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Abstract: The aim of this work was to evaluate the transformation of manganese oxide (hausmannite)
by microscopic filamentous fungus Aspergillus niger and the effects of the transformation on mobility
and bioavailability of arsenic. Our results showed that the A. niger strain CBS 140837 greatly affected
the stability of hausmannite and induced its transformation into biogenic crystals of manganese
oxalates—falottaite and lindbergite. The transformation was enabled by fungal acidolysis of
hausmannite and subsequent release of manganese ions into the culture medium. While almost 45%
of manganese was bioextracted, the arsenic content in manganese precipitates increased throughout
the 25-day static cultivation of fungus. This significantly decreased the bioavailability of arsenic for the
fungus. These results highlight the unique A. niger strain’s ability to act as an active geochemical factor
via its ability to acidify its environment and to induce formation of biogenic minerals. This affects not
only the manganese speciation, but also bioaccumulation of potentially toxic metals and metalloids
associated with manganese oxides, including arsenic.
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1. Introduction

Microbially driven processes are essential for mobilization and availability of elements in soils
and sediments [1]. Filamentous fungi naturally mediate the mobilization of metals and metalloids by
affecting the stability of soil particles’ and mineral surfaces via extrusion of chelating, redox active,
and acidic metabolites [2], while directly disturbing the mineral structure mechanically via turgor
pressure [3]. Simultaneously, however, the pre-concentration of metabolites at the cell–mineral
interfaces or near the hyphae can result in formation of new thermodynamically stable biogenic
minerals [4,5]. Thus, the microbially induced transformation actively contributes to immobilization
of metals and metalloids in the biogenic minerals’ structure, while effectively changing the sorptive
properties of these newly formed phases [6]. These processes are especially significant for environmental
scavengers of elements, such as manganese oxides [7].

Manganese oxides are considered as a significant component of the natural geochemical barrier due
to their ability to efficiently adsorb and immobilize metals and metalloids [4,8–10]. The reactive property
of natural manganese oxides, including todorokite (Mn2+Ca, Mg)Mn4+

3O7·H2O, cryptomelane K(Mn4+,
Mn2+)8O16, hausmannite Mn2+Mn3+

2O4 and birnessite Na4Mn3+
6Mn4+

8O27·9H2O, affects geochemical
destiny of various potentially toxic metals and metalloids in the environment [11]. Hausmannite is
usually found in metamorphosed or hydrothermal manganese ores, and its mineral structure is
occupied by both Mn2+ and Mn3+ cations [12]. The presence of both divalent and trivalent Mn cations
renders hausmannite a unique model for studying the reactivity, stability and microbially induced
transformation of manganese oxides.

One of the naturally occurring hazardous elements, whose behavior is affected by redox and
sorptive properties of manganese oxides [13], and which was classifies by World Health Organization
(WHO) as one of the most significant environmental contaminant, is arsenic. Depending on its
physical, chemical and biological factors, arsenic exists in different oxidation states −3, 0, +3, +5 [14–16],
which significantly affect arsenic geochemical distribution and abundance, biological availability and
toxicity [11,15].

As indicated, the environmental migration of arsenic is directly influenced by manganic
geochemical barriers [8,9]. However, the influence of microbial activity on arsenic immobilization from
manganese oxides and hydroxides is not well studied or understood. Therefore, this work focuses
on evaluation of biotransformation processes occurring during mutual interaction of heterotrophic
common soil fungal strain Aspergillus niger, arsenic and its natural scavenger and one of the rock-forming
manganese oxide minerals—hausmannite. Extent and significance of microbial activity on manganese
and arsenic biogeochemistry is also discussed and supported by experimental results that confirm the
ability of microorganisms to form new stable biogenic mineral phases and, thus, influence the mobility
of arsenic in the environment.

2. Materials and Methods

2.1. Chemicals and Reagents

All reagents used in this study were of analytical grade (Na2HAsO4·7H2O, MnSO4·4H2O, NaOH,
HCl and HNO3) and were obtained from Centralchem (Bratislava, Slovak Republic) or Sigma-Aldrich
(Darmstadt, Germany). For inoculation, fungal growth and other cultivation related purposes,
the Sabouraud Dextrose Broth and Sabouraud Dextrose Agar culture media (HiMedia, Mumbai, India)
were used.

