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Abstract: It is very common for natural or synthetic materials to be characterized by a periodic or
quasi-periodic micro-structure. This micro-structure, under the different loading conditions may play
an important role on the apparent, macroscopic behaviour of the material. Although, fine, detailed
information can be implemented at the micro-structure level, it still remains a challenging task to
obtain experimental metrics at this scale. In this work, a constitutive law obtained by the asymptotic
homogenization of a cracked, damageable, poroelastic medium is first evaluated for multi-scale
use. For a given range of micro-scale parameters, due to the complex mechanical behaviour at
micro-scale, such multi-scale approaches are needed to describe the (macro) material’s behaviour.
To overcome possible limitations regarding input data, meta-heuristics are used to calibrate the
micro-scale parameters targeted on a synthetic failure envelope. Results show the validity of the
approach to model micro-fractured materials such as coal or crystalline rocks.

Keywords: meta-heuristics; asymptotic homogenization; periodic micro-structure; Particle Swarm
Optimization; multi-scale; FEM; in-simulatio; constitutive law

1. Introduction

Natural or composite materials, are often characterized by micro-structure [1–3]. At a
range of different loading conditions, the constitutive response of the micro-structure
might affect or even govern the bulk constitutive response of the material in the macro-
scale, while in other conditions it might not play a significant role. However, modeling
the material at very small scales is computationally costly (or prohibiting). At cases
where the micro-structure is periodic (or quasi-periodic) the information of the micro-
scale response can be passed to the macroscopic description of the material through a
homogenization approach [4–9], and solved on a generic micro-structural cell e.g., [10]. The
homogenized constitutive laws, also called double-scale laws, allow for a modelling of such
materials at the macro-scale which is more computationally efficient. Indicative examples
of the need for double-scale models is for the description of masonry structures [11,12],
coalbed reservoirs [13,14], shales [15,16] as well as other rocks [17]. These materials are
characterized by a porous matrix (material skeleton) stratified by damageable cracks.

Physical systems (e.g., materials) can perform simulations with a degree of complexity
unattainable by conventional von Neumann computers [18]. Nonetheless, due to the num-
ber of variables and uncertainty present in physical systems, control and reproducibility
and even measurement of such experiments are difficult tasks. With the increasingly avail-
able computing power of classical computers, accurate discretizations of Partial Differential
Equation (PDE) problems can serve the needs of researchers: a new experimental domain is
born: in-simulatio experimentation [19]. In recent years artificial intelligence (AI) techniques
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have become very popular to solve problems which require a high level of cognition,
e.g., image recognition, audio signal discrimination, autonomous driving, natural hazard
mitigation [20], materials constitutive modelling ([21–27], among others), but also to solve
physical problems which where traditionally the realm of PDEs (see [28–31] for example).
AI paradigms are implemented in classical von Neumann computers because of their
degree of developement compared to physical computing systems but those architectures
may not be the optimal solution for such applications. The interest in developing comput-
ing systems combining physical and classical computers has been growing in parallel to the
development of AI; physical computers are meant to provide high level, fast, low energy
demanding and non deterministic computations while the classical computer layers can
treat the data in different stages of the computation like pre or post processing. While any
physical system can be used to perform computations, some characteristics are desirable in
order to maximize computing power, this relates to the quantity of chaos and order in the
system [32]. A perfectly ordered system will be attractor based and will not provide any
result which we do not already know from the inputs, while an excessively chaotic system
will output a result that cannot be interpreted. The order-chaos range in which powerful
computations are possible appears to be very narrow (Figure 1), and it seems that some
biological systems, e.g., distribution of neuronal avalanche sizes [33], belong to this range.

Figure 1. Separation Ratio Graph based on [34]. Graphical representation of the phase transition
between chaos and order. Systems in the target zone are said to possess both a good separation
property and ideal dynamic behaviour to produce optimal reservoirs.

Multi-scale modelling is an increasingly popular trend taking advantage of classical
computers [35–40]. This paradigm uses in-simulatio numerical results in order to feed a
higher hierarchical model instead of using classical mathematical descriptions. This has
the advantage of producing more feature rich results without the hassle of dealing with
experiments in a hybrid numerical-experimental setup. Indeed, in a multi-scale approach,
the micro-scale computation is the in-simulatio analogous of an in-materio computer. An
asymptotic homogenization and the related double-scale model for poroelastic media
with damageable cracks were previously developed [41]. Compared to numerical ho-
mogenization approaches such as direct micro–macro-techniques [39,42], the asymptotic
homogenization theory permits equivalent properties to be obtained and allows an analytic
and a numerical approach to be combined. The homogenized problem can be solved on a
generic micro-structural cell (solved using, e.g., finite elements) so that the homogenized
macroscopic properties are finally obtained. The obtained homogenized macroscopic prop-
erties remain valid until a change in the micro-structural cell requires an update of the
homogenized solution, e.g., because of crack damage. Another alternative could be the use
of Machine Learning (ML) methods for either black-box or physics-informed homogeniza-
tion. ML methods usually offer much lower computational cost regarding the estimation
of the homogenized operator, but as a trade off they may lack in rationality (black-box) and
they need a relatively large amount of input data (micro-structure simulations in this case)
for non-overfitting training.



