Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Bis(2-methyl-4-nitroanilinium) tetrachloridomercurate(II)

Jasrotia Dinesh, ${ }^{\text {a }}$ Melanie Rademeyer, ${ }^{\text {b }}{ }^{*}$ David G. Billing ${ }^{\text {c }}$ and Andreas Lemmerer ${ }^{\text {c }}$

${ }^{\text {a }}$ School of Chemistry, University of KwaZulu-Natal, Pietermaritzburg Campus, Private Bag X01, Scottsville 3209, South Africa, ${ }^{\text {b }}$ Department of Chemistry, University of Pretoria, Pretoria 0002, South Africa, and ${ }^{\mathrm{c}}$ Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag 3, PO Wits 2050, South Africa
Correspondence e-mail: melanie.rademeyer@up.ac.za
Received 6 November 2008; accepted 18 November 2008
Key indicators: single-crystal X-ray study; $T=173 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.010 \AA$; R factor $=0.053 ; w R$ factor $=0.152$; data-to-parameter ratio $=24.6$.

The title compound, $\left(\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{~N}_{2} \mathrm{O}_{2}\right)_{2}\left[\mathrm{HgCl}_{4}\right]$, self-assembles into cationic organic bilayers containing the 2-methyl-4-nitroanilinium cations, sandwiched between anionic inorganic layers built up by the distorted tetrahedral $\left[\mathrm{HgCl}_{4}\right]^{2-}$ groups. The organic sheets are interlinked through weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, while they interact with the anionic part via strong charge-assisted $\mathrm{N}^{+}-\mathrm{H} \cdots \mathrm{Cl}-\mathrm{Hg}$ hydrogen bonds. The $\left[\mathrm{HgCl}_{4}\right]^{2-}$ anions are bisected by a mirror plane passing through the metal and two of the chloride ions.

Related literature

The structures of bis(2-methyl-4-nitroanilinium) tetrachlorocadmate (Azumi et al., 1996) as well as those of the bromide and iodide salts of 2-methyl-4-nitroanilinium (Lemmerer \& Billing, 2006) have already been reported. For related literature on $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}_{\text {nitro }}$ interactions, see: Sharma \& Desiraju (1994).

Experimental

$$
\begin{aligned}
& \text { Crystal data } \\
& \left(\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{~N}_{2} \mathrm{O}_{2}\right)_{2}\left[\mathrm{HgCl}_{4}\right] \quad M_{r}=648.71
\end{aligned}
$$

Orthorhombic, Pnma
$a=8.2527$ (11) £
$Z=4$
$b=30.059$ (4) \AA
Mo $K \alpha$ radiation
$c=8.3038$ (10) A
$\mu=8.02 \mathrm{~mm}^{-1}$
$V=2059.9(5) \AA^{3}$
$T=173$ (2) K
$0.42 \times 0.25 \times 0.16 \mathrm{~mm}$

Data collection
Bruker SMART CCD area-detector diffractometer
Absorption correction: integration
(XPREP; Bruker, 1999)
$T_{\text {min }}=0.609, T_{\text {max }}=0.757$
10307 measured reflections 3174 independent reflections 2197 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.091$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.053$
129 parameters
$w R\left(F^{2}\right)=0.152$
H -atom parameters constrained
$S=1.09$
3174 reflections
$\Delta \rho_{\text {max }}=1.05 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-2.89 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	H $\cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 1-\mathrm{H} 6 \cdots \mathrm{Cl} 2$	0.91	2.76	3.257 (6)	116
$\mathrm{N} 1-\mathrm{H} 4 \cdots \mathrm{Cl} 1^{\text {i }}$	0.91	2.35	3.248 (6)	170
$\mathrm{N} 1-\mathrm{H} 5 \cdots \mathrm{Cl} 1^{\text {ii }}$	0.91	2.49	3.381 (7)	167
$\mathrm{N} 1-\mathrm{H} 6 \cdots \mathrm{Cl} 3^{\text {iii }}$	0.91	2.54	3.241 (7)	134
$\mathrm{C} 3-\mathrm{H} 1 \cdots \mathrm{O} 1^{\text {iv }}$	0.95	2.52	3.424 (10)	160

Symmetry codes: (i) $x-1, y, z$; (ii) $x-\frac{1}{2}, y,-z+\frac{3}{2}$; (iii) $x-\frac{1}{2}, y,-z+\frac{1}{2}$; (iv)
$-x+\frac{1}{2},-y, z+\frac{1}{2}$.
Data collection: SMART-NT (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006) and Mercury (Bruno et al., 2002); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

MR acknowledges funding from the NRF (GUN: 2054350), the University of Pretoria and the University of KwaZuluNatal. DGB thanks the University of the Witwatersrand for infrastructure.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2223).