2.2. Preparation of Manganese Oxide

Artificial manganese oxide hausmannite (Mn2+Mn3+
2O4) was synthesized by alkaline precipitation

of 1 L 0.5 mol L−1 MnSO4 using 40 g of NaOH. The mixture was then kept on a rotary shaker at
100 rpm (Unimax 2010, Heidolph, Schwabach, Germany) for 24 h at 25 ◦C in dark, and subsequently
heated under reflux for 5 h. Synthesized precipitate was cooled, filtrated, washed with redistilled
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water, sterilized in a hot air oven at 80 ◦C for 24 h and kept in a sealed plastic bottle. It was further
sterilized for 1 h in a hot air oven at 95 ◦C right before the experiment.

2.3. Fungal Strain

The fungus Aspergillus niger strain CBS 140837 was obtained from the fungal collection of the
Department of Mycology and Physiology at the Institute of Botany, Slovak Academy of Sciences.
The fungal strain was maintained on the Sabouraud agar plates at 25 ◦C.

2.4. Fungal Cultivation in Presence of Manganese Oxides with Pre-Adsorbed Arsenic

All cultivation experiments using the A. niger strain were performed in 100 mL sterile Erlenmeyer
flasks with the mixture of 50 mL Sabouraud Dextrose Broth culture medium (HiMedia, Mumbai, India)
with the initial 9.1 mg L−1 As(V) concentration which was prepared from a stock solution of
Na2HAsO4·7H2O diluted in redistilled water. The 0.1 mL of spore suspensions, prepared by washing
the surface of a 10-day old A. niger culture with sterile water and diluted to approximately 106 CFU
mL−1, were transferred into growth media under aseptic conditions to inoculate the media with
filamentous fungus. Prior to inoculation, the 0.25 g of synthetized manganese oxide in an 100 mL
Erlenmeyer flask were sterilized by dry heating and, after sterilization, the culture medium with As(V)
content was added to the sterile flask with the manganese oxide and stirred on a rotatory shaker
for 24 h at 130 rpm (Unimax 2010, Heidolph, Schwabach, Germany). There were also manganese
oxide-free treatment and arsenic-free treatments which were performed as control experiments.

All experiments were carried out in triplicate under laboratory conditions during 25-day static
cultivation that allowed fungus to reach the stationary growth phase. During the cultivation, the pH of
culture medium, biomass weight, as well as dissolved, coprecipitated and bioaccumulated arsenic
and manganese were determined on 3rd, 5th, 10th, 15th, 20th and 25th cultivation day. To evaluate
arsenic and manganese distribution in cultivation system, the biomass grown on the surface of the
culture medium was separated at the designated cultivation period, weighed and digested in the
mixture of HCl and HNO3 for further analytical analysis. The spent medium was filtered, and the pH
was recorded. The collected precipitates were also digested and along other components they were
analyzed for total arsenic and manganese using flame atomic absorption spectrometry (F-AAS) and
inductively coupled plasma mass spectrometry (ICP-MS), respectively. Furthermore, structural and
morphological properties of mineral phases were characterized at the end of the cultivation.

2.5. Analytical Procedures

For determination of arsenic and manganese in the liquid medium, digested biomass and
precipitated phases, ICP-MS (iCap Q, Thermo Scientific, Waltham, MA, USA) and F-AAS (AAS Perkin
Elmer Model 1100, Waltham, MA, USA) were used, respectively [17–20]. The ICP-MS was in KED (He)
mode with 103Rh as an internal standard. Calibration standards were prepared from As standard stock
solution (1000 mg L−1, CertiPur, Merck, Darmstadt, Germany). The deuterium background was used
for correction on F-AAS for manganese determination. Calibration standards were prepared from
manganese standard stock solution (1000 mg L−1, CertiPur, Merck, Darmstadt, Germany).

