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Abstract

Essential hypertension is a common multifactorial heritable condition in which increased sympathetic outflow from the central
nervous system is involved in the elevation in blood pressure (BP), as well as the exaggerated morning surge in BP that is a risk
factor for myocardial infarction and stroke in hypertensive patients. The Schlager BPH/2J mouse is a genetic model of
hypertension in which increased sympathetic outflow from the hypothalamus has an important etiological role in the
elevation of BP. Schlager hypertensive mice exhibit a large variation in BP between the active and inactive periods of the day,
and also show a morning surge in BP. To investigate the genes responsible for the circadian variation in BP in hypertension,
hypothalamic tissue was collected from BPH/2J and normotensive BPN/3J mice at the ‘peak’ (n = 12) and ‘trough’ (n = 6) of
diurnal BP. Using Affymetrix GeneChipH Mouse Gene 1.0 ST Arrays, validation by quantitative real-time PCR and a statistical
method that adjusted for clock genes, we identified 212 hypothalamic genes whose expression differed between ‘peak’ and
‘trough’ BP in the hypertensive strain. These included genes with known roles in BP regulation, such as vasopressin, oxytocin
and thyrotropin releasing hormone, as well as genes not recognized previously as regulators of BP, including chemokine (C-C
motif) ligand 19, hypocretin and zinc finger and BTB domain containing 16. Gene ontology analysis showed an enrichment of
terms for inflammatory response, mitochondrial proton-transporting ATP synthase complex, structural constituent of
ribosome, amongst others. In conclusion, we have identified genes whose expression differs between the peak and trough of
24-hour circadian BP in BPH/2J mice, pointing to mechanisms responsible for diurnal variation in BP. The findings may assist in
the elucidation of the mechanism for the morning surge in BP in essential hypertension.
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Introduction

Essential hypertension is a common [1] multifactorial condition

involving the influence of numerous, mostly unidentified genes,

generally thought to have small effects on blood pressure (BP) [2].

Essential hypertensive patients display an exaggerated increase in BP

levels in the morning, referred to as the morning BP surge [3]. The

basis of this phenomenon is not well understood. The morning surge

is known to increase risk of cardiovascular events [4]. The

identification of the mechanisms responsible for circadian variations

in BP, particularly in hypertensive patients, should assist in the design

of new strategies for resolving the pathophysiology of this condition.

In both animal models and humans, there is increasing evidence

that the sympathetic nervous system (SNS) is involved in the

development and progression of hypertension [5]. The causes of

the sympathetic activation are, however, still unclear. The SNS is

also a key regulator of the morning BP surge phenomenon [6], and

the use of drugs which target the SNS are effective in reducing it

[7]. It was reported that acute sympathetic blockade decreases BP

in the Schlager BPH/2J hypertensive mouse strain [8], consistent

with involvement of the SNS in this genetic model of hypertension.

The hypertensive strain presents a very distinctive circadian

variation of BP similar to humans with essential hypertension.

During the active phase average mean arterial pressure (MAP) of

the BPH/2J strain is 30 mm Hg higher than in the normotensive

(BPN/3J) strain, and during the inactive phase is 16 mm Hg

higher (Figure 1) [8]. Moreover, during the active phase,

hypothalamic regions in the Schlager hypertensive mouse,

specifically the paraventricular nucleus (PVN) and dorsomedial

hypothalamus (DMH), exhibit higher neuronal activation than is

seen in the BPN/3J [8]. Importantly, the PVN and DMH are

brain regions known to be critical for the regulation of

cardiovascular autonomic function [9,10]. These hypothalamic

regions are therefore likely to be important for the exaggerated

circadian variation of BP in BPH/2J mice.

The aim of the present study was to identify, at the genome-

wide level, the genes and imputed mechanisms in the hypothal-

amus that contribute to the higher BP in the active (dark phase)

period in the Schlager hypertensive mouse. Although the

hypothalamus is known to be a major regulator of the normal

circadian rhythm and level of BP, our objective was not to identify

clock genes associated with normal changes of BP. Therefore we
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used a statistical analysis which sought to eliminate clock genes by

first comparing samples from BPH/2J to those for the control

collected at the same time, i.e., prior to comparing hypertensive

samples collected at ‘peak’ or ‘trough’ BP.