References

Azumi, R., Honda, K., Goto, M., Akimoto, J., Oosawa, Y., Tachibana, H., Tanaka, M. \& Matsumoto, M. (1996). Acta Cryst. C52, 588-591.
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (1998). SMART-NT. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (1999). SAINT-Plus (including XPREP). Bruker AXS Inc., Madison, Wisconsin, USA.
Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. \& Taylor, R. (2002). Acta Cryst. B58, 389-397.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Lemmerer, A. \& Billing, D. G. (2006). Acta Cryst. C62, o271-o273.
Sharma, C. V. K. \& Desiraju, G. R. (1994). J. Chem. Soc. Perkin Trans. 2, pp. 2345-2352.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

supplementary materials

Bis(2-methyl-4-nitroanilinium) tetrachloridomercurate(II)

J. Dinesh, M. Rademeyer, D. G. Billing and A. Lemmerer

Comment

As part of a study focused on the fundamental understanding of the non-covalent interactions occurring in organic-inorganic hybrids, the structure of bis(2-methyl-4-nitroanilinium) tetrachloromercurate, $2\left(\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{~N}_{2} \mathrm{O}_{2}\right)^{+} .\left(\mathrm{HgCl}_{4}\right)^{2-}$, (I), was determined. It was found that the title compound is isostructural to the previously reported hybrid, bis(2-methyl-4-nitroanilinium) tetrachlorocadmate (Azumi et al., 1996). The structures of the bromide and iodide salts of the 2-methyl-4-nitroanilinium cation have already been reported (Lemmerer \& Billing, 2006).

The molecular geometry and atomic numbering scheme of (I) are illustrated in Fig. 1. The asymmetric unit contains one 2-methyl-4-nitroanilinium cation and a $\mathrm{HgCl}_{4}{ }^{2-}$ anion, halved by a mirror plane ($\mathrm{x}, 1 / 2-\mathrm{y}, \mathrm{z}$) passing through the metal and two of the chlorine ions. The structure consists of alternating, non-interdigitated organic bilayers containing the 2-methyl-4-nitroanilium cations, and inorganic layers containing the isolated $\left(\mathrm{HgCl}_{4}\right)^{2-}$ anions (Fig. 2.).

In the organic bilayers the nitro groups pack in the centre of the layer, in a tail-to-tail arrangement, and the aromatic ring plane (C1->C6) forms an angle of 86.3° to the inorganic layer plane. It has been reported by Sharma and Desiraju (1994) that weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions, with the nitro group as a hydrogen bond acceptor occurs in many unsaturated compounds, despite the fact that the nitro group is not very basic, and it is precisely this type of interaction the one which links both organic layers in (I): atom C 3 on the aromatic ring at symmetry position ($1 / 2-x, 1 / 2+y, z-1 / 2$) acts as proton donor while the O 1 of nitro group at symmetry position $(x, 1 / 2-y, z)$ acts as acceptor, with an $\mathrm{H} \cdots \mathrm{O}$ distance of $2.52 \AA$.

The organic and inorganic layers are linked through charge assisted $\mathrm{N}^{+}-\mathrm{H} \cdots \mathrm{Cl}-\mathrm{Hg}$ hydrogen bonds, with the hydrogen bonding interactions listed in Table $1 . \mathrm{N} 1$ is the only hydrogen bond donor with all three hydrogen atoms involved in hydrogen bonding. Atom H 6 is shared by two chlorine atoms (Cl 2 at symmetry position: (x, y, z) and Cl 3 at symmetry position: $(x-1 / 2,1 / 2-y, 1 / 2-z))$ and thus forms a bifurcated interaction. Two approximately linear hydrogen bonds are formed through atoms H 4 and H 5 with Cl 1 at symmetry positions $(x-1, y, z)$ and $(x-1 / 2, y, 1 / 2-z)$, respectively. All four chloro ligands on the $\mathrm{HgCl}_{4}{ }^{2-}$ anion act as hydrogen bond acceptors.