For precise determination of crystal symmetry of manganese minerals, the X-ray diffractometer
Bruker D8 DISCOVER equipped with an X-ray tube with a rotating Cu anode operating at 12 kW
(40 kV/300 mA) was applied. All measurements were performed in parallel beam geometry with a
parabolic Goebel mirror in the primary beam. The diffraction patterns in the angular range 20–80◦ of
2θ were recorded in a grazing incidence set-up with the angle of incidence α = 1.5◦. A parallel plate
collimator with the angular acceptance at 0.35◦ was inserted in the diffracted beam.

For morphology determination and particle size distribution, a Scanning Electron Microscope
(SEM) QUANTA 450 FEG (FEI Company, Hillsboro, OR, USA) equipped with an Energy Dispersive
Spectrometer (EDS) was used. Analysis was done at an accelerating voltage of 15 keV, and the samples
were covered by a layer of carbon for better sample conduction.
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Spatial distribution of newly formed thermodynamically stable biominerals incorporated in
biomass were observed by 3D X-ray microscopy and computed microtomography (microCT). For the
analysis, the microtomograph Nanotom 180 (GE Phoenix, Wunstorf, Germany) was used at the Institute
of Measurement Science, Slovak Academy of Sciences. Nanotom 180 is equipped with point source of
X-ray radiation with nano-focusation (transmission tungsten target); maximum acceleration voltage
is 180 kV and energy 15 W. The applied scintillation type detector (CsI) with a matrix photodetector
has image resolution of 2300 × 2300 pixels, and the size of one pixel is 50 × 50 µm. Minimal achieved
voxel resolution after 3D reconstruction is down to 0.5 µm. During the measurements, an acceleration
voltage of 150 kV and a current of 90 mA were applied, the detector integration time was set to 500 ms.

The determined concentrations of arsenic and manganese in biomass, culture media and
non-dissolved residue, as well as biomass dry weight and culture media pH recorded during the
cultivation were compared among the treatments using two-sample t-test assuming unequal variances
in an extension Analysis ToolPak in Microsoft Excel (Redmond, WA, USA).

3. Results

3.1. Characterization of Synthesized Manganese Oxide

Synthesized manganese oxide formed fine and coarse aggregates with imperfect pseudooctaedric
single-grain morphology with particle size distribution between 1 µm and 200 µm. EDS chemical
analysis revealed the dominant contents of manganese and oxygen (the carbon is attributed to the
conductive carbon layer) and highlighted the chemical purity of crystals (Figure 1).
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Figure 1. Scanning electron micrograph of manganese oxide before fungal treatment. The inset shows
energy dispersive X-ray analysis (EDX) of synthesized manganese oxide.

X-ray diffraction analysis verified tetragonal crystal symmetry with chemical formula of
Mn2+Mn3+

2O4, the hausmannite. Individual crystal spatial parameters such as a, c-axes are shown in
Table 1.

Table 1. Crystallographic parameters and symmetry of synthesized manganese oxide hausmannite
[Mn2+Mn3+

2O4] before biotransformation.

Manganese Oxide

crystal symmetry tetragonal
a (Å) 5.763 (2)
c (Å) 9.459 (4)
α = β = γ 90◦
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3.2. Immobilization of Arsenic in the Manganese Mineral Phase(s)

The process of adsorption of dissolved arsenic(V) onto hausmannite was necessary to quantify
its sorption properties. As depicted in Figure 2a, while the initial arsenic concentration in the
hausmannite-free culture medium was 9.1 mg L−1, only 7.6 mg L−1 of dissolved arsenic was detected in
the culture medium after 24 h pre-adsorption of arsenic(V) onto the hausmannite. Thus, the manganese
oxide managed to adsorb as much as 16.4% of arsenic. This represents a 0.3 mg g−1 sorption capacity
of hausmannite for arsenic(V).
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Figure 2. Changes in arsenic concentration in hausmannite-free (open circles) and hausmannite-treated
(black solid circles) culture media supplemented with arsenic(V) (a) and its content in non-dissolved
manganese residue (b) during a 25-day period of A. niger cultivation. Results represent the mean values
of three independent experiments and error bars show the standard deviation. Asterisks indicate the
significant differences between the hausmannite-free and hausmannite-treated experiments (** p < 0.01,
*** p < 0.001).

