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Background: Inmultiple sclerosis (MS), brain atrophy quantification is affected bywhitematter lesions. LEAP and
FSL-lesion_filling, replace lesion voxels with white matter intensities; however, they require precise lesion
identification on 3DT1-images.
Aim: To determine whether 2DT2 lesion masks co-registered to 3DT1 images, yield grey and white matter
volumes comparable to precise lesion masks.
Methods: 2DT2 lesion masks were linearly co-registered to 20 3DT1-images of MS patients, with nearest-
neighbor (NNI), and tri-linear interpolation. As gold-standard, lesion masks were manually outlined on 3DT1-
images. LEAP and FSL-lesion_filling were applied with each lesion mask. Grey (GM) and white matter (WM)
volumes were quantified with FSL-FAST, and deep gray matter (DGM) volumes using FSL-FIRST. Volumes were
compared between lesion mask types using paired Wilcoxon tests.

Results: Lesion-filling with gold-standard lesion masks compared to native images reduced GM overestimation
by 1.93 mL (p b .001) for LEAP, and 1.21 mL (p = .002) for FSL-lesion_filling. Similar effects were achieved
with NNI lesion masks from 2DT2. Global WM underestimation was not significantly influenced. GM and WM
volumes from NNI, did not differ significantly from gold-standard. GM segmentation differed between lesion
masks in the lesion area, and also elsewhere. Using the gold-standard, FSL-FAST quantified as GM on average
0.4% of the lesion areawith LEAP and 24.5%with FSL-lesion_filling. Lesion-filling did not influence DGM volumes
from FSL-FIRST.
Discussion: These results demonstrate that for global GM volumetry, precise lesionmasks on 3DT1 images can be
replaced by co-registered 2DT2 lesion masks. This makes lesion-filling a feasible method for GM atrophy
measurements in MS.
© 2014 The Authors. Published by Elsevier Inc. All rights reserved.
1. Introduction

In the multiple sclerosis (MS) brain, volume loss or “atrophy” of the
grey (GM) and white matter (WM) has been observed (Benedict et al.,
2005; De Stefano et al., 2007; Fisher et al., 2008; Miller et al., 2002;
Minneboo et al., 2008).While 3DT1-weighted imageswith thin sections
are highly suitable for quantifying the GM andWM volumes, the white
matter MS lesions are also visible on these images as signal hypo-
intensities, affecting most automated image segmentation methods
(Battaglini et al., 2012; Chard et al., 2010; Nakamura and Fisher, 2009;
Sdika and Pelletier, 2009). Three recent methods circumvent this
erms of the Creative Commons
which permits non-commercial
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problemby replacing (“filling”) lesion voxelswithwhitematter intensi-
ties (Battaglini et al., 2012; Chard et al., 2010; Sdika and Pelletier, 2009)
on images with simulated lesions, yielding segmentations as if lesions
were absent. Although these methods are able to reduce theWM lesion
influence on atrophy measurements, they require outlining of the
lesions on 3DT1 images. In the absence of satisfactory automated WM
lesion segmentation methods (Garcia-Lorenzo et al., 2013; Llado et al.,
2012), these outlines have to be generated manually on the large num-
ber of sections for each 3DT1 image volume, which is labor-intensive
and therefore too costly for large studies. As a result, the lesion-filling
methods are currently not used to their full potential. By contrast,
many clinical trials and academic studies do generate manual lesion
masks for 2D dual-echo images, which normally have thicker slices
(e.g. 3 mm compared to 1 mm of the 3DT1 sections). If these 2D lesion
masks could be used instead of manual 3D lesion masks, lesion-filling
could be applied in large studies to achieve improved quantification of
tissue-specific atrophy without the prohibitive cost of precise 3D man-
ual outlining.
ved.
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Therefore, in the present study, we assessed the performance of MS
lesion-fillingwith co-registeredWM lesionmasks from 2DT2-weighted
images. By using two interpolation methods and a range of thresholds,
we created different versions of the co-registered 2DT2 lesion masks.
We then applied lesion-filling to the corresponding regions of the
3DT1 images, using two methods: the “LEAP” method (Chard et al.,
2010) and FSL-lesion_filling (Battaglini et al., 2012). For each resulting
image we quantified tissue volumes using FSL-FAST and FSL-FIRST,
and assessed agreement of the resulting global GM and WM volumes
and deep GM volumes with those obtained using gold-standard 3D
lesion masks. Additionally, we investigated whether the observed dif-
ferences on the voxelwise GM segmentations from FSL-FAST occurred
inside lesion areas, in other regions, or both.
2. Materials and methods

Theflowchart in Fig. 1 illustrates ourworkflow. FSL version 5.0.4was
used for the processing.
Fig. 1. Flow-chart of the
2.1. Patients and images

Previously acquired 3DT1 image volumeswere selected froma total of
20 MS patients (center A: 10 patients, 3 T; center B: 10 patients, 1.5 T).
Ethics committee approval and informed consent were obtained from
the patients for the original study in which they participated. The image
acquisition parameters and clinical data of the patients are listed in
Table 1.
2.2. 2DT2 lesion masks

We collected the 2DT2 lesionmasks that had already beenmanually
outlined for the original study in the participating centers. Using FLIRT
(Jenkinson et al., 2002), the 2DT2-weighted images were linearly regis-
tered to 3DT1 images, both with nearest neighbor (NNI) and tri-linear
interpolation (TLI) and the transformation matrix applied to the lesion
masks obtained on the 2DT2-weighted scans. To the registered TLI
masks, we additionally applied a range of thresholds between 0 and 1,
image processing.



Table 1
Descriptive values per center reported as median (interquartile range IQR).

Amsterdam London

Nr. patients (women) 10 (4) 10 (5)
Age (years) median (IQR) 44 (32–48) 34 (30–44)
Disease typea 9 RRMS, 1 SPMS 10 RRMS
Disease duration (years) median (IQR) 8 (8–9) 2 (1.5-2.5)
EDSSb 1.5 (1–4.25) 1.5 (1–2)
Disease modifying treatment 5 patients -
NBV on gold-standard filled images (L)c median (IQR) 1.43 (1.48-1.53) 1. 54 (1.48-1.58)
Lesion load (mL) median (IQR)d 1.2 (0.52-4.55) 6.27 (2.21-15.99)
Lesion numbers median (IQR)d 21 (16–40) 15 (10–22)
3DT1 hypointense lesion volume (mL) median (IQR) 1.55 (0.9-4.3) 6 (2–11.1)
3DT1 hypointense lesion numbers median (IQR) 20 (16–42) 15 (9–31)
Field strength (T) 3.0 1.5
3D-T1 voxel size (mm) Sagittal 0.97/0.97/1 Axial 1.17/1.17/1.5
PDT2 voxel size (mm) 0.5/0.5/3 0.9/0.9/5

a RRMS= relapsing-remitting multiple sclerosis SPMS = secondary progressive multiple sclerosis.
b EDSS = Expanded Disability Status Scale.
c NBV = Normalized Brain Volume (calculated with FSL-SIENAX).
d Lesion load (lesion numbers) = lesion volume (lesion numbers) on the 2DT2 lesion masks that had already been manually outlined for the original study

in the participating centers.

Fig. 2. Axial view of 3DT1 image and different lesion masks for a 47-years old, male RRMS patient scanned at 3 T. From left to right: Image with no lesion masks. Image with precise
manual lesion masks (yellow). Image with nearest neighbor registered lesion masks (dark blue). Image with trilinearly registered lesion masks with different thresholds: light blue:
threshold = 0.2; red: threshold = 0.5; pink: threshold = 0.8.
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with a step size of 0.1, giving 11 different TLI lesion masks. Together
with the NNI lesion masks, this yielded 12 different versions of 3DT1-
co-registered lesion masks derived from the 2DT2 lesion masks. All
the registered masks were visually checked for registration errors.

2.3. 3D lesion masks

Gold-standard 3D lesion masks were manually outlined by a single
observer (NCGR) on 3DT1 images by adjusting the contours of the
2DT2 lesion masks after registering them to the 3DT1 images. In the
rare occurrence where a 2D lesion did not correspond to a 3DT1
hypointense area, the lesion contour was not deleted, but still consid-
ered a lesional area. The lesion masks were all inspected for correctness
by VP.

2.4. Lesion filling

For each of the 13 different lesion mask versions (12 co-registered
and the gold standard set), images underwent lesion-filling with two
methods.

The first lesion-filling method is LEAP, described in detail elsewhere
(Chard et al., 2010). Briefly, LEAP separates brain from non-brain tissue
(Smith, 2002), corrects image non-uniformity using N3 (Sled, 1997),
generates a simulated WM image without any lesions based on the
noise and signal inhomogeneity of the original image, and finally
Fig. 3. Images after lesionfillingwith LEAP (row1) and FSL-lesion_filling (row2). Rows 3 and 4:
(row 4). Rows 5 and 6: white matter (WM) segmentation after lesion filling with LEAP (row
manual lesion masks; image with nearest neighbor registered lesion masks; image with trilin
and are depicted below.
replaces the original intensity values within the lesion masks with in-
tensity values taken from corresponding locations in the simulated
WM image.

The second method used for lesion-filling was FSL-lesion_filling
(Battaglini et al., 2012). Briefly, this fills lesion mask voxels with inten-
sities based on the neighboring non-lesion voxels of the lesion masks.

2.5. Quantification of volumes

For each patient, brain tissue volumes were quantified from the fol-
lowing 27 image volumes: the native (non-filled) 3DT1 image volume;
the set of thirteen 3DT1 image volumes obtained after lesion-fillingwith
LEAP using the different lesion masks; and the set of thirteen 3DT1
image volumes obtained after lesion-filling with FSL-lesion_filling
using the different lesion masks (see Fig. 1 for the flowchart illustrating
this).

In each case, we first removed non-brain tissue using BET, with
optimized parameters as previously described (Popescu et al., 2012).
Next, global GM andWMvolumeswere quantified using the partial vol-
ume estimation within FSL-FAST (Smith et al., 2004); and deep grey
matter (DGM) volumes were calculated using FSL-FIRST (Patenaude
et al., 2011); specifically, volumeswere obtained for the following struc-
tures: brainstem, and bilateral putamen, caudate nucleus, thalamus, pu-
tamen, hippocampus, amygdala, and nucleus accumbens. Bilateral
volumes of GM structures were averaged. The GM and WM volumes
greymatter (GM) segmentation after lesionfillingwith LEAP (row3) and FSL-lesion_filling
5) and FSL-lesion_filling (row 6). From left to right: no lesion masks; image with precise
early registered lesion masks threshold=0.5. The color scales are the same for all images
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obtained on the native images are calculated with default FSL-FAST so
they would also include the misclassified voxels.

Brain tissue volume, normalized for subject head size (NBV), was
estimated with SIENAX (Smith et al., 2002) part of FSL (Smith et al.,
2004).

2.6. Statistics

For each of the two lesion-filling methods (LEAP and FSL-
lesion_filling), we compared the GM, WM and DGM volumes obtain-
ed using each version of the co-registered lesion masks and the
native images to the corresponding values obtained when using the
gold-standard lesion masks using paired Wilcoxon signed ranks
test. The significance level was p b 0.05.

3. Results

Fig. 2 shows an MRI image example before lesion filling with no
lesion masks, with superimposed gold-standard masks, NNI registered
lesion masks and TLI registered lesion masks with different thresholds.
As expected, co-registered lesion masks do not overlap perfectly with
3DT1 lesion areas.

3.1. Global GMandWMvolumes from FSL-FAST voxelwise PVE segmentation

The native images, images after lesion filling (with LEAP and
FSL-lesion_filling) and the GM and WM segmentation of these images
are depicted in Fig. 3.