Methods

Ethics Statement
This study was approved by the Alfred Hospital Animal Ethical

Review Committee (Permit number: E/0866/2009/B).

Samples and tissue collection
Radiotelemetry studies by ourselves [8,11], as well as tail-cuff

measurements [12], have shown that BPH/2J hypertensive mice

have high overall MAP of 12762 mm Hg [8], while BPN/3J mice

have normal overall MAP of 11161 mm Hg [8]. Moreover, the

hypertensive strain shows an exaggerated day-night difference

(1762 mm Hg) compared to the normotensive strain (661 mm

Hg) and normal BP C57/B16 mice (862 mm Hg) [8].

In the present study, adult (19–26 week old) BPH/2J mice and

age-matched BPN/2J mice (n = 3/group, ‘trough’ BP) were killed

Figure 1. Circadian variation of blood pressure in the Schlager hypertensive and normotensive strains. Hourly averaged data showing
the circadian variation of mean arterial pressure (mm Hg) during the active (night; outer black panels) and inactive (day; middle white panel) phases
in 23 week-old BPN/3J and BPH/2J mice. Values are mean 6 SEM for comparisons between strains across the entire 24 hours. Black arrow indicates
when ‘trough’ BP samples were collected, and gray arrow indicates when ‘peak’ BP samples were collected. Adapted from Davern et al. [8].
doi:10.1371/journal.pone.0019203.g001

Table 1. Selected genes differentially expressed at ‘peak’ BP in the Schlager hypertensive mouse compared to ‘trough’ BP
samples, showing primers, qPCR conditions and adjusted fold difference (aFD) values for both qPCR and microarray experiments.

Official gene
symbol

GenBank
Accession # Primer Sequence (59 39) Concentration

Annealing
temperature

aFD value
(qPCR)

aFD value
(arrays)

Actb NM_007393.3 F: AACGGCTCCGGCATGTGCAAAG,
R: ATCACACCCTGGTGCCTAGGGCG

200 nM 55–61uC – –

Avp NM_009732.1 F: CTGCTGGCCTTCTCCTCCGCC,
R: CGGGCCGCAGGGGAGACAC

200 nM 58uC 7.59 2.30

Ccl19 NM_011888.2 F: ACCTCCAGACCAGCCCTGGGT,
R: TGGTGCTGTTGCCTTTGTTCTTGGC

200 nM 61uC 1.36 1.72

Hcrt NM_010410.2 F: TGGGTATTTGGACCACTGCACTGA,
R: CAGGGAACCTTTGTAGAAGGAAAGTTC

200 nM 55uC 6.12 2.05

Oxt NM_011025.3 F: TCACCTACAGCGGATCTCAGACTGA,
R: CCCAGGGGGCAGTTCTGGATGTA

200 nM 55uC 18.9 3.37

Trh NM_009426.2 F: CCAGGAGGAAGGTGCTGTGAC,
R: GTGATCCAGGAATCTAAGGCAGC

200 nM 55uC 8.46 2.10

Zbtb16 NM_001033324.2 F: GTCCGGTCCGGTCCCCTC,
R: GGGCTCAGGCATGGGGCTCT

200 nM 58uC 3.75 1.61

F: forward primer, R: reverse primer. Values represent mean of the adjusted fold difference (aFD) statistic between ‘peak’ and ‘trough’ samples. Positive aFD values
indicate higher expression in the hypertensive group samples collected in the active period, and negative aFD values indicate higher expression in the hypertensive
group samples collected in the inactive period.
doi:10.1371/journal.pone.0019203.t001
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with an overdose of pentobarbitone (Lethobarb) in the inactive

period, when the MAP levels of the BPH/2J and BPN/3J models

differ by only 16 mm Hg [8]. BPH/2J mice and age-matched

BPN/2J mice (n = 6/group, ‘peak’ BP) were killed in the same way

at the peak of the circadian variation in BP, when average MAP

difference between the strains was maximal (30 mm Hg) [8].

