter having a range of values that gives an
infective dose a half life of between 28 and 133 days, con-
sistent with data in [28]. The value of c(t) is governed by
the differential equation

dc(t)
dt

= αlowYal(t) + αhighYah(t) + αmaxZa(t) − δc(t).

(9)

A deterministic process was chosen as this quantity is
likely to be very high, and hence the size of fluctua-
tions will be relatively small. A stochastic process for a

population of such a size would be extremely numeri-
cally intensive, whereas the deterministic process can be
solved relatively straightforwardly. As Yal, Yah and Za are
stochastic variables, the function c(t) will exhibit random
changes in the growth rate at discrete time points. There
is no source term in this equation as the bacterium is an
obligate parasite. As the stochastic variables are discrete
valued, it is possible to solve this equation piecewise in a
sequence of time windows over which these variables are
constant. Over such an interval we can rewrite equation
(9) as

dc(t)
dt

= A − δc(t), (10)

in which A is constant. This equation has the solution

c(t) = c(0)e−δt + A
δ

(
1 − e−δt) , (11)

which allows forward calculation in time of c(t) by insert-
ing its value just prior to any change in the random
variables as c(0), with the new value for A arising from the
change.

Control measures
We have examined simple control measures which consist
of annual test and immediate cull of positive animals using
simulated faecal culture and ELISA tests, as well as infec-
tion management, which reduces both contact between
dam and calf and the excess infection arising from local-
ized exposure to clinical animals. The calf exposure and
isolation of clinical case infection management methods
have been run together, without examining their effects
separately. They have also been examined in combination
with each of the test and cull strategies.

Reduction of the level of calf exposure from the dam
was modelled by reducing the dam-calf contact param-
eter φ in equation (5) from 1 to 0.1, which simulates
reducing the level of post partum infection through routes
such as infected milk or colostrum, although the probabil-
ity of infection in utero remains unchanged. The impact
of management on transmission from exposure to clin-
ical individuals was examined by reducing the contact
parameter βd to zero.

Note that the ELISA test, as well as being used in
the simulation of control, was also used to model the
collection of the reference data set for the fitting proce-
dure described in section “Latin hypercube sampling and
reweighting parameter sets”.

ELISA testing
An ELISA testing process was modelled in which each
animal is tested independently. Based on the commercial
HerdChek ELISA kit [29], it was assumed that a propor-
tion Es = 0.87 of infected animals will sero-convert at
a sufficient level to be detected at some point in their
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latent period. In order to determine at what time point
this threshold is reached a random variable Eτ is drawn
from a beta distribution, Beta(11.89, 16.07). The param-
eters in this distribution have been derived from [29],
in which estimates are provided of the relative propor-
tions of animals in the different shedding states which
will be successfully detected. The ELISA test was used to
collect the parameterisation data set [15], making it nec-
essary to use this test model in order to model observed
values from the underlying true within-herd prevalence,
prior to carrying out the reweighting. A recent review
compares the accuracies of ELISA and other tests for
paratuberculosis [30].

Faecal testing
Although a piecewise constant form was used for the pur-
poses of calculating the amount of bacteria deposited into
the environment, it was necessary to explicitly model the
rate of shedding when calculating a detection probability
in modelling a faecal test. Thus the shedding rate for an
individual animal that has undergone a fraction t/Ti of its
latent period was modelled as

rs(t, Ti) =
⎧⎨
⎩

0 if t
Ti

< f1,

αmin
(

αmax
αmin

) 1
1−f1

(
t

Ti
−f1

)
if t

Ti
≥ f1,

(12)

We assume that the probability of detection is subject to
Poisson variability, with a proportion Ff = 0.00004 of an
animals daily faecal production being used in the culture.
We thus arrived at a detection probability

s(t, Ti) = 1 − exp(−Ff rs(t, Ti)). (13)

The models used in [8] and [10] both used test sensitiv-
ities which monotonically increased with the severity of
the infection, although in those cases a step function with
fixed parameters was chosen.