Fig. 4 shows the boxplots of the global GMandWMvolumes for each
of the lesion mask types and for the native images. Supplementary
Fig. 4. Boxplots of the relative error in grey matter (GM) volumes (a, b) and white matter (WM
lesion masks using LEAP for lesion filling (a, c) and FSL lesion_filling (b, d). The GM and WM
filling the gold-standard (manual) lesion masks and then applying FSL-FAST segmentation. N
masks. TLI = after filling with trilinearly co-registered masks and then thresholding with the i
eTable 1 lists these results and Supplementary eTable 2 the DGM
volumes. Lesion-filling with LEAP using gold-standard lesion masks
resulted in smaller global GM volumes compared to native images
(1.93 mL, p b .001). Conversely, globalWM volumes were not different
using lesion filling with gold-standard lesion masks compared to native
images (0.2 mL, p = .7). For lesion filling with FSL-lesion_filling,
very similar results were observed for both GM and WM volumes
(Supplementary eTable 1).

For both LEAP lesion filling and FSL-lesion_filling, GM volumes
from FSL-FAST measured on images filled with NNI masks were not
statistically different from the GM volumes obtained from the gold-
standard segmentation (p = .232 and p = .279 respectively). For FSL-
lesion_filling, lesion masks obtained through tri-linear interpolation
and subsequent thresholding showed a trend towards underestimation
of global GM volume for low thresholds, and overestimation of global
GM volume for higher thresholds. For LEAP, these same lesion masks
resulted in less consistent behavior regarding the resulting global GM
volumes (Fig. 4).
3.2. Deep GM volumes from FSL-FIRST

In this sample, the DGMvolumes quantified by FSL-FIRST did not dif-
fer between the native images and the images filled using gold-standard
lesion masks (Supplementary eTable 2), neither for LEAP nor for
FSL-lesion_filling. In line with this, there were also no differences for
any of the co-registered lesion masks for either lesion filling method
(Supplementary eTable 2): p-values for the different DGM structures
were between .232 and .526 for LEAP, and between .145 and .911 for
FSL-lesion_filling. To illustrate this, Fig. 5 shows the boxplots of the
relative error in mean bilateral thalamic volumes.
) volumes (c, d) from segmentation of images after filling lesions obtained with different
volumes are reported as percentual difference relative to the GM volume obtained after
ative = native (unfilled) images. NNI = after filling with nearest-neighbor co-registered
ndicated value.



Fig. 5. Boxplots of the relative error inmean bilateral thalamic volumes from segmentation of images after filling lesions obtained with different lesion masks using LEAP for lesion filling
(a) and FSL lesion_filling (b). The thalamic volumes are reported as percentual difference relative to the thalamic volume obtained after filling the gold-standard (manual) lesion masks
and then applying FSL-FAST segmentation. Native = native (unfilled) images. NNI = after filling with nearest-neighbor co-registered masks. TLI = after filling with trilinearly
co-registered masks and then thresholding with the indicated value. These graphs are similar to the behavior of the other DGM structures both with LEAP lesion filling as well as with
FSL-lesion_filling.
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3.3. Location of differences in voxelwise FSL-FAST PVE segmentations

Because significant global GM volume differences were observed
from the analysis of FSL-FAST voxelwise segmentations, we analyzed
whether these differences were mainly localized in lesion areas, or
also elsewhere in the brain. The differences were located both inside
Fig. 6. Location of grey matter (GM) differences (mm3) to gold-standard lesion-filling with LE
lesion volume. Above the native images compared to gold-standard and below the images fi
with diamond-shaped markers is depicted the total GM difference from gold-standard, in red
markers the difference outside of the lesion area.
and outside of the lesion area as visible in Fig. 6. With increasing lesion
volumes, the overestimation of total GM volume increases. Interesting-
ly, GM overestimation inside lesion areas is partially offset by an under-
estimation outside the lesion areas. Both effects show a tendency to
increase with increasing lesion volumes (Fig. 6 panels A and B). These
effects were observed for both lesion filling methods, though to a
AP (left column) and FSL-lesion-filling (right column) as a function of the gold-standard
lled with nearest-neighbor registered masks (NNI) compared to gold-standard. In blue
with square markers the difference within the lesion area and in green with triangular
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slightly smaller extent for FSL-lesion_filling. When using NNI masks
these effects were markedly reduced and much better agreement with
gold-standard results was achieved across the range of lesion volumes
(Fig. 6 panels C and D).