Experimental

Compound (I) was prepared by the addition of $0.097 \mathrm{~g}(0.357 \mathrm{mmol})$ of HgCl_{2} (Aldrich) and $0.102 \mathrm{~g}(0.333 \mathrm{mmol})$ of 2-methyl-4-nitroaniline (Aldrich) to 6 ml of $33 \% \mathrm{HCl}$. Complete dissolution was obtained after refluxing at $90^{\circ} \mathrm{C}$ for 12 h in an oil bath. Slow cooling in oil bath over 48 h produced the crystals. A colourless crystal of $0.42 \times 1 / 4 x 0.16 \mathrm{~mm}$ was used for X-ray data collection.

supplementary materials

Refinement

H atoms were placed geometrically and refined in idealized positions in the riding-model approximation, with $\mathrm{C}-\mathrm{H} 0.95$ (ArH) and $0.98 \AA\left(\mathrm{CH}_{3}\right)$ and $\mathrm{N}-\mathrm{H}=0.91 \AA ; U_{\text {iso }}(\mathrm{H})=1.5 U_{\mathrm{eq}}(\mathrm{N}), 1.5 U_{\mathrm{eq}}(\mathrm{C})$ for methyl H atoms and $1.2 U_{\mathrm{eq}}(\mathrm{C})$ for other H atoms. The highest residual peaks in the final $\Delta \mathrm{F}$ syntheses lie at $0.90 \AA$ from Cl 3 .

Figures

Fig. 1. Atom labelling scheme of (I) with thermal ellipsoids drawn at the 50% probability level. The Cl atom marked with a prime (') is at symmetry position $(1 / 2+x, 1 / 2-y, 1 / 2-z)$.

Fig. 2. Packing arrangement viewed down the c-axis.

Bis(2-methyl-4-nitroanilinium) tetrachloridomercurate(II)

Crystal data

$\left(\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{~N}_{2} \mathrm{O}_{2}\right)_{2}\left[\mathrm{HgCl}_{4}\right]$
$M_{r}=648.71$
Orthorhombic, Pnma
Hall symbol: -P 2ac 2n
$a=8.2527$ (11) \AA
$b=30.059$ (4) \AA
$c=8.3038(10) \AA$
$V=2059.9(5) \AA^{3}$
$Z=4$
$F_{000}=1240$
$D_{\mathrm{x}}=2.092 \mathrm{Mg} \mathrm{m}^{-3}$
Melting point: 441 K
Mo K α radiation
$\lambda=0.71073 \AA$
Cell parameters from 937 reflections
$\theta=3.2-28.3^{\circ}$
$\mu=8.02 \mathrm{~mm}^{-1}$
$T=173(2) \mathrm{K}$
Plate, colourless
$0.42 \times 0.25 \times 0.16 \mathrm{~mm}$
sup-2

Data collection

Bruker SMART CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
Monochromator: graphite
$T=173(2) \mathrm{K}$
ω scans
Absorption correction: integration
(XPREP; Bruker, 1999)
$T_{\text {min }}=0.609, T_{\text {max }}=0.757$
10307 measured reflections

3174 independent reflections
2197 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.091$
$\theta_{\text {max }}=32.2^{\circ}$
$\theta_{\text {min }}=1.4^{\circ}$
$h=-11 \rightarrow 12$
$k=-38 \rightarrow 44$
$l=-8 \rightarrow 11$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.077 P)^{2}+1.1955 P\right]
$$

where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.003$
$\Delta \rho_{\max }=1.05 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-2.89$ e \AA^{-3}
Extinction correction: none

Special details

Experimental. Numerical integration absorption corrections based on indexed crystal faces were applied using the XPREP routine (Bruker, 2004)
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
Hg 1	$0.60393(5)$	0.2500	$0.46538(6)$	$0.02730(16)$
Cl 3	$0.4637(3)$	0.2500	$0.1888(3)$	$0.0232(5)$
$\mathrm{Cl1}$	$0.6690(2)$	$0.17293(6)$	$0.5175(2)$	$0.0198(3)$

C1	$0.1288(8)$	$0.1395(2)$	$0.5286(9)$	$0.0167(13)$
C6	$0.2495(9)$	$0.1443(3)$	$0.4129(9)$	$0.0210(15)$
H3	0.2794	0.1731	0.3760	0.025^{*}
O1	$0.4612(9)$	$0.0300(2)$	$0.2467(9)$	$0.0504(19)$
O2	$0.3238(8)$	$-0.00979(19)$	$0.4124(8)$	$0.0394(15)$
N1	$0.0546(7)$	$0.1794(2)$	$0.5922(8)$	$0.0194(12)$
H6	0.0891	0.2034	0.5347	0.029^{*}
H5	0.0832	0.1828	0.6973	0.029^{*}
H4	-0.0551	0.1772	0.5845	0.029^{*}
C2	$0.0779(7)$	$0.0982(2)$	$0.5872(8)$	$0.0151(13)$
N2	$0.3592(7)$	$0.0258(2)$	$0.3538(8)$	$0.0252(14)$
C4	$0.2790(8)$	$0.0663(3)$	$0.4125(8)$	$0.0189(14)$
C3	$0.1558(8)$	$0.0608(2)$	$0.5265(8)$	$0.0171(13)$
H1	0.1257	0.0319	0.5619	0.021^{*}
C5	$0.3261(8)$	$0.1068(2)$	$0.3516(8)$	$0.0199(14)$
H2	0.4075	0.1091	0.2711	0.024^{*}
C7	$-0.0544(9)$	$0.0924(2)$	$0.7085(9)$	$0.0223(16)$
H9	-0.0626	0.0610	0.7383	0.033^{*}
H8	-0.1575	0.1023	0.6621	0.033^{*}
H7	-0.0299	0.1102	0.8045	0.033^{*}
C12	$0.3444(3)$	0.2500	$0.6670(3)$	$0.0199(5)$