Materials 2021, 14, 3974 3 of 23

For further studying the applicability of the model presented in [41], the different
response regimes of the physical system (the material) must be identified and bounded. Fol-
lowing this reasoning, the characteristics of micro-scale numerical models can be compared
to those of in-materio computing kernels, i.e., if the micro-scale behaviour is too simple
(predictable), it will not present an advantage with respect to a classical phenomenological
expression yet if too complex (chaotic) its output will not provide extra useful information.
In the following, we are first exploring the validity bounds of the model and identifying the
different regimes into fractures-dominated, inter-play matrix-fractures, matrix-dominated.
Then the failure envelopes are obtained and the continuity and differentiability of the
model is studied. Finally, the micro-scale needs to be calibrated. In practice, accessing
direct measurements of a micro-scale’s mechanical properties at the nanometer scale is not
possible. In general, obtaining the 3D micro-scale configuration of materials is possible
by techniques such as X-ray tomography [43], water distribution can be determined with
neutron tomography [44], bulk force networks can be deduced using photoelasticity [45],
and it is even possible to obtain metrics of the contacts’ fabric [46,47]. Nevertheless, it is still
challenging to obtain direct measurements of force at the contacts’ level. Thus, the main
geometric characteristics of the micro-scale can be known, but in most cases the precise
calibration of its components needs to be obtained from the macro-scale material response.

The characteristics that render the micro-scale useful for multi-scale frameworks also
make it untreatable with classical gradient methods like Newton method [48]. In recent
years, meta-heuristics based on the mimicking of natural systems and cooperative popu-
lations have shown different degrees of success in particularly challenging optimization
problems [49–51]. Particle Swarm Optimization (PSO) is proposed in the present work as a
meta-heuristics approach [52] to find minima of the objective function resulting from the
micro-scale homogenization fitting with a target response.

The purpose of this work is to provide a micro-scale model that can be directly
used in a multi-scale numerical approach, establish its validity range based on in-materio
computing and provide a calibration method able to overcome the challenges resulting
from the particularities of the micro-scale. The article is organized as follows: Section 2
presents the constitutive equations of the micro model and its numerical implementation,
Section 3 showcases different failure envelopes and proposes a well suited method to
characterize the micro-scale in view of a multi-scale application, Section 4 exposes the meta-
heuristics optimization results and Monte-Carlo analysis, the paper ends with discussion
Section 5 and conclusions in Section 6.

2. Description of the Micro-Scale Problem

In the following, we consider a 2-D micro-scale structure that consists of a porous
elastic matrix and a crack network. The crack opening presents a linear elastic response
with opening and undergo a nonlinear damage evolution. The cell is considered to be x
and y periodic. This configuration can be representative of many materials including coal,
crystalline rocks, composites and more.

2.1. Constitutive Equations of the Homogenized Problem

The constitutive equations of the studied micro-scale were obtained using asymptotic
homogenization technique [53] in the framework of small strains using asymptotic expan-
sions [54], full description of the expansions can be found in [41]. The original problem is
hydromechanical, however, the hydraulic and mechanical parts can be totally uncoupled
and only the mechanical part is considered in the present paper.

The strong form of the mechanical problem after homogenization reads:

divyσ(0) = 0 , in Y (1)

σ(0) ·~n = ~T(0) , on ΓY (2)

σ(0) = c :
(

εx
(
~u(0)

)
+ εy

(
~u(1)

))
− p(0)α (3)
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~T(0) = G ·
[[
~u(1)

]]
− p(0) ~A , on ΓY (4)

~u(1), σ(0) Y-periodic (5)

where ~u is the displacement field, macro ~u(0) and micro ~u(1), σ is the total Cauchy stress
tensor and p(0) is the macro pore pressure. c is the fourth order tensor of elastic stiffness
and α is the second order tensor of Biot coefficients. Equation (4) is similar to Equation (3)
in this case for the crack network, G and ~A being the elastic stiffness of the cracks and its
tensor of Biot coefficients. Since both matrix and crack Biot coefficients are solely affected
by macro pore pressure p(0) their contributions can be obtained by linear combination of
~u(0); for sake of simplicity Biot coefficients will be taken as zero in the present paper.

The cracks separating the porous parts of the medium are very soft. That means that
the lips of the cracks can slide and open and, in order to maintain coherence, the stress
vector ~T = σ ·~n is continuous on the cracks. The displacement field ~u is then discontinuous
on the cracks and its jump ~u+ − ~u− through a crack where ~u+ is the value of ~u on the side
toward which~n points and ~u− is the value of ~u on the opposite side, is denoted by [[~u]].

Damage

Damage is introduced in the micro-structure in order to model the degradation and
reduction of mechanical properties observed in real materials. Here, it is considered that
the damage is concentrated solely in the crack network. In this case, Equation (4) becomes
(through the corresponding expansions):

~T(e) =
(

1− d(0)(τ)
)

G ·
[[
~u(1)(τ)

]]
− p(0)(τ)~A (6)

with

d(0)(τ) = sup
0≤ρ≤τ

f


∥∥∥ [[~u(1)(ρ)

]] ∥∥∥
∆(e)

n

 (7)

where f is the damage function [55]:

z
f→ f (z) =

{
z(2− z) 0 ≤ z < 1
1 1 ≤ z

(8)

where τ is the time-history variable of the damage parameter d(0), ρ is the time-history
variable of the displacement field ~u(1) in the crack network, ∆(e)

n is a length-like feature
of the material of the cracks. At initial time t = 0, the porous medium is assumed to be
unloaded, unstressed, unstrained and undamaged which means that the initial value of
the damage parameter is 0.