The NNI lesion masks did not overlap perfectly with 3DT1 lesion
areas; there were 42% false positive voxels (averaged across patients)
compared to gold-standard and 60% false negative voxels (averaged
across patients) compared to gold-standard. But after FSL-FAST
segmentation only 0.17% of the segmented GM was found within
the false negative voxels and 0.03% within the false positive voxels
(Fig. 7). The percentage of false positive voxels compared to gold-
standardwas not significantly correlatedwith gold-standard lesion vol-
ume (Spearman's rho=0.08 p= 0.74), thepercentage of false negative
voxels had a significant negative correlation with gold-standard lesion
volume (Spearman's rho = −0.63, p = 0.003), indicating that for
higher lesion volumes, there are less false negative voxels.

Finally, on native images on average 49.8% of the lesion area is quan-
tified as GM. After lesion-filling this percentage is highly improved:
when using the gold-standard, on average 0.4% of the LEAP-filled lesion
area is quantified as GM, and 24.5% of the FSL-lesion_filling filled lesion
area is quantified as GM (Fig. 3).

4. Discussion

This study demonstrates that when co-registered lesion masks from
2D images are used for lesion filling on 3DT1 images of patients with
MS, the quantitative GM volumes obtained are very similar to those
obtained using manually outlined 3D lesion masks.

Quantification ofGMvolumeshas becomean important goal inMS re-
search and evaluation of therapeutic efficacy. Without lesion filling, the
error in global GM volume can be substantial, but lesion filling reduces
this GM quantification error (Battaglini et al., 2012; Nakamura and
Fisher, 2009; Sanfilipo et al., 2005). In the current study, this GM quanti-
fication error fromthenative images amounted to anaverage overestima-
tion of 0.3% and in individual cases was as high as 1%. These effects are
sizable in MS, where GM atrophy rates are approximately 0.2-0.6% per
year (Fisher et al., 2008). This confirms the need for a practical solution
to this GM quantification problem caused by the WM lesions.

However, despite technical developments in recent years, the lesion-
filling solution to atrophy quantification inMS has so far not achieved its
full potential. An important reason is that in the absence of satisfactory
automated lesion segmentation methods (Garcia-Lorenzo et al., 2013;
Llado et al., 2012; Mortazavi et al., 2012), lesion-filling requires labor-
intensive precise manual outlining on high-resolution 3D images which
is usually prohibitively costly and this crucial practical aspect of the
method has so far received limited attention. The present study provides
Fig. 7. Percentage of greymatter (GM) segmented within the false negative and false positive v
with LEAP (left) and FSL-lesion-filling (right) as a function of the gold-standard lesion volume
negative voxels and in green with triangular markers the percentage of GM segmented within
a viable solution to this problem, by demonstrating that lesion-filling
using co-registered lesion outlines from 2D images with the nearest
neighbor method (NNI) produces accurate volumetric results for global
GM andWM, as well as for DGM structures.

Among the interpolation methods for the registration of the lesion
masks, NNI most consistently provided volumetric results comparable
to gold-standard. This was visible with both lesion-filling methods,
indicating that our result is not lesion-filling method dependent.

Although the NNI masks do not overlap perfectly with the gold-
standard masks, they significantly improve the GM segmentation, due
to changes in segmentation not only in the lesion area but also outside
of the lesion area (Fig. 6). Registering PDT2 lesion-masks proves as
expected not to be perfect, but a feasible approach for significant
improvement in global GM volumetry when more precise lesion
masks are unavailable.

The white matter segmentation as well as the DGM segmentation
proved to be less sensitive to the influence of the lesions, as the results
before and after lesion-fillingwith any lesionmaskwere not statistically
different. This is in contrastwith another study inMSwith a comparable
sample size and a lesion filling method similar to FSL-lesion_filling
where the DGM volumes were significantly smaller after lesion filling
than before (Gelineau-Morel et al., 2012). Also in the study of Chard
et al. (2010) the white matter volume was significantly increased after
lesion-filling. This may be due to the fact that our patients have a
relative low lesion load compared to these two studies. In light of the re-
sults of these studies, and recalling thatwith higher lesion loads the per-
centage of false negative lesional voxels compared to gold-standard
decreases, it is likely that the effect of lesion-filling using masks from
T2-weighted images will have a proportionally greater beneficial effect
on brain segmentation as the brain lesion load increases.

Direct comparison of the two filling methods showed that signifi-
cantly more voxels of the areas filled with FSL-lesion_filling were seg-
mented as GM than after filling with LEAP. FSL-lesion_filling uses
neighboring voxels for lesion-filling and as such the neighboring CSF
and GM intensities will also be used for filling, resulting in GM being
segmented within the lesion masks even after filling. On the other
hand the LEAP method does not account for the neighboring voxels,
which can create intensity differences between the filled lesions and
the surrounding WM, as visible in Fig. 3. In the current study, this
boundary did not have a negative effect on FSL-FAST or FSL-FIRST seg-
mentation, but it cannot be excluded that its presence may influence
other segmentation methods. This may also account for the segmenta-
tion of the FSL-lesion_filling images yielding results closer to the seg-
mentation of native images. Studies that utilize lesion-filling with
different software platforms should ideally assess the effect of
different lesion filling methods on the results.
oxels of the images filled with nearest-neighbor registeredmasks (NNI) after lesion-filling
. In red with square markers is depicted the percentage of GM segmented within the false
the false positive voxels.
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Current segmentation algorithms (including FSL-FAST) often used in
MS research may misclassify lesion voxels as GM due to the labeling of
lesion voxels according to their intensities (fallingwithin the GM inten-
sity range) and the dependence on its neighbors (Smith et al., 2004).
Compared with the native images, the misclassification within the le-
sion area is markedly improved by lesion-filling with both methods.
Still, the effect of lesion filling extends beyond the limits of the lesions
and influences thewhole GM segmentation, probably due to the chang-
es in thewhole image intensity histogram, used by FSL-FAST. This effect
was marked on GM areas outside lesions, in line with previous studies
(Chard et al., 2010; Gelineau-Morel et al., 2012) on simulated images.
Here we have confirmed and quantified this effect on a multi-center
MSpatients' dataset. TheNNI registered lesionmasks used for lesionfill-
ing proved to markedly reduce these effects (both inside and outside
the lesion area) and produced results very similar to using gold standard
lesion masks.

Limitations: The data in this study consists of 20 patients from two
different sites, with different MRI acquisition protocols, including a dif-
ferent magnetic field strength, and lesion outlining protocols. The fact
that GM quantification using NNI co-registered lesion masks is accurate
across all images is an initial demonstration of the robustness of this ap-
proach. It suggests that the NNI registered lesion masks could also be
used for lesion filling inmulti-center studies, butmore research on larg-
er sample sizes is needed to confirm this.

The gold-standard lesionmasks weremanually outlined on 3DT1 im-
ages by adjusting the contours of the 2D dual-echo lesion masks after
registering them to the 3DT1 images, and were not primarily drawn on
the 3DT1 images. Our aim was to include the same lesions in the gold-
standardmasks as in the registeredmask,which allowed the comparison
to be fair. Aiming for a practical and easy to use solution for lesion-filling
we have registered the 2D dual-echo lesion masks “as-is”, so no specific
correction has beenmade for regional DGMand cortical lesions. It cannot
be excluded that these lesions would influence the registration and
lesion-filling as well as the segmentation after lesion-filling, however
we did not see any difference in the DGM volumes before and after
lesion-filling, and we were also able to identify the NNI registration
method as being similar to gold-standard. Future studies should also in-
vestigate the influence of lesion location on lesion-filling.

5. Conclusion

Lesion-filling with MS lesion masks outlined on PDT2 images and
co-registered to 3DT1 images using nearest neighbor interpolation
yields accurate GM atrophy quantification in MS. The proposed ap-
proach combines the high resolution of 3DT1 for atrophy quantification,
and the time and cost efficiency of lesion outlining on 2D images.
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