Figure 1 indicates the times when the mice were killed. The PVN

and DMH, as defined by known anatomical boundaries [13], were

removed immediately after death by PJD, who has extensive

experience in dissecting PVN and DMH regions of the

hypothalamus [8,13]. The tissue was first preserved in dry ice

and later transferred to a –80uC freezer and used for microarray

experiments within 7 days. Each animal was considered an

individual sample and no pooling was performed.

RNA extraction and quality and quantity assessment
The RNeasy kit (Qiagen) was used for RNA extraction and was

performed according to the manufacturer’s recommendations.

RNA quality was confirmed based on a RNA integrity number

(RIN) higher than 8 by use of an electrophoresis bioanalyzer (2100

Agilent Bioanalyzer). This step was carried out by the Ramaciotti

Centre for Gene Function Analysis, University of New South

Wales, Sydney, Australia. Quantification involved spectrophotom-

etry (NanoDropH ND-100 spectrophotometer, Thermo Scientific)

in the Laboratory at the University of Sydney.

Microarray experiments and analyses
mRNA was converted to single-stranded DNA, labeled and

hybridized to GeneChipH Mouse Gene 1.0 ST Arrays (Affyme-

trix), which analyze 28,869 gene transcripts using 764,885 probe

sets (on average 27 probes per gene), all according to the

manufacturer’s instructions, and with the assistance of the

Ramaciotti Centre. Samples were normalized using robust-

multi-array analysis (RMA) [14]. The data set obtained has been

deposited in the NCBI Gene Expression Omnibus database

according to MIAME guidelines with series accession number

GSE26007.

Direct comparison of differentially expressed genes between

‘trough’ and ‘peak’ BP samples would normally identify many

‘‘clock’’ genes that are of limited interest. Thus gene expression

related to the circadian differences in hypertension were found by

first adjusting for the circadian differences from BPN/3J. This

analysis was performed using the adjusted fold difference (aFD)

statistics we described previously [15]. Differentially expressed

genes were selected based on an absolute aFD value exceeding 1.5,

where positive aFD values indicate higher expression at ‘peak’ BP

and negative aFD values indicate higher expression ‘trough’ BP in

the Schlager hypertensive mouse. Hierarchical clustering using

Euclidean distance was performed with TMeV 4.5 [16].

The Gene Ontology (GO) database [17] was used to further

interpret the differentially expressed gene data set and to identify

over-represented functional groups of genes. A hypergeometric

test using GOstats [18] was used to determine if particular GO

terms were more significantly over or under represented in the

differentially expressed gene list than the gene list of the entire

array. Up-regulated and down-regulated genes were examined

separately. A gene set test (GST), implemented via the Limma

package [19], was used to highlight pathways that are differentially

expressed as a set, for all genes ranked via P values, and adjusted

by false discovery rate (FDR). In both the GO and GST analyses,

ontologies with an overall probe count of less than 5 were

removed.

Using the ‘Core Analysis’ function in the Ingenuity Pathway

Analysis (IPA, IngenuityH Systems, www.ingenuity.com) applica-

tion, molecular networks were built. Briefly, a data set containing

differentially expressed genes and respective fold differences were

uploaded into the application. These genes were then correlated

based on previous association between genes or proteins and

known functional roles of genes. The biological relationship

between two genes, represented as nodes, is shown as a line. Nodes

with different shapes indicate different functional class.

Semi-quantitative real-time PCR (qPCR)
qPCR was conducted to confirm the results for genes whose

functions were considered to be of possible interest in hyperten-

sion. The first-strand complementary synthesis reaction was

performed using the SuperScriptH VILOTM cDNA Synthesis Kit

(Invitrogen). Amplification reactions used the EXPRESS SYBRH
GreenERTM qPCR reagent system (Invitrogen) in a Light Cycler

480 qPCR machine (Roche). Primers were specifically designed

around the most differentially expressed probe in the transcript

cluster of each gene using Primer3 [20]. Where possible, primers

were designed to flank an exon-exon junction. Primer and

conditions used are indicated in Table 1. Samples were run in

duplicate. The specificity of the qPCR was ensured by melting

curve analysis and agarose gel electrophoresis (data not shown).

The b-actin mRNA (Actb) was used as the reference gene. The

comparative CT statistical method was used to assess significance

[21].