2.2. Numerical Implementation

The weak formulation of the previous equations is implemented in a 2D Finite Element
Model (FEM) developed using Matlab [41]. A base cell geometry is chosen consisting of
144 2D 4-node quadrangular elements modelling the matrix grains (Figure 2, left), 52 crack
jump links (Figure 2, center), and 40 linear 2-node elements modelling the cracks (Figure 2,
right), 215 nodes in total.
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Figure 2. Geometry of the micro-scale configuration Finite Element Mesh, matrix elements with unit cell adimensional axes
(left), crack network links (center) and crack network elements (right). Cracks are totally closed in the initial configuration,
figure shows cracks with opening for convenience of representation.

The elastic properties of the matrix can be defined by the Lame constants: λ = 1.442 GPa
and µ = 0.961 GPa, i.e., Young’s modulus E = 2.5 GPa and Poisson’s ratio ν = 0.3.
This constants have been chosen according to and for validation purposes [56]. The
problem being non-linear and path-dependent, it is loaded step by step and an iterative
Secant method approach is used at each step to find a solution. In order to obtain the
failure envelopes, a loop parallelization parfor in Matlab has been used to accelerate the
computation of concurrent loading paths. In the next section, and before obtaining the
failure envelopes, the homogenized stiffness coefficients have been studied to establish the
initial bounds of the input variables.

2.3. Initial Constriction of Crack Stiffness

The study range is initially constrained to values of the crack stiffness between
G = 1012 Pa and G = 1015 Pa, in which, the homogenized coefficients present contribution
from both crack and matrix properties (Figure 3). This is done in the spirit of in-materio
computing: the range G = [1012∼1015] Pa maximizes dissimilarity between output states
and a linear combination of the inputs.
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Figure 3. Homogenized stiffness function of crack stiffness. Below the red area crack stiffness is
dominant and above porous matrix is dominant. The red area corresponds to a material with both
crack and porous matrix contribution to the response.

The range G = [1012∼1015] Pa is valid for the previously defined elastic properties
of the matrix µ and λ. Outside this range the problem becomes either crack-driven
(G < 1012 Pa) or matrix-driven (G > 1015 Pa). Micro-scale deformation configurations
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are shown for two values of crack stiffnesses and no damage: G = 1013 Pa (Figure 4,
top) and G = 1014 Pa (Figure 4, bottom) for an arbitrary magnitude of strain in each of
the degrees of freedom of the macro-scale deformation space. This initial crack stiffness
constriction is used to bound the failure envelope study in the next section.
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Figure 4. Configurations for a macro deformation ε = 0.005 in all DoF, including crack pore pressure. Colormap represents von
Misses strain in Pascals. Crack stiffness: G = 1013 GPa (top) and G = 1014 GPa (bottom). Deformation magnification: 50×.

3. Failure Envelopes

This section presents a series of failure criteria in order to determine the best suited
one for the present application. In a bifurcation or strain localization problem, Rice cri-
terion would be the natural choice to determine onset of localization [57,58]. Neither
well-posedness of the problem nor localization are of concern here since regularization
techniques can be applied on the top of a multi-scale scheme [59–62]. The purpose of the
present work is to provide a method to calibrate a constitutive law aiming at hierarchical
multi-scale modelling rather than describing bifurcation or onset of localization.

3.1. Maximum Stress Failure Criterion

The failure criterion is based on the attainable maximum stress in the coordinate
reference system (x, y). If any of the three components of the stress tensor σxx, σyy or σxy
absolute value diminishes in a time step (Equations (9)–(11)) the configuration is considered
to be failed.

‖σ11‖ < sup
0≤ρ≤τ

‖σ11(τ)‖ (9)

‖σ22‖ < sup
0≤ρ≤τ

‖σ22(τ)‖ (10)

‖σ12‖ < sup
0≤ρ≤τ

‖σ12(τ)‖ (11)
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It is assumed that the loading is at constant rate and euclidean. Failure envelopes
are generated for a series of crack stiffnesses G (Figure 5). The issue with this criterion is
the creation of artefacts due to close to zero stress components when loading parallel to
the coordinate system. Two features can already be observed: (a) higher homogenized
stiffnesses and orthotropic response for higher G (crack driven biased response) and (b)
crack stiffness G = 1014 Pa gives a characteristic non-continuous stress envelope more
pronounced for the cases with higher σxy.
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Figure 5. Failure envelopes for different crack stiffnesses, maximum stress failure criterion. Respectively from left to right
G = 1012 Pa–1013 Pa–1014 Pa–1015 Pa. The concentric envelopes correspond to different applied macro shear. The macro
shear spans from zero, for the outmost envelope, until 0.200 for the innermost, with an increment of 0.040.