Latin hypercube sampling and reweighting parameter sets
In order to take proper account of parameter variability
and uncertainty we have used a Latin hypercube sam-
pling scheme [5], combined with a novel reweighting
procedure, which selects parameter combinations that
best reflect empirical data. Among the parameters in the
model, some are based on fairly consistent evidence, are
considered unlikely to vary greatly between farms or may
be considered less critical as the model is less sensitive
to them. These parameters were not used as sampled
parameters, but instead assigned point estimates, and are
described in Additional file 1: Table S1. While there is
a degree of judgment required in the choice of these
parameters and a trade-off between the number of sam-
pled parameters and the efficiency of the procedure, other

models do not account for uncertainty in parameter val-
ues, effectively choosing all parameters to be fixed, [8-11],
although in most cases the sensitivity of the model to
each parameter is explored. For the sampled parame-
ters, expert opinion together with a range of published
estimates has enabled the calculation of an appropriate
range and distribution for their values, as described in
Additional file 2: Table S2. Samples were generated from
the joint distribution of these parameters, assuming inde-
pendence, by Latin hypercube sampling [31,32], in which
each parameter distribution is divided into equally prob-
able intervals and combined into parameter sets using a
Latin hypercube design in which each parameter inter-
val appears once. Thus to generate K parameter vectors,
each sampled parameter distribution is divided into K
equally probable intervals. The generation of the input
parameter sets was carried out in R [33] using the ‘lhs’
package.

As no correlation between the parameters has been
assumed, the set of parameter combinations generated
in this manner will contain some combinations which
would have very low probability if the true joint distri-
bution were known. Typically information on correlation
between such parameters is not available. In order to
generate results over the ensemble of parameter sets a
prevalence data set was used to derive a set of weights,
effectively picking out the parameter combinations which
gave rise to results which best reflected the data. To do
this a reference scenario was used in the model which
recreates the conditions under which the data were col-
lected. The best dataset identified for this purpose was
that of Boelaert et al. [15], describing the Belgian cattle
population, as no comparable data for UK cattle popu-
lations were identified. Boelaert et al. present this data
in the form of a median and quartiles of the within-herd
seroprevalence for different herd types including data for
dairy cows. This necessitated the recasting of model out-
puts into the seroprevalences obtained by the ELISA test
model, described above, in order to generate these weights
using comparable data.

For a sample parameter set labeled θ , the equilib-
rium simulated true and simulated observed within-herd
prevalence distributions, which we denote pθ (P) and
p̃θ (Pobs) respectively, were formed. This was done by run-
ning many realisations of the model for each parameter
set θ , without use of any control methods other than the
removal of clinical animals. Each run was left for a burn-
in period of 50 years in order to ensure equilibrium had
been reached before taking the prevalence, either directly
or through the simulated test, and generating the corre-
sponding prevalence distribution from the set of values
obtained. Given that the seroprevalence distribution in
the data is the within-herd distribution among infected
farms, the distributions needed for generating weights are
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the zero censored distributions defined by

qθ (P) = pθ (P)

1 − pθ (0)
P > 0, (14)

for the underlying prevalence, together with

q̃θ (Pobs) = p̃θ (Pobs)

1 − p̃θ (0)
Pobs > 0, (15)

for the prevalence observed by ELISA test. If pθ (P) and
p̃θ (Pobs) are well defined probability distributions it is
straightforward to see that qθ (P) and q̃θ (Pobs) are also.