The aFD value was used to compare ‘trough’ and ‘peak’ BP

hypertensive samples. Normotensive samples collected at the

same times of 24 h BP variation as for the hypertensive

mice were used as controls. The statistical package SPSS for

Windows, Release 17.0, was used to compare normotensive

and hypertensive groups collected at both ‘peak’ and ‘trough’ BP

by one-way analysis of variance (ANOVA), followed by correction

for multiple testing using the Bonferroni post-hoc test, to

determine significance of differences between the groups. Signif-

icance was set at P,0.05.

Results

Hierarchical clustering showed that hypertensive and normo-

tensive samples collected at ‘peak’ or ‘trough’ BP have distinctive

patterns of gene expression (Figure 2). Using an aFD value $1.5,

212 well-annotated genes were identified between ‘trough’ and

‘peak’ BP samples of BPH/2J hypertensive mice. Table 1

summarizes the data for selected genes that we validated by

qPCR (for complete information please see Table S1). aFD values

from qPCR and microarray experiments are shown in Table 1

and Figure 3.

ANOVA (Figure 4) showed that the hypertensive strain has an

impaired response during the inactive period for the gene oxytocin

(Oxt). Moreover the expression of the genes chemokine (C-C motif)

Figure 2. Hierarchical clustering comparing hypothalamic gene expression in active and inactive Schlager hypertensive and
normotensive strains. Hierarchical clustering using Euclidean distance comparing the gene expression in the hypothalamus of ‘peak’ (left column,
active period) versus ‘trough’ (right column, inactive period) hypertensive BPH/2J mice and age-matched normotensive BPN/3J samples. Distinctive
patterns can be observed. Clusters of genes of similar biological relevance are indicated. Red depicts genes upregulated and green those
downregulated.
doi:10.1371/journal.pone.0019203.g002
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ligand 19 (Ccl19) and hypocretin (Hcrt) was consistently higher

during the active period in the BPH/2J than in the same strain

during the inactive period or than the BPN/3J strain during the

same period.

At ‘peak’ BP, GO analysis showed an enrichment of terms such

as neuropeptide signaling pathway, defense response, chemokine

and cytokine activity, immune system development (which could

indicate an increase in inflammation), mitochondrial proton-

transporting ATP synthase complex, and many terms related to

structural constituent of ribosome, among others (see Table S2). At

‘peak’ BP in the BPH/2J hypertensive mice, the GST indicated an

over-representation of G-protein coupled receptor protein signal-

ing pathway, transcription factor and regulator activity, and

cytokine activity, and a down-representation of chromatin

modification, assembly or disassembly and helicase activity,

amongst others (see Table S3).

In silico molecular networks among the genes identified are

shown in Figure 5. The most significant network highlighted

cardiovascular disease and molecular transport (Figure 5A),

consistent with a genetic component influencing circadian BP

variation and thereby cardiovascular disease in this model.

Discussion

This study is, to our knowledge, the first to evaluate genome-

wide gene expression signatures in the hypothalamus during

circadian variation of BP in the Schlager hypertensive mouse, a

model that exhibits a similar morning BP surge as seen in human

essential hypertension. The main findings suggest an involvement

of arginine vasopressin (Avp), Oxt and thyrotropin releasing

hormone (Trh), which are known genes in the regulation of BP.

Our study proposes new candidates genes for the arousal-

associated exaggerated circadian changes in BP in the BPH/2J

mouse, such as Ccl19, Hcrt, and zinc finger and BTB domain

containing 16 (Zbtb16). Consistent with the relevance of the BPH/

2J strain to the morning BP surge in human hypertension, the

present study has identified the genes for aldehyde dehydrogenase

family 1 subfamily A2 (Aldh1a2) and solute carrier family 8

Figure 4. qPCR results for genes differentially expressed in the hypothalamus at ‘peak’ and ‘trough’ time-points in the Schlager
hypertensive and normotensive strains. Shown is relative mRNA abundance for the genes Avp, Ccl19, Hcrt, Oxt, Trh and Zbtb16. Vertical bars
show standard error of the mean; *P,0.05, **P,0.01, ***P,0.001.
doi:10.1371/journal.pone.0019203.g004