3.2. Von Misses Failure Criterion

To avoid previous artefacts von Misses distortion energy (Equation (12)) is used as
failure criterion in the following envelopes. The material is considered to fail when the
distortion energy diminishes between two consecutive loading steps (Equation (13)).

vmc = σ2
11 + σ2

22 − σ11σ22 + 3σ2
12 (12)

vmc < sup
0≤ρ≤τ

(vmc(τ)) (13)

From the previous cases, only the case for crack stiffness G = 1014 Pa is considered for
further study. In addition, macrostrain εxy is kept equal to zero for sake of shortness. The
envelope presents a fish-like silhouette with a discontinuity both in the stress and strain
envelopes around the path εxx = εyy (Figure 6, left and center).
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Figure 6. Failure envelopes with crack stifness G = 1014 Pa. von Misses energy criterion: strains (left), stresses (center).
Coordinates in the strain plane to extract configurations of failure region 1a and 2a. (right).

Outside this region the envelope presents saw like profile, this can be put down to the
resolution of the time stepping in the εxx − εyy space, rather than the switching between
different failure mechanisms. Similar results can be observed for crack stiffnesses in the
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range G = [1× 1013∼1× 1014] Pa (results not presented). One drawback of using von
Misses failure criterion is that it assumes that yield happens due to accumulated distortion
energy, meaning that it is insensitive to isotropic compression. This is obviously not the case
for the present model in which isotropic compression does cause crack damage. Two points
in the εx − εy space are chosen corresponding to the different parts of the failure envelope
(Figure 6, right). In the following, the lower strain failure space will be denominated Failure
Region 1a and the higher one Failure Region 2a, simulations are run for both points. The
loading is scaled accordingly in each simulation so the time steps have the same size as
the ones used to obtain the envelopes. Results show the configuration one loading step
before and one immediately after failure according to von Mises distortion energy criterion.
Failure Region 1a presents slight opening of the horizontal longitudinal cracks in the six
intersections with the vertical cracks before the failure (Figure 7, left), after the failure those
crack links snap open (Figure 7, center).
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Figure 7. Failure according to von Misses energy criterion. From left to right: region 1a before failure, one step after failure
and stress reduction after damage law expansion. Micro-scale deformation magnification 10×. G = 1014 Pa.

Failure Region 1a has a ratio εyy/εxx = 3.1, which makes it natural to be the horizontal
cracks the first ones to open and fail. It is also remarkable that the horizontal cracks do
not open longitudinally but only in the intersections with other cracks. The stiffness factor
1 − d(0) plots present the stiffness reduction for the Gauss Points of the discontinuity
network (80 Gauss Points) (Figure 7, right), this corresponds to 52 crack node links minus
12 links sharing the same nodes: 40 crack elements (Figure 2, right) and 2 Gauss Point per
crack element. Given Gauss Points are affected by stiffness reduction more rapidly than
others during the 20 time step lading until 12 of them totally fail and this triggers the von
Misses criterion. These 12 points can be identified in (Figure 2, center). Same outputs in
the Failure Region 2a present an opening of the horizontal cracks in the intersection points
similar to the previous case (Figure 8, left).

Nevertheless, due to the different ratio εyy/εxx = 0.93, this crack damage does not
cause failure according to the von Misses criterion and the loading can continue until
vertical cracks open along with additional points in the horizontal cracks (Figure 8, center)
that did not open in the Failure Region 1a case. Similarly to the Failure Region 1a case,
cracks did not open continuously but only in selected points with a clear mesh dependency
pattern. In (Figure 8, right), the Gauss-points seem to undergo a similar process until
iteration 12 (60% final loading), when the same 12 Gauss Points as in Failure Region 1a
totally fail but due to the different εyy/εxx ratio the von Misses criterion is not triggered, the
loading can continue until vertical crack links fail together with some additional horizontal
crack links.
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Figure 8. Failure according to von Misses energy criterion. From left to right: region 2a before failure, one step after failure
and stress reduction after damage law expansion. Micro-scale deformation magnification 10×. G = 1014 Pa.

After obtaining the different failure envelopes for different crack stiffnesses G the
range presented in (Figure 3), which was issued from previous results, can be further
refined (Figure 9).
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Figure 9. Micro-scale configuration crack stiffness range using von Misses failure criterion.

According to the von Misses distortion energy criterion, the range of G where the
crack-matrix coupling exhibits interesting features for multi-scale modelling (switching
failure modes) is G = [1.0× 1013∼1.0× 1014] Pa. The upper range of G will be further
clipped down to G = 2.70× 1013 Pa to avoid computationally expensive simulations of
unbreakable micro-scales: for stiff crack networks and specific loading paths the resulting
damage pattern turns the micro-scale into a matrix based spring like geometry with much
softer homogenized properties than the matrix itself, this kind of configuration is able to
undergo large strain inputs without further loading of the crack network. See animations
of some unbreakable micro-scale mechanisms in the supplemented data.

3.3. Stress Ratio to Peak Failure Criterion

Due to the shortcomings of the previous failure criterion regarding isotropic loading
damage and unbreakable micro-structures, yet a new one is proposed based on the decrease
of force modulus (Equation (14)) after peak: during a loading history, when the resulting
force magnitude decreases from a given peak ratio the sample is considered to be failed
(Equation (15)):

f mc = ‖σij‖ (14)
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f mc < r f m

(
sup

0≤ρ≤τ
( f mc(τ))

)
(15)

where r f m is the peak force ratio. By taking the force magnitude instead of the cartesian
force components, previous artefacts in the failure envelope are avoided. Since the output
of this model is meant to be injected into a multi-scale framework, a failure criterion as
maximum force or alike does not necessarily mean loss of controllability [63]. When the
maximum stress criterion is fulfilled in a material point of a boundary value problem
the stress redistributes in its neighbourhood meaning that this point does not necessarily
collapse under constant stress conditions or cause the loss of controllability of the macro-
scale problem. Therefore the introduction of the ratio r f m in Equation (15), this allows to
obtain a failure envelope more representative of multi-scale coupling. The value r f m = 0.8
is used in the following, this value has been chosen as a compromise between high values
close to r f m = 1 which fail immediately after the peak and low values close to r f m = 0
which create unbreakable micro-scales. A failure envelope is presented for the micro-scale
parameters: ∆n = 0.0050, µ = 961× 106, λ = 1442× 106, G = 2.00× 1013 and three failure
regions are marked for later analysis (Figure 10).
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Figure 10. Failure envelope with crack stiffness G = 2.00× 1013 Pa. Stress ratio to peak failure
criterion. Coordinates to extract configurations of failure regions 1b–2b–3b.

Results of loading paths for the three failure region points are presented in (Figure 11).
From top to bottom they are: failure region 1b, 2b and 3b. Figures from left to right show
the damage parameter f (z) (Equation (8)), constitutive equation affecting Gauss Points
after damage (1− d(0)) (Equation (7)), iterations for convergence of the nonlinear problem
at each loading step and normalized failure criteria: von Misses distortion energy (VM)
and Stress ratio to peak failure criterion.

Failure regions 1b and 3b show a similar behaviour: damage function in the Gauss
Point network progressively increases with a slight acceleration over the loading until sud-
denly one of the horizontal cracks opens in a strain-localization-like phenomena. Number
of iterations for convergence gives an idea of the possibility of bifurcation, their value is 5
or below until the moment of failure indicating a brittle failure of the micro-structure, this
can be also observed in the steep descent of both norms of failure criteria. Failure region 2b
presents a different history. Damage function evolves to a strain localization in a horizontal
crack around iteration 30, same as in the previous cases, but this is not enough to trigger the
failure criterion, loading continues until a part of the vertical crack network fails. Region
2b behaviour can also be identified in the number of iterations for convergence as well as
in the norm of von Misses and Stress ratio to peak failure criterion.
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Figure 11. Stress ratio to peak failure criterion results. From top to bottom failure region 1b, 2b and 3b. From left to right:
damage parameter f (z) (Equation (8)), constitutive equation affecting Gauss Points (1− d(0)) (Equation (7)), iterations for
convergence of the nonlinear problem at each loading step and normalized failure criteria (von Misses and Stress ratio).

With a failure envelope representative of the present micro-structure application, the
model is ready to be calibrated. Next section proposes a calibration method and presents a
calibration using synthetic data.

4. Particle Swarm Optimization

Due to the very same characteristics that make the present in-simulatio micro-scale
appropriate for multi-scale, the law cannot be easily tackled using traditional gradient
techniques. Particle Swarm Optimization (PSO) is proposed as an alternative optimization
approach to calibrate the micro-scale. An alternative could be to launch a large campaign
of micro-scale simulations to obtain adequate data for the training of a ML algorithm and
replace the asymptotic homogenization with it.

PSO is a meta-heuristic used to find optima of highly nonlinear, discontinuous, non
differentiable or functions containing random variables. In contrast to gradient-based
optimization methods it does not require the differentiation of the objective function and
is less prone to get stuck in local minima. A campaign of optimization runs is set up in
order to find an appropriate swarm size. To avoid high computational costs the swarm
size is set to a very small value: SwarmSize = 8 and progressively increased until getting
satisfactory results, this search is done with a low resolution of the objective function:
the damage surface is discretized into 8 points. Once the results of the optimization are
successful the swarm size is kept constant and the resolution of the objective function
progressively increased in order to verify convergences and avoidance of local minima in a
refined non differentiable target function. All optimizations are restricted to 100 iterations
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with additional stopping criteria in case of no convergence. Table 1 presents a summary of
the used PSO parameters:

Table 1. Particle Swarm Optimization parameters.

PSO Parameter Value

Function Tolerance 1.0× 10−6

Inertia Range [0.1000 1.1000]
Min. Neighbors Fraction 0.25

Objective Limit 0.0
Self Adjustment Weight 1.4900

Social Adjustment Weight 1.4900

4.1. Objective Function

Four failure envelopes using the stress ratio to peak failure criterion are obtained with
different degrees of ε11–ε22 resolutions (Figure 12).

-0.04 -0.02 0 0.02 0.04

xx

-0.04

-0.02

0

0.02

0.04

yy

-0.04 -0.02 0 0.02 0.04

xx

-0.04

-0.02

0

0.02

0.04

yy

-0.04 -0.02 0 0.02 0.04

xx

-0.04

-0.02

0

0.02

0.04

yy

-0.04 -0.02 0 0.02 0.04

xx

-0.04

-0.02

0

0.02

0.04

yy

Figure 12. Failure surfaces for different function resolutions. From left to right: 8–16–32–64 points.

These are utilized as target functions to evaluate the goodness of fit of the optimiza-
tions. Objective functions correspond to the Top (or Macro-) level emerging constitutive
response and the Bottom (or micro-) level is optimized based on them. The used resolutions
are 8, 16, 32 and 64 points for half of the ε11–ε22 space. Due to the nature of the constitutive
law the other half is symmetric thus an evaluation of the micro-scale response for those
loading paths is not needed. The damage envelope with only 8 points is very abstract
and does not provide a very good representation of the actual surface, this minimal value
has been chosen to allow faster runs of the optimization scheme before applying it to
higher resolutions. It is also representative of a calibration with limited experimental data
availability. A resolution of 32 points already displays most of the features of the damage
envelope with the 64 points refining even more some details. Next section presents the
results of optimizations with different swarm sizes and objective function resolutions.

4.2. Increasing Swarm Size Results

A first optimization with SwarmSize = 8 and f (x) Resolution = 8 presents problems
with a local minima trap (Figure A1, 1st row) and does not converge after iteration 65,
fitness is also poor. Scatter plots (Figure A1, 1st row) present the superposition of the
swarm positions along the optimization, the plots do not provide information about the
swarm evolution during the optimization but rather the areas where the search has been
more intense. Log range of the different optimization variables x (Figure A3, 1st row) show
some convergence but not to the correct value (in particular G). Swarm size is increased
to 16 (Figure A1, 2nd row), Swarm Sizes are picked to be multiples of 8 to maximize the
efficiency of the PSO parallelization since it is running on 8 CPU-threads. Convergence is
much better than the previous case, achieving a minimum value of the objective function
f (x) = 2.608× 10−6 already at iteration 83, convergence does not progress from iteration
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83 to 100 but the fitness of the population does due to the speed updates with the new
optimal value. Scatter plots of the x vector positions show an intense search for optimal G
along a constant µ. Log range of the different optimization variables x (Figure A3, 2nd row)
show convergence and this is accelerated after finding the minimum around iteration 83.
Swarm size is increased to 24 (Figure A1, 3rd row). Convergence does not reach as low
residual values as before and it presents a plateau of slow convergence between iterations
30 and 80 which looks like a cross of the desert by the particles during which no local minima
where found. Similarly to the previous case, scatter plots of x show an intense search
for optimal G along a constant µ. Log range of the different optimization variables x
(Figure A3, 3rd row) show convergence with a slight divergence of G the last 10 iterations,
probably due to a late global swarm convergence not reaching very low values. Swarm size
is increased to 32 (Figure A1, 4th row). Convergence is very poor and fitness increases after
iteration 50. Scatter plots of x show that the swarm particles are stuck in the boundaries
of the x domain. Log ranges show high values with oscillations and no convergence
(Figure A3, 4th row).

4.3. Increasing Objective Function Resolution Results

Swarm size is increased to 40 particles (Figure A2, 1st row). Convergence is not good
and the progress stalls after iteration 46 due to falling into a local minimum trap, fitness is
also poor and the scatter plots show how the variable G search efforts are concentrated in
the upper boundary near G = 2.7× 1013 Pa. Given the slow convergence after iteration 10,
it seems that around that time the swarm was induced towards the wrong local minimum.
An optimization with larger swarm population presenting worse result than before can
seem contradictory, but it must be reminded that meta-heuristics like PSO use stochastic
functions to define initial positions and velocities, thus results are not determinist. Log
range of the different optimization variables x (Figure A4, 1st row) show convergence, not
as good as the previous case for ∆n and µ, but in the same order of magnitude for G which
agrees with the data shown in the scatter plot (Figure A2, 1st row µ− G). The results for
Swarm size 40 particles are presented in (Figure A2, 2nd row). Resolution of objective
function f (x) is increased to 16. Convergence decreases without major stall periods along
the 100 iterations to a very low value of the residual of 6.136× 10−10. Nevertheless the value
of x is not as good as the one obtained in the simulation with swarm size 24 (simulation #3),
seemingly due to the existence of a local minimum very close to the global one. Log ranges
of x (Figure A4, 2nd row) present good convergences. Swarm size 40 particles (Figure A2,
3rd row). Resolution of objective function f (x) is increased to 32. Convergence is slow
until iteration 60 and then in quickly converges to a residual of 1.635× 10−10. Similarly
to the previous case and probably because the same reason the value of x is not as good
as the one obtained in simulation #3. Log ranges of x (Figure A4, 3rd row) present good
convergences with some strong oscillations in G. Swarm size 40 particles (Figure A2, 4th
row). Resolution of objective function f (x) is increased to 64. Convergence is slow after
iteration 8 and and it stalls at iteration 25 with a residual of 0.0986. Scatter plots show that
this is due to the swarm getting stuck in the boundary G = 2.7× 1013 Pa. Log ranges of x
(Figure A4, 4th row) show no convergence.