For each parameter set the probability qk
θ of the

observed seroprevalence falling into quartile k of the
dataset (see Figure 1) was calculated using

qk
θ =

∫ Qk

Qk−1

q̃θ (P)dP. (16)

Each parameter set was assigned a weight for that
quartile

W k
θ = qk

θ∑
θ qk

θ

. (17)

The final weights for each parameter set are given by
combining the W k

θ for each quartile,

Wθ = 1
4

4∑
k=1

qk
θ∑

θ qk
θ

. (18)

This is consistent with the concept that the observed
prevalence distribution has been generated by a set of
farms exhibiting between farm variability in parameter
values. Parameter sets which give rise to distributions
which are generated by many other parameter sets will be
given lower weight, due to the normalisation factor in this
equation, whereas parameter sets that generate results
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Figure 1 (a) Distribution q̃(Pobs) of observed within-herd prevalence, Pobs, as observed using the simulated ELISA test and after
conditioning on Pobs > 0. This replicates how the prevalence data used in this paper, from [15], were collected. Also shown (dashed vertical lines)
are the quartile boundaries of that data (denoted in the text as Q0 to Q4), and the first, second (median) and third quartile boundaries of q̃(Pobs),
showing the fit of these to Q1 to Q3. (b) and (c) Distribution of observed prevalence for two individual parameter sets. (b) is from a set of parameters
which is given a low weight by the reweighting algorithm as it does not represent the data well, while (c) is given a higher weight.
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in quartiles for which other parameter sets infrequently
produce results will be given higher weights. The over-
all effect of this weighting is to ensure that the weighted
outputs from all the parameter sets, when run under the
reference scenario, match the observed quartiles from the
data.

The set of weights was generated by running the ref-
erence scenario described above, which was designed to
represent the conditions under which the data were col-
lected, but once the final weights have been generated it
is possible to run alternative scenarios, such as those with
control present, and hence to form weighted prevalence
distributions for different control options. In all such cases
the weights used should be those generated as described
above using the reference scenario.

Results and discussion
Figure 1 shows the results of carrying out the reweight-
ing for the Belgian data set, including both the data and
reweighted model quartiles, together with the model out-
put for two individual sample parameter sets. The param-
eter combination used to generate Figure 1b shows a

distribution with support over a wide range of within-herd
prevalences. This does not reflect the data quartiles, also
shown, and so generates a low weight, although as the dis-
tribution does have some support at low prevalences its
weight is not zero. The variability in the outcomes from
the stochastic model gives rise, for some parameter sets,
to within-herd prevalences in the upper tail, which are not
well supported in the data set. Many such parameter sets
may still be assigned non-zero weight because other reali-
sations with the same parameters have prevalences which
are within the data quartiles, especially if these values are
poorly represented by other parameter sets. This reflects
the fact that the quartiles in the weighting equation (18)
are treated independently. Assigning non-zero weight to
distributions which have support outside of the data quar-
tiles gives rise to an overall model prevalence distribution
with a significant tail beyond the quartiles, as seen in
Figure 1a. The slight over dispersion resulting from treat-
ing the quartiles independently may be beneficial in that
very high prevalences, which are likely to be poorly repre-
sented in any data set compared to reality as they are low
probability events, are still accounted for in the weighted
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Figure 2 (a) and (b) Density plots showing the distribution q(P) of simulated true within-herd prevalence, P, conditioned on P > 0, as a
function of time. Along a vertical line (at a fixed time) the density corresponds to the height of the distribution for different prevalences (similar to
Figure 1(a) but for true rather than ELISA observed prevalence). (a) shows the distribution before applying the reweighting algorithm, (b) shows the
same distribution with reweighting. Also shown are the first, second (median) and third quartile boundaries of these distributions as a function of
time, with the median shown by the solid white line and the outer quartiles by the dotted lines. The initial condition has no infected individuals but
the environmental contamination equivalent to a single high shedding animal. It can be seen that the distributions approach equilibrium. (c) shows
the time dependence of the corresponding herd level prevalence (i.e. the proportion of farms with infected animals) comparing the value before
(circles) and after (triangles) the reweighting. (d) The distribution p(P) for both non-weighted (circles) and weighted models (triangles), at a single
timepoint where the system is deemed to be in equilibrium.
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Figure 3 Evolution of herd level prevalence with control. Time
evolution of the distribution p(P) of the underlying (rather than ELISA
observed) prevalence, with the introduction of an ELISA test and cull
strategy at t = 600 months.

results. Keeping this additional variability also addresses
the need to strike a balance between the information con-
tained in the prevalence data and that in the literature
estimates used for the parameter distributions.