The amount of arsenic immobilized in the non-dissolved residue of manganese, however, increased
during cultivation of fungus. This is depicted in Figure 2b which shows increasing content of total
arsenic bound to the manganese mineral phase(s) from initially 0.07 mg to finally 0.32 mg at the end of
the fungal cultivation.

3.3. Manganese Bioextraction and Bioaccumulation by Fungus

During the fungal cultivation, the pH of culture media changes due to the A. niger strain’s acidic
metabolite exudation (Figure 3). While arsenic(V) did not have any significant effect on pH development
in comparison to hausmannite- and arsenic-free treatment, the presence of hausmannite and subsequent
release of manganese ions (Figure 4a) resulted in statistically significantly less acidification of the culture
medium by fungus. Therefore, the lowest pH values detected were 3.5 and 2.4 for manganese-treated
and manganese-free culture media, respectively.
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Figure 3. Changes in culture media pH in hausmannite-free (open circles) and hausmannite-treated
(black solid circles) culture media supplemented with arsenic(V), and hausmannite- and arsenic-free
controls (gray triangles) during 25-day static cultivation of an A. niger strain. Results represent the mean
values of three independent experiments and error bars show the standard deviation. Asterisks indicate
the significant differences between the hausmannite-free or hausmannite-treated experiments and
controls (* p < 0.05, ** p < 0.01, *** p < 0.001, ns not significant).
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Figure 4. Changes in manganese concentration in arsenic-free (gray solid circles) and arsenic-treated
(black solid circles) culture media (a) and its content in the fungal mycelium (including mineral
manganese phases associated with the biomass) (b) during a 25-day period of A. niger cultivation.
Results represent the mean values of three independent experiments and error bars show the standard
deviation. Asterisks indicate the significant differences between the arsenic-free and arsenic-treated
experiments (** p < 0.01, ns not significant).

As indicated, the acidification of hausmannite-treated culture media triggered the dissolution of
manganese mineral. Within the 10th day of cultivation, up to 1250 mg L−1 of manganese was detected in
the culture medium of each treatment (Figure 4a). The presence of arsenic did not affect the dissolution
rate. However, the increase in pH (Figure 3) coincides well with the significant decrease in manganese
dissolved in the medium. Most of it was most likely bioaccumulated by A. niger (Figure 4b) since the
fungal uptake resulted in manganese mycelial concentrations up to 104 mg g−1. However, this value
also included manganese that was immobilized in newly formed biogenic minerals closely associated
with fungal biomass.

During the cultivation experiment, the filamentous fungus A. niger was able to extract
approximately 45% of manganese from its original content in hausmannite and redistribute it in
the culture medium (8%) and mycelium (37%). Arsenic did not have any significant effect on the
manganese redistribution in the cultivation system, and the fungus did not manage to increase the
mobility of arsenic (Figure 2b).
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3.4. Effects of Manganese Mineral Phase(s) on Arsenic Bioaccumulation

The fungal growth was not affected by the arsenic presence; however, manganese obviously
inhibited initial growth phase of A. niger (Figure 5a). In the latter case, the apparent fungal
biomass weight increased during the late growth phase in comparison to hausmannite-free media;
however, this could be attributed to additional weight of manganese minerals intimately associated
with fungal biomass.J. Fungi 2020, 6, x FOR PEER REVIEW 7 of 12 
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Figure 5. Changes in biomass dry weight (a) and arsenic content in biomass of fungus A. niger (b)
cultivated in hausmannite-free (open circles) and hausmannite-treated (black solid circles) culture
media supplemented with arsenic(V) over 25 days. Gray triangles represent hausmannite- and
arsenic-free treatment. The data of A. niger’s biomass are fitted using modified Gompertz’s growth
equation [21]. Results represent the mean values of three independent experiments and error bars show
the standard deviation. Asterisks indicate the significant differences between the hausmannite-free
and/or hausmannite-treated experiments and controls (* p < 0.05, ** p < 0.01, *** p < 0.001, ns not
significant).

Still, the bioavailability of arsenic in hausmannite-treated media was significantly reduced
(Figure 5b). While the maximum value of accumulated arsenic was 0.035 mg in hausmannite-free
media, the content of arsenic in the A. niger strain’s biomass did not change significantly throughout
the cultivation period, and it did not exceed a value of 0.011 mg. This was the consequence of arsenic
absorption in the newly formed mineral phases, or due to its adsorption onto surfaces of hausmannite
or biogenic manganese minerals (Figure 2b).

3.5. Formation of Biogenic Manganese Oxalate

During the 25 days of A. niger cultivation in media supplemented with hausmannite, new
biogenic precipitates were formed. The content of this new phase was after 20 days in quantities that
allowed us to identify the manganese mineral falottaite [Mn(C2O4)·3H2O]. Later on, by the end of the
cultivation experiment, it was dehydrated and partially transformed into lindbergite [Mn(C2O4)·2H2O].
The microbially induced transformation of hausmannite was confirmed by X-ray diffraction analysis
in biomass as well as in the residual solid phase in the culture medium (Figure 6).
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Figure 6. X-ray diffraction spectra of the residual solid manganese phases analyzed in pre-defined
intervals (a). The XRD patterns indicate a transformation of the initial hausmannite into biogenic
falottaite [Mn(C2O4)·3H2O] and lindbergite [Mn(C2O4)·2H2O] (b).

The observed mineralogical transformation explained dynamics of manganese concentration
in culture media (Figure 4a). After 10 days of cultivation, the extruded oxalate chelated dissolved
manganese cations and ultimately formed biogenic manganese oxalates. The formed biogenic mineral
phase lindbergite showed orthorhombic crystal symmetry with individual crystallographic parameters
such as the a, b, c-axes shown in Table 2. It forms prismatic needles with long-column morphology
(Figure 7a) and imperfect surfaces (Figure 7b). Its size distribution ranged from 1 µm to 1 cm.

Table 2. Crystallographic parameters and symmetry of biogenic lindbergite [Mn(C2O4)·2H2O] identified
after biotransformation of hausmannite [Mn2+Mn3+

2O4] by an A. niger strain.

Manganese Oxalate Hydrate

crystal symmetry orthorhombic
a (Å) 10.524 (2)
b (Å) 6.614 (2)
c (Å) 9.769 (3)
α = β = γ 90◦
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Formation of oxalate as a restricting mechanism for manganese availability is highlighted by the 
presence of biogenic manganese phases directly in fungal biomass. Lindbergite 3D visualization 
highlighted its spatial distribution, and surface morphology (Figure 8). It was identified in the 
biomass surfaces, as well as internally anchored to the biomass. While the most of the lindbergite 
crystals encapsulated in the biomass form smaller sized crystals with characteristic spherical and 
prismatic morphology, crystals situated on the biomass surfaces form larger sized crystals with 
needle-like morphology (Figure 8). 

Figure 7. Scanning electron micrograph indicating the typical morphology of lindbergite
[Mn(C2O4)·2H2O] (a) that resulted from fungal biotransformation of hausmannite [Mn2+Mn3+

2O4].
Both minerals can be identified in the SEM image (b), where the needle-like lindbergite is associated
with small grains of hausmannite.
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Formation of oxalate as a restricting mechanism for manganese availability is highlighted by
the presence of biogenic manganese phases directly in fungal biomass. Lindbergite 3D visualization
highlighted its spatial distribution, and surface morphology (Figure 8). It was identified in the biomass
surfaces, as well as internally anchored to the biomass. While the most of the lindbergite crystals
encapsulated in the biomass form smaller sized crystals with characteristic spherical and prismatic
morphology, crystals situated on the biomass surfaces form larger sized crystals with needle-like
morphology (Figure 8).J. Fungi 2020, 6, x FOR PEER REVIEW 9 of 12 
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color) that are intimately associated with fungal biomass. The general view of biomass with 
lindbergite (scale bar = 2 mm) (a); micrograph of lindbergite biogenic crystal (scale bar = 2 mm at x-
axis) (b); lindbergite crystals associated with the mycelium visualized by 3D imaging (scale bar = 2 
cm at x-axis) (c), and cross section of biomass with visualized lindbergite (scale bar = 1 mm) (d). 
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Figure 8. The 3D microscopy imaging of lindbergite [Mn(C2O4)·2H2O] crystals (indicated by blue
color) that are intimately associated with fungal biomass. The general view of biomass with lindbergite
(scale bar = 2 mm) (a); micrograph of lindbergite biogenic crystal (scale bar = 2 mm at x-axis) (b);
lindbergite crystals associated with the mycelium visualized by 3D imaging (scale bar = 2 cm at
x-axis) (c), and cross section of biomass with visualized lindbergite (scale bar = 1 mm) (d).

4. Discussion

The fungus Aspergillus niger has been shown to be capable of producing various chelating
metabolites, including oxalate, citrate and various siderophores [22,23]. This enables soil minerals’
dissolution and biologically accelerated deterioration of solid surfaces in the environment [24].
Besides organic chelates, soil fungi acidify their natural habitat, which also effectively enhances the
natural weathering processes [25]. Fungal acidolysis and complexolysis of solid substrates were also
successfully utilized in some biohydrometallurgical methods [26,27]. These unique abilities of fungal
consortia have manifested in our experiments in the potency of the fungal A. niger strain to decrease the
pH of culture media to values as low as 2.4 (Figure 2b). However, natural soil components mitigate this
effect, since we have observed that the presence of hausmannite in the culture medium alleviated the
production of acidic metabolites by the fungus. Still, the acidification was strong enough to disintegrate
the crystal structure of hausmannite and release almost 45% of manganese ions into the medium
(Figure 4).

The proton- and ligand-mediated dissolution of manganese by filamentous fungi is well established
process [28]. The excretion of oxalate has been found to be a key factor affecting the mobility of
various potentially toxic metals in the environment via formation of mycogenic minerals [29,30]. In our
experiments, the extrusion of oxalate by the fungus A. niger and bioextraction of manganese ions from
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hausmannite’s crystal structure has led to a precipitation and crystallization of two stable manganese
oxalate minerals—falottaite and lindbergite. This process was extremely time-demanding, since the
falottaite was first detected by XRD only after 15 days of cultivation (Figure 5a). Nevertheless, we suggest
that both oxalates coexist, and their distribution ratio is most likely linked to changes of the culture
medium pH in the late fungal growth phase.

As a significant amount of manganese oxalates were associated with the biomass (Figure 7),
we hypothesize that the fragments of the fungal cell wall, or the hyphae themselves could serve as the
nucleation sites via formation of saturated microdomains in the cell wall [31,32].

The outcome of hausmannite biodeterioration and transformation into mycogenic minerals have
some implications not only in biogeochemistry of inorganic nutrients, but also potentially toxic metals
and metalloids [6]. While we expected the decrease in arsenic content in solid manganese phases due
to extensive leaching of manganese in the culture medium (Figure 4), surprisingly, biosynthesis of
mycogenic mineral phases increased affinity of arsenic towards the solid surfaces and the arsenic
immobilization efficiency increased during fungal cultivation (Figure 2b). It is very likely that the
freshly precipitated biogenic manganese phases showed stronger affinity to adsorb and immobilize
dissolved arsenic.

To conclude our experiment, we suggest that our results highlighted the significant role of
microscopic filamentous fungus A. niger as a geoactive factor in manganese transformation and arsenic
mobility. Using laboratory-based research in a model designated cultivation system, we successfully
simulated the natural process of fungal interactions with a hausmannite substrate in the presence of
arsenic(V). Through metabolic activity, the fungus was capable of changing the conditions in the system
to an extent that resulted in manganese oxide dissolution. This led to precipitation of manganese
mycogenic minerals, and subsequently affected the amount of immobilized arsenic due to changes in
sorptive interactions between arsenic and the surfaces of manganese phases.
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