4.4. Summary Particle Swarm Optimization Results

Optimizations 1, 2, 3 and 4 (Figures A1 and A3) all reach the end of the optimization at
iteration 100 but with poor residual value for the case 1 and 4. For the optimizations with
large swarm size: 5, 6, 7 and 8 (Figures A2 and A4) only the ones with objective function
resolutions 16 and 32 reach convergence. Results are summarized in Table 2, last line
presents the known value of x in bold to allow fast comparison with optimization results.
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Table 2. Particle Swarm Optimization simulation summary and results. Run in a computer with Intel Core i7-10700
processor @2.90 GHz and 16.0 GB RAM @2933 MHz, all simulations using parallelization with 8 workers.

Sim. Swarm Size It. f-Count f (x) Res. Best f (x) Mean f (x) Optimal x Time

1 8 100 808 8 0.01245 0.03517 [0.0056 9.4330 × 108 1.6802 × 1013] 42 min
2 16 100 1616 8 2.608× 10−6 0.003639 [0.0050 9.5287 × 108 1.9847 × 1013] 90 min
3 24 100 2424 8 0.0002951 0.06567 [0.0050 9.6105 × 108 2.0029 × 1013] 135 min
4 32 100 3232 8 0.0379 0.1722 [0.0064 6.6052 × 108 1.0255 × 1013] 170 min
5 40 75 3040 8 0.02985 0.03623 [0.0044 1.1140 × 109 2.6967 × 1013] 3 h
6 40 100 3640 16 6.136× 10−10 0.00424 [0.0050 9.5219 × 108 1.9876 × 1013] 6 h
7 40 100 4040 32 1.635× 10−8 0.1146 [0.0050 9.6970 × 108 2.0132 × 1013] 14 h
8 40 59 2400 64 0.09868 0.1690 [0.0049 1.2485 × 109 2.5521 × 1013] 17 h

Ref. x - - - - - - [0.0050 9.6100 × 108 2.0000 × 1013] -

Results show some simulations, i.e., 2 and 6, converged to a very low residual but the
value of x is still slightly off the target value; this proves that the object function presents
a minimum very close to the target one around x = [0.0050 9.5219× 108 1.9876× 1013].
Optimization 3 is the only one that did converge to the target value: x = [0.0050 9.6105× 108

2.0029× 1013], best f (x) is not very low because the stopping criterion was reached. Next
section presents a stochastic study of the micro-scale optimization.

4.5. Monte-Carlo Analysis

A more in depth evaluation of the best suited values for the PSO optimization would
require a complete Monte-Carlo analysis to bound the error under a desired limit; this does
not fall inside the scope of this work. However, a Monte-Carlo error estimation through
statistical ensemble simulations of the case #2 (Swarm Size 16 and function resolution 8)
has been carried, with 273 realizations of the PSO optimization. The 3D scatter plot of
the results (Figure 13) presents a banded organization of the optimizations in the ∆n, µ, G
space. The results are organized in clusters which share a sensibly homogeneous value of
best f (x), this observation reinforces the idea of the presence of local optima and the need
of meta-heuristics.

Figure 13 suggests that the best fit metric, f (x) can be used to discriminate between
good optimizations and local optima traps. A best fit value of f (x) = 0.01 has been chosen
as threshold resulting in 15/273 simulations fulfilling the convergence criteria. The filtered
individual and mean values ∆n, µ and G are presented (Figure 14) with N being the number
of Monte Carlo realizations. As the sampling population N increases from 1 to 15 the mean
value (red line) tends to the the known target values: ∆n = 0.0050, µ = 961× 106 and
G = 2.00× 1013.

In order to verify convergence of the Monte-Carlo analysis, the standard deviation of
the growing population N (STDVN) from 1 to 15 divided by the root square of the sampled
population N is plotted in logarithmic axes (Figure 15, blue circles), this metric can be
considered as the error of a Monte-Carlo analysis. Assuming that the standard deviation of
a Monte-Carlo realization is constant, the error should decrease at constant rate. Power
trend lines (Figure 15, red line) present R2 fitting values between 0.78 and 0.98, the high R2

values confirm the convergence at constant rate. All trends present a good convergence
speed with µ and G close to the theoretical exponent value of −0.5.
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5. Discussion

The homogenized response of the presented micro-scale is the result of matrix-crack
network interaction. For low values of crack stiffness with respect to matrix stiffness the
homogenized properties are essentially determined by the first one. On the contrary, for
high values of crack stiffness the homogenized coefficients are solely determined by the
matrix properties. There is a range between the two extreme cases, spanning about three
orders of magnitude of crack stiffness, for which the homogenized coefficients are deter-
mined by the complex interaction of both matrix and crack network. The determination of
this range is important because within it, a phenomenological expression is not sufficient
to obtain a valid constitutive response of the material; a double-scale model is needed.