Figure 2 shows how this procedure affects the under-
lying distribution of within-herd prevalence, rather than
that observed through ELISA testing. It is important to
note that the fitting of the variability by the weighting is
not an artifact of choosing narrow parameter distribu-
tions - the choice of input parameter distributions was

made to be wide enough to encompass all reasonable val-
ues, and this conservative choice is reflected in the large
variability displayed before fitting in Figure 2a. The time
evolution of both the zero censored distribution and herd
level prevalence, 1 − p(0), are shown in both the weighted
and unweighted cases. Also shown is a snapshot of the
within-herd prevalence distribution after a large time has
elapsed, where the system is assumed to be at equilibrium.
From Figures 1 and 2 it can be seen that using a single set
of parameters is unlikely to give a good reproduction of
the data set, and that it is important to capture the vari-
ability that arises from both true between farm variability
in parameter values and lack of knowledge. Introducing
distributions for key parameters allows for this variabil-
ity, with an extremely broad distribution of within-herd
prevalences evolving from the initial state (Figures 2a
and 2c), but this approach still fails to reproduce typical
within-farm prevalences seen in the field, giving little con-
fidence in the predictive power of such a method without
reweighting. This failure arises partly from the presence of
unrealistic values for parameters, and partly from the lack
of any correlational links between them. Both of these fac-
tors are mitigated by the use of the reweighting scheme,
for which it can be seen that both good agreement with the
data and a more appropriate level of variability is achieved
(Figures 2b and 2d). Using this procedure gives a much
stronger basis upon which to simulate the effect of control
strategies.

When examining control, the system was allowed to
reach an equilibrium by being run for a burn in period
before the control begins, after which the system was run
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Figure 4 Effect of control on herd level prevalence. The effect of a range of control strategies on the herd level prevalence, 1 − p(0) (i.e. the
proportion of farms with infected animals) over time. The control strategies are in place throughout the period shown on the x-axis. The strategies
shown are: no control (◦), annual ELISA test and cull positive animals (�), infection management by reduction of both calf exposure and infection by
clinical animals (+), ELISA and infection management together (×) and annual faecal culture test and cull positive animals combined with infection
management (�).
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Figure 5 Comparison of control options. Distributions p(P) of the within herd prevalence P, conditioned on P > 0, for three different control
strategies and showing different timepoints, before the control commences and 5, 10 and 25 years after it starts. In all cases the mode of the
distribution moves from higher to lower prevalence, showing that farms have fewer infected animals the longer the control strategy has been in
place. (a) Infection management by reduction of both calf exposure and infection by clinical animals. (b) Annual ELISA test and cull positive
animals. (c) ELISA and infection management together. The combination of ELISA and management can be seen to have a significant long term
effect on prevalence.

for a further 30 years with the control strategy in place. In
order to show the effect of control on the time evolution
of the system, Figure 3 displays an equivalent density plot
to that shown in Figure 2b, with the addition of an annual
ELISA test and cull strategy commencing after the burn
in period. It is clear that this strategy is highly unlikely to
achieve eradication, as even after 30 years of control, there
is still a significant probability (p = 0.06 from an initial
level of p = 0.1) that a typical farm will be infected, with
the rate of change of this value indicating that it is broadly
at equilibrium.

Figure 4 shows how the herd level prevalence decreases
with time under various control strategies. Although the
combination of faecal test and cull with management was
the most effective, the model used here does not incor-
porate a number of practical difficulties associated with
using this approach in the field, such as the delay involved

in carrying out the test and the cost. It is notable, however,
that through this approach eradication can be achieved in
8 to 9 years. Neither management alone, nor ELISA test
and cull strategies are able to eradicate the infection, how-
ever both lead to a drop in both herd level prevalence and
the within-farm prevalence on infected sites, reducing the
probability of a farm being infected from 0.21 to equilib-
rium values of 0.04 and 0.06 respectively. Finally it can be
seen that combined ELISA test and cull with management
leads to eradication in a time frame of around 20 years.

The distributions of the within-herd prevalences are
shown in Figure 5 for various timepoints beyond the start
of control, comparing strategies with and without man-
agement and ELISA test and cull. From these figures it
can be seen that the use of ELISA test and cull has a lim-
ited and slow acting impact upon low prevalence farms,
reflecting the low sensitivity of the test at the onset of
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infection. This is a consequence of the use of the beta
distribution in the ELISA model. As high shedding indi-
viduals are detected and removed from the population
the effective sensitivity drops, demonstrating a fundamen-
tal limitation of any test which is not effective at the
early stages of infection. By contrast, infection manage-
ment predominantly targets younger animals, preventing
infection from occurring and hence targeting high and
low within-herd prevalence outbreaks equally. Although
it is not able to completely remove infection, it is able
to compensate for the shortcomings of the ELISA test
and consequently the combined strategy is shown to be
effective.

Control strategies have been run here for 30 years in
order to observe their effect over timespans which may be
of interest in practise. Over timescales of this magnitude
it is likely that the values of parameters or other environ-
mental factors will vary, and this change is not reflected in
our analysis as the control options are evaluated in a fixed
environment. If large scale longitudinal data were avail-
able the methods described here would be able to handle
such change by using a combination of time dependent
parameter distributions and weightings, thus allowing an
investigation of these effects by comparison with the fixed
environment examined here.

The reweighting approach implicitly allows for variation
in sensitive or poorly understood parameters through the
sampling algorithm. Where changes in a parameter have a
strong effect on the outcome of the model, the reweight-
ing will tend to assign an appreciable weight only to a
narrow sub-range of the initial distribution. Thus, whilst
the approach does not allow for the sensitivity of individ-
ual parameters to be quantified, such sensitivity is fully
accounted for in the results.

Conclusions
A practical method of accounting for uncertainty and
between farm variability in realistic models of disease
transmission has been developed and shown to be an
effective tool for predicting their behaviour. The exam-
ple of paratuberculosis in dairy herds has been explored,
a disease for which there is considerable uncertainty in
the values of many key quantities affecting the dynamics.
Good agreement has been shown with the experimen-
tal within-herd prevalences in the control free scenario,
so that with the inclusion of uncertainty and variability
greater confidence can be felt in the extrapolations into
the use of control.

The model developed here includes many of the key
features of paratuberculosis infection, such as vertical
infection as well as infection through a contaminated envi-
ronment, important details when considering the com-
mon approaches to managing and eradicating infection
that have been used here. Using this model in combination

with the reweighting scheme, we have been able to repro-
duce the within-herd prevalence distribution seen in the
field data. Regions with different distributions or where
similar results are observed under different management
or control scenarios will generate different weightings,
and hence evaluations of the effectiveness of treatments
will vary. This approach is able to deal with such variations
and would be applicabe to making detailed regionalised
predictions on the effectiveness of different control strate-
gies. It would also be straightforward to incorporate post-
control data into the generation of the weights, giving
additional potential sources for increasing the robustness
of the weighting scheme. Furthermore it is anticipated
that it will be possible to apply the reweighted LHS tech-
nique to other diseases and other models more generally.

The use of statistical approaches to parameterising
models based on field data allows greater insight into the
relative strengths of different control strategies and into
the range of possible outcomes and associated variabili-
ties, particularly in cases such as paraTB in which there
are a large number of biological parameters whose values
are poorly understood.
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