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Hg 1	$0.0319(2)$	$0.0206(2)$	$0.0293(3)$	0.000	$0.00001(19)$	0.000
Cl 3	$0.0272(13)$	$0.0262(13)$	$0.0162(11)$	0.000	$-0.0057(10)$	0.000
$\mathrm{Cl1}$	$0.0186(8)$	$0.0166(8)$	$0.0243(8)$	$0.0002(6)$	$-0.0007(7)$	$0.0008(7)$
C 1	$0.018(3)$	$0.016(3)$	$0.017(3)$	$0.000(3)$	$-0.003(3)$	$-0.002(3)$
C 6	$0.022(3)$	$0.024(4)$	$0.017(3)$	$-0.006(3)$	$0.000(3)$	$-0.001(3)$
O 1	$0.057(4)$	$0.039(4)$	$0.055(4)$	$-0.007(4)$	$0.038(4)$	$-0.013(3)$
O2	$0.047(4)$	$0.020(3)$	$0.051(4)$	$0.005(3)$	$0.012(3)$	$-0.007(3)$
N 1	$0.010(2)$	$0.018(3)$	$0.030(3)$	$-0.001(2)$	$-0.003(2)$	$0.000(3)$
C 2	$0.010(3)$	$0.023(4)$	$0.013(3)$	$0.000(2)$	$-0.003(2)$	$0.001(3)$
N 2	$0.020(3)$	$0.027(4)$	$0.030(4)$	$0.000(3)$	$0.004(2)$	$-0.007(3)$
C 4	$0.019(3)$	$0.025(4)$	$0.013(3)$	$-0.003(3)$	$0.001(3)$	$-0.004(3)$
C 3	$0.015(3)$	$0.019(3)$	$0.017(3)$	$-0.004(3)$	$-0.003(3)$	$-0.002(3)$
C 5	$0.018(3)$	$0.024(4)$	$0.018(3)$	$-0.004(3)$	$0.005(3)$	$-0.001(3)$
C 7	$0.021(3)$	$0.022(4)$	$0.024(4)$	$0.001(3)$	$0.010(3)$	$0.003(3)$
C12	$0.0143(10)$	$0.0189(11)$	$0.0266(13)$	0.000	$0.0004(9)$	0.000

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{Hg} 1-\mathrm{Cl} 1$	$2.4170(18)$	$\mathrm{N} 1-\mathrm{H} 5$	0.9100
$\mathrm{Hg} 1-\mathrm{Cl} 1^{\mathrm{i}}$	$2.4170(18)$	$\mathrm{N} 1-\mathrm{H} 4$	0.9100
$\mathrm{Hg} 1-\mathrm{Cl} 3$	$2.572(2)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.390(10)$
$\mathrm{Hg} 1-\mathrm{Cl} 2$	$2.718(2)$	$\mathrm{C} 2-\mathrm{C} 7$	$1.496(10)$
$\mathrm{C} 1-\mathrm{C} 6$	$1.392(10)$	$\mathrm{N} 2-\mathrm{C} 4$	$1.469(10)$

sup-4

supplementary materials

C1-C2	1.396 (10)	C4-C5	1.375 (10)
C1-N1	1.447 (9)	C4-C3	1.399 (10)
C6-C5	1.388 (10)	C3-H1	0.9500
C6-H3	0.9500	C5-H2	0.9500
$\mathrm{O} 1-\mathrm{N} 2$	1.230 (9)	C7-H9	0.9800
$\mathrm{O} 2-\mathrm{N} 2$	1.212 (9)	C7-H8	0.9800
N1-H6	0.9100	C7-H7	0.9800
$\mathrm{Cl} 1-\mathrm{Hg} 1-\mathrm{Cl}^{1}{ }^{\text {i }}$	146.85 (9)	C1-C2-C7	123.9 (6)
$\mathrm{Cl} 1-\mathrm{Hg} 1-\mathrm{Cl} 3$	105.06 (4)	$\mathrm{O} 2-\mathrm{N} 2-\mathrm{O} 1$	123.0 (7)
$\mathrm{Cl} 1^{\mathrm{i}}-\mathrm{Hg} 1-\mathrm{Cl} 3$	105.06 (4)	$\mathrm{O} 2-\mathrm{N} 2-\mathrm{C} 4$	119.3 (6)
$\mathrm{Cl1}-\mathrm{Hg} 1-\mathrm{Cl} 2$	93.71 (5)	O1-N2-C4	117.6 (7)
$\mathrm{Cl} 1{ }^{\text {i }}-\mathrm{Hg} 1-\mathrm{Cl} 2$	93.71 (5)	C5-C4-C3	124.0 (7)
$\mathrm{Cl} 3-\mathrm{Hg} 1-\mathrm{Cl} 2$	101.28 (8)	C5-C4-N2	119.0 (6)
C6- $\mathrm{C} 1-\mathrm{C} 2$	123.2 (7)	C3-C4-N2	117.0 (6)
C6- $\mathrm{C} 1-\mathrm{N} 1$	117.9 (6)	C2-C3-C4	119.0 (7)
C2- $\mathrm{C} 1-\mathrm{N} 1$	118.9 (6)	C2-C3-H1	120.5
C5-C6-C1	119.7 (7)	C4-C3-H1	120.5
C5-C6-H3	120.2	C4-C5-C6	117.1 (6)
C1-C6-H3	120.2	C4-C5-H2	121.5
C1-N1-H6	109.5	C6-C5-H2	121.5
C1-N1-H5	109.5	C2-C7-H9	109.5
H6-N1-H5	109.5	C2-C7-H8	109.5
C1-N1-H4	109.5	H9-C7-H8	109.5
H6-N1-H4	109.5	C2-C7-H7	109.5
H5-N1-H4	109.5	H9-C7-H7	109.5
C3-C2-C1	117.0 (6)	H8-C7-H7	109.5
C3-C2-C7	119.1 (7)		
C2-C1-C6-C5	-0.6 (11)	$\mathrm{O} 1-\mathrm{N} 2-\mathrm{C} 4-\mathrm{C} 3$	175.8 (7)
N1-C1-C6-C5	178.6 (6)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	0.2 (9)
C6-C1-C2-C3	1.0 (10)	C7-C2-C3-C4	179.7 (7)
N1-C1-C2-C3	-178.1 (6)	C5-C4-C3-C2	-2.1 (11)
C6-C1-C2-C7	-178.4 (7)	N2-C4-C3-C2	179.1 (6)
N1-C1-C2-C7	2.4 (10)	C3-C4-C5-C6	2.5 (11)
$\mathrm{O} 2-\mathrm{N} 2-\mathrm{C} 4-\mathrm{C} 5$	176.5 (7)	N2-C4-C5-C6	-178.7 (6)
$\mathrm{O} 1-\mathrm{N} 2-\mathrm{C} 4-\mathrm{C} 5$	-3.1 (10)	C1-C6-C5-C4	-1.2 (10)
$\mathrm{O} 2-\mathrm{N} 2-\mathrm{C} 4-\mathrm{C} 3$	-4.6 (10)		

Symmetry codes: (i) $x,-y+1 / 2, z$.

Hydrogen-bond geometry ($\AA,^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 6 \cdots \mathrm{Cl} 2$	0.91	2.76	$3.257(6)$	116
$\mathrm{~N} 1 — \mathrm{H} 4 \cdots \mathrm{Cl1} 1^{\mathrm{ii}}$	0.91	2.35	$3.248(6)$	170
$\mathrm{~N} 1 — \mathrm{H} 5 \cdots \mathrm{Cl1} 1^{\mathrm{iii}}$	0.91	2.49	$3.381(7)$	167
$\mathrm{~N} 1 — \mathrm{H} 6 \cdots \mathrm{Cl}^{\mathrm{iv}}$	0.91	2.54	$3.241(7)$	134
$\mathrm{C} 3 — \mathrm{H} 1 \cdots \mathrm{O1}^{\mathrm{v}}$	0.95	2.52	$3.424(10)$	160

Symmetry codes: (ii) $x-1, y, z$; (iii) $x-1 / 2, y,-z+3 / 2$; (iv) $x-1 / 2, y,-z+1 / 2$; (v) $-x+1 / 2,-y, z+1 / 2$.

supplementary materials

Fig. 1

Fig. 2