Figure 3. Validation of the aFD values using qPCR, showing results for the genes (A) Avp, Ccl19, Hcrt, and (B) Oxt, Trh and Zbtb16. This
analysis took into account qPCR confirmation and the interaction between qPCR (top plots) and microarray results (bottom plots) with blood
pressure (shown at the left of each plot is ‘trough’, and at the right is ‘peak’).
doi:10.1371/journal.pone.0019203.g003
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(sodium/calcium exchanger) member 1 (Slc8a1), which are two

genes identified in genome-wide association studies of hyperten-

sion [22,23]. All of these findings together, suggest indirect

dysregulation of the angiotensinergic system and inflammation,

amongst others, as influencing exaggerated circadian changes in

BP in the Schlager hypertensive mouse.

Genes for catecholamine biosynthesis were not amongst those we

identified. Nor were genes of the angiotensinergic system itself. On

the other hand, the gene for Zbtb16 (aFD = 1.6, also known as Plzf)

can interact with and regulate components of the renin-angiotensin

system. Following treatment with angiotensin II (Ang II), Zbtb16

binds to Ang II type 2 receptor (AGTR2) located in the plasma

membrane, and then both internalize together [24]. Similarly,

internalization is observed when prorenin/renin binds to the

(pro)renin receptor, Atp6ba2 [25,26]. Such binding activates the

renin-angiotensin cascade and causes the translocation of Zbtb16 to

the nucleus, where Zbtb16 represses transcription of Atp6ap2

[25,26]. This is consistent with an increase in angiotensinergic

activity in the brain, resulting in increased Ang II formation [27]

accompanied by elevation in binding of prorenin/renin to Atp6ap2.

Therefore the overexpression of Zbtb16 observed here during the

active phase might indicate that this gene is involved in a servo-

regulatory mechanism that, by inhibiting component(s) of the renin-

angiotensin system, could be attempting to bring BP back to normal

levels.

Arginine vasopressin (AVP, encoded by the gene Avp, and whose

mRNA showed an aFD of 2.3) and oxytocin (OXT; gene Oxt;

aFD = 3.4) are evolutionarily-related hormones, AVP being a well-

known regulator of body water balance and thereby BP [28]. AVP

synthesis in the hypothalamus is increased by many stimuli, including

hyperosmolality [29], Ang II or a decrease in BP [28,30], although it

remains to be seen whether the BP reduction during the ‘trough’ of

circadian BP in the Schlager hypertensive mouse would be sufficient

to contribute to the rise in Avp expression. Microinjection of oxytocin

Figure 5. Top four molecular networks from the differentially expressed genes at ‘peak’ BP in the Schlager hypertensive mice,
showing an enrichment of genes for (A) cardiovascular disease and molecular transport, (B) metabolic disease, (C) cell morphology,
cellular assembly and organization, and (D) lipid metabolism, small molecule biochemistry and amino acid metabolism. The
networks were constructed using the Ingenuity Pathway Analysis (IPA, IngenuityH Systems, www.ingenuity.com) application. Genes over-expressed
in our gene list are represented by green and genes under-expressed by red.
doi:10.1371/journal.pone.0019203.g005
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into the rostroventrolateral medulla increases BP [31], and the

deletion of the gene Avp leads to hypotension [32]. Both AVP and

OXT are co-localized with Atp6ap2 in the hypothalamus [33],

consistent with the possible involvement of a brain angiotensinergic

system in circadian BP regulation.

In support of our findings, overexpression of Trh (aFD = 2.1)

leads to hypertension in normal rats [34]. In contrast, knocking

down this gene reduced BP in obesity-induced hypertensive rats

[35]. The effect of TRH on BP seems to be mediated by the effects

on sympathetic nerve activity [36].

We have demonstrated recently that Ccl19 (aFD = 1.7) and Hcrt

(aFD = 2.1) are differentially expressed in BPH/2J mice in early

and established phases of hypertension [37]. In the present study

we have now shown that these genes also contribute to the

exaggerated circadian BP differences in this mouse strain. The

overexpression of Ccl19 might increase inflammatory response by

attracting lymphocytes and dendritