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transplantation and a possible mechanism for disparate dose requirements
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ABSTRACT
The intestinal microbiota produces β-glucuronidase that plays an essential role in the metabolism 
of the immunosuppressant mycophenolate mofetil (MMF). This drug is commonly used in organ 
and hematopoietic cell transplantation (HCT), with variations in dosing across transplant types. We 
hypothesized that β-glucuronidase activity differs between transplant types, which may account for 
differences in dosing requirements. We evaluated fecal β-glucuronidase activity in patients receiv-
ing MMF post-allogeneic HCT and post-kidney transplant. Kidney transplant patients had signifi-
cantly greater β-glucuronidase activity (8.48 ± 6.21 nmol/hr/g) than HCT patients (3.50 ± 3.29 nmol/ 
hr/g; P = .001). Microbially mediated β-glucuronidase activity may be a critical determinant in the 
amount of mycophenolate entering the systemic circulation and an important factor to consider for 
precision dosing of MMF.
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To the editor

The intestinal microbiota is associated with human 
health and performs many functions for the body 
including protective, metabolic, and structural 
functions.1 Antibiotic and immunosuppressive treat-
ments, however, adversely affect the composition 
and functions of the microbiota.2–4 Recently, the 
microbiota has received attention as a collection of 
agents that can affect the efficacy of drugs, including 
immunosuppressants (IS), by altering normal meta-
bolism and/or transport, or by facilitating drug 
bioaccumulation in cells.4–8 Mycophenolate mofetil 
(MMF) is an IS prodrug that is widely used in com-
bination with tacrolimus (TAC) for post-allogeneic 
hematopoietic cell transplantation (HCT) and kid-
ney transplantation. The active form of MMF, myco-
phenolic acid (MPA), inhibits the proliferation of 
T and B lymphocytes thereby reducing the risk of 
graft-versus-host disease (GVHD), improves stem 
cell engraftment after HCT, and reduces the risk of 
allograft rejection after kidney transplant.9 Blood 

MPA concentrations are influenced by enterohepatic 
recycling (EHR) of MPA due to the de- 
glucuronidation of MPA glucuronide (MPAG, 
major inactive metabolite of MMF) by microbial β- 
glucuronidase post-biliary excretion.4,10 We recently 
showed that therapeutic concentrations of MPA in 
the blood of HCT patients were associated with the 
microbiome composition measured in their fecal 
samples, although the mechanism for this finding 
remains unknown.4 We observed that individuals 
with therapeutic MPA concentrations were more 
likely to have β-glucuronidase-producing bacteria 
in their stool and significantly greater EHR and 
reformation of MPA.

Despite the importance of MMF in facilitating 
donor engraftment and preventing GVHD, 50% of 
patients suffer from GVHD and associated non- 
relapse mortality,4,11 and 5–10% of kidney trans-
plant recipients with have an acute rejection event 
leading to a higher risk of kidney graft loss.12 

Variability in MPA plasma concentrations among 
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patients affects the potential for adverse clinical 
outcomes. Lower concentrations increase the risk 
of GVHD and rejection, while higher concentra-
tions are associated with toxicity.10,13,14 There is 
a well-known difference in the doses of MMF 
needed to achieve therapeutic concentrations in 
HCT and kidney transplant recipients. Lower 
MPA exposure is observed in HCT recipients com-
pared to kidney transplant recipients receiving 
a similar MMF dose.15–17 Reasons for this differ-
ence are not understood but may be due to lower β- 
glucuronidase activity in the stool of HCT recipi-
ents, resulting in lower enterohepatic recirculation 
and reformation of MPA, lower MPA exposure in 
the blood, and the need for higher MMF doses. 
Understanding microbially mediated processes 
that affect MPA exposure is required to inform 
precision MMF dosing and for other drugs that 
undergo β-glucuronidase-mediated enterohepatic 
recirculation (e.g. irinotecan).18

We compared β-glucuronidase activity from stool 
samples of patients receiving MMF and tacrolimus 
post-HCT or kidney transplant. We hypothesized 
that, based on observed differences in therapeutic 
dosing regimens between transplantation types, β- 
glucuronidase activity would differ between trans-
plant types. We observed that fecal β-glucuronidase 
activity was over two-fold lower in HCT patients 
(3.50 ± 3.29 nmol/h/g) than in kidney transplant 

patients (8.48 ± 6.21 nmol/h/g, P = .001; Figure 1). 
Previous studies have found an association of dis-
tinct intestinal microbiota with clinical outcomes 
including infectious complications in HCT 
recipients19–21 and dosing of the IS drug tacrolimus 
(TAC) in kidney transplant recipients.22 In addition, 
greater abundances of the genera Blautia and 
Enterococcus, and decreasing abundances of clostri-
dia have been associated with a lower incidence of 
GVHD-related mortality in HCT patients.19–21 In 
kidney transplant patients, Lee, et al.22 hypothesized 
that the abundance of Faecalibacterium prausnitzii 
was associated with a healthy and diverse colon and 
found a positive correlation between TAC dosage 
and F. prausnitzii. This hypothesis was tested in vitro 
by Guo, et al.23 with results suggesting involvement 
of F. prausnitzii in metabolism of TAC. Taken 
together, these results suggest that improved under-
standing of the role of the microbiota in biotrans-
formation and transporting IS drugs will be critical 
to inform precision therapy to maximize efficacy.

There have been few studies that have similarly 
assessed fecal β-glucuronidase activity in human 
studies, and results are difficult to compare due to 
the various methodologies reported.24 A recent 
study of patients with celiac disease, non-celiac 
gluten sensitivity, and healthy controls found simi-
lar levels of fecal β-glucuronidase activity in all 
groups (mean ± standard deviation: 30.0 ± 15.0, 
25.9 ± 15.0, and 29.9 ± 18.0 U g−1 wet weight, 
respectively).25 Similarly, an earlier study of chil-
dren with inflammatory bowel disease (IBD), com-
pared to healthy controls, found that while there 
was a non-significant difference in fecal β- 
glucuronidase activity between groups, the activity 
from children with IBD (mean 15.86, range 0.12– 
81.63 mM phenolphthalein/mg protein/h) was less 
than half that of controls (44.86, 5.82–141.13 mM/ 
mg/h). In a study of kidney transplantation patients 
who received MMF, no differences in fecal β- 
glucuronidase activity were observed among 
patients who had diarrhea vs. those who did not 
(median 4.6 vs. 4.4 mg free phenolphthalein/mg 
protein/h, P = .78).26 A significantly greater percen-
tage of diarrheal patients with high β-glucuronidase 
activity (91%) had a prolonged course (≥7 days) of 
diarrhea, while only 40% of low β-glucuronidase- 
activity patients had a prolonged course.27 In 
a murine study, exposure to MMF resulted in an 

Figure 1. Β-glucuronidase activity observed in fecal samples 
from patients in the HCT and MISSION studies. Boxes show 
median and interquartile ranges, with mean denoted by +.
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altered microbial community composition with 
increased β-glucuronidase activity that was ablated 
when vancomycin was given.28 Results of these 
studies highlight the role of microbial β- 
glucuronidase in MMF-related toxicity and adverse 
side effects.

Several factors have been associated with variabil-
ity in MPA concentrations including kidney func-
tion, albumin, weight, diabetes and time post- 
transplant, although they have not been consistently 
observed in all studies.17,29,30 There are also several 
important drug interactions with MPA. The combi-
nation of TAC with MPA results in higher MPA 
plasma concentrations and all of our patients 
received TAC. Antibiotics such as norfloxacin and 
metronidazole, ciprofloxacin, amoxicillin-clavulanic 
acid result in significantly lower MPA 
concentrations.31–33 These interactions have been 
hypothesized to be due to antimicrobial-related 
alterations in gut microbiota that change enterohe-
patic recirculation and reabsorption of MPA. HCT 
patients receive chemotherapy and more anti- 
infective agents than kidney transplant recipients in 
the early post-transplant period. Our observation 
that β-glucuronidase activity is significantly lower 
in HCT recipients is highly consistent with the con-
sequences of high antibacterial drug pressure and 
elimination of β-glucuronidase producing bacteria.

In our HCT population, 20 adult (18–75 years) 
participants undergoing allogeneic transplant for 
hematologic malignancies were enrolled and are 
described in our previous study.4 The HCT study 
protocol was IRB approved (Study#00005621) and 
all patients provided written, informed consent. All 
HCT participants received prophylactic MMF 
(Cellcept or generic) and TAC (Prograf or generic) 
at time of stool collection on day +7. Mycophenolate 
mofetil was administered 1 g every 8 h intravenously 
(IV) over 2 h, every 8 hours beginning on day +5. 
Tacrolimus (0.03 mg/kg/day) was administered IV 
beginning at post-transplant day 5 to promote stem 
cell engraftment and to prevent GVHD. In our 
kidney transplant study, patients were enrolled in 
the Microbiome and Immunosuppression 
(MISSION) study (NCT04953715). This study was 
IRB approved (Study#00032309) and patients pro-
vided written, informed consent. Twenty-two adult 
patients (≥18 years) were studied and the stool 

collected a median of 69 days of receiving a living 
or deceased donor kidney transplant. Patients were 
receiving MMF (Cellcept or generic) 500 mg/g twice 
a day and TAC (Prograf or generic) orally as main-
tenance IS.

Stool samples were collected in single-use speci-
men collector pans and transferred to 30 mL poly-
styrene tubes for storage. Single samples were 
collected from each patient. Samples were refriger-
ated immediately and transferred to the lab frozen 
(−20°C) and stored at −80°C prior to assay. Samples 
from patients in both the HCT and kidney- 
transplantation studies were treated identically for 
lab analysis. β-glucuronidase activity was measured 
in stool samples using a fluorometric assay kit 
(ab234625; Abcam, Cambridge, United Kingdom) 
according to the manufacturer’s instructions. 
Briefly, 100 µl of β-glucuronidase assay buffer 
(BGA) was added to a 10 mg (wet weight) stool 
sample. The sample was homogenized at room 
temperature for 10 min using an ultrasonic bath 
(2 A, 40 kHz constant frequency; Thermo Fisher 
Scientific, Waltham, MA, United States). The 
lysates were then centrifuged at 10,000 × g for 
5 min at 4°C. The supernatant volume was adjusted 
to 90 µl with BGA before adding 10 µl of proprie-
tary substrate (provided with the ab234625 kit). All 
reactions were performed in Microfluor™ 96-well 
black plates with flat bottoms (Thermo Fisher 
Scientific). Fluorescence measurement (Ex/ 
Em = 330/450 nm) was done on a Biotek ELISA 
reader (Agilent Technologies, Santa Clara, CA, 
United States) immediately after adding substrate 
for 0–60 mins at 37°C. A background (no substrate) 
control, positive control and standard (4-methy-
lumberlliferone; 4-MU) dilutions were also 
included while performing the assay. Enzyme activ-
ity was expressed as nmol 4-MU hr−1 gm−1 sample. 
Differences in β-glucuronidase activity were evalu-
ated using the non-parametric Kruskal Wallis test. 
Statistical analyses were performed using XLSTAT 
software version 2020.3.1 (Addinsoft, Belmont, 
MA) at α = 0.05.
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