In order to characterize the micro-structure, a series of failure surfaces have been
proposed and evaluated for later optimization. Maximum force criterion has shown the
presence of artifacts for the stresses applied parallel to the coordinate axes due to vanishing
stress components. This has been overcome using von Misses distortion energy criterion.
Due to the ultimate objective of implementing the model in a double-scale approach, yet a
more suited failure envelope has been proposed which considers the sample to be failed
when the modulus of the homogenized force vector loses a given ratio with respect to the
peak value. This failure criterion is later used to obtain a synthetic failure envelope that
serves as an optimization target.

Typical elastoplastic constitutive laws present continuous and differentiable yield
surfaces, e.g., Druker-Praguer. The differentiability assumption allows to calibrate them
with biaxial/triaxial test results using simple fitting techniques and ultimately gradient
methods. Previous assumptions are not applicable to constitutive laws such as the one used
in this work. Meta-heuristics have been proposed; PSO is used to minimize the objective
function consisting in the fitting of the micro-scale numerical results to the synthetic failure
envelope. PSO is not immune to local optima traps and indeed it converged to some of
those local minima far from the actual solution in some of the optimizations, other runs
converged to a value very close to the target one due to the presence of a local minimum in
the vicinity of the target. Among the 8 optimizations at least one converged to the target
values within 100 iterations of PSO. Since PSO is a probabilistic method, the lower accuracy
of small swarm sizes can be compensated by running a higher number of optimizations (in
a Monte-Carlo fashion), this allows the user to decide when to stop the process thus saving
time. Higher swarm sizes can be used when computational load or time are less restrictive
and accuracy is preferred over speed. The range of function resolutions used (8–64 points)
shows the ability of the approach to optimize a constitutive law with different available
material data. The metric f (x) has successfully been used to discriminate between local
and global optima in a complete Monte-Carlo analysis for the case with swarm size 16 and
resolution 8. With an error defined by STDVN/

√
N, filtered results of the Monte-Carlo

analysis confirm convergence towards the global optimum.
Results prove that: given a target failure curve, PSO is able to optimize the parameters

of a constitutive law issued from an elastic matrix with damageable crack network. And
in a more general sense: meta-heuristics can be used to optimize complex constitutive
laws in multi-scale numerical schemes. Future works should focus on the improvement of
PSO settings to accelerate convergence and avoidance of local minima (robustness), use of
real response curves instead of synthetic ones, use of other meta-heuristics and Machine
Learning Algorithms.

6. Conclusions

This work presented a micro-scale model for multi-scale use, established its validity
range based on in-materio computing and provided a meta-heuristics calibration method.
Specific conclusions are as follows:
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• A ratio to peak stress has shown to be a good criteria to characterize the failure of the
present micro-structure.

• For the initially given λ and µ elastic coefficients, the multi-scale rich micro-structure
behaviour happens in the crack stiffness range G = [1.0× 1013∼2.7× 1013] Pa.

• PSO overcomes the non continuity and non differentiability of the constitutive law for
a representative range of function resolutions.

• The metric best f (x) alone is able to discriminate between local and global optima.

The presented micro-structure can be applied to model a range of blocky or fractured
media such as coal, crystalline rocks and composites with applications ranging from coal
mining, CO2 sequestration, coalbed methane extraction, deep geological nuclear waste
disposal, to masonry structures.

Contribution to Science

Multi-scale numerical methods have experienced a revived interest in the last decades
thanks to the increase of available computing power. The present paper provides an insight
to the properties and limitations of multi-scale targeted micro-scale models. This can help
researchers to determine whether or not a micro-scale description is needed in a particular
model. Furthermore the meta-heuristics optimization paves the way to further investigate
the use of AI paradigms to better characterize the micro-scale of materials.
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Appendix A. Convergence, Fitness and Swarm Scatter Results
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Figure A1. Blue plot is the convergence of the PSO algorithm (minimum value of f (x)), green plot is the fitness of the
population (mean value of f (x)) both plots horizontal axes are the PSO iterations. The two scatter plots represent different
planes in the optimization variable space, µ− ∆n and µ− G. The axes are in the units of the corresponding variable, Pa or
adimentional for ∆n. Swarm Population from top to bottom: 8–16–24–32. Objective function f (x) resolution: 8 points.
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Figure A2. Blue plot is the convergence of the PSO algorithm (minimum value of f (x)), green plot is the fitness of the
population (mean value of f (x)), both plots horizontal axes are the PSO iterations. The two scatter plots represent different
planes in the optimization variable space, µ− ∆n and µ− G. The axes are in the units of the corresponding variable, Pa or
adimentional for ∆n. Swarm Population: 40. Objective function f (x) resolution from top to bottom: 8–16–32–64 points.
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Appendix B. Convergence of ∆n, µ and G Swarms
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Figure A3. The three columns represent the evolution of each optimization variable ranges, respectively: ∆n, µ and G. The
horizontal axes are the PSO iterations and the vertical axes are in the units of the corresponding variable, Pa or adimensional
for δn. Swarm Population from top to bottom: 8–16–24–32. Objective function f (x) resolution: 8 points.
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Figure A4. The three columns represent the evolution of each optimization variable ranges, respectively: ∆n, µ and G The
horizontal axes are the PSO iterations and the vertical axes are in the units of the corresponding variable, Pa or adimentional
for δn. Swarm Population: 40. Objective function f (x) resolution from top to bottom: 8–16–24–32 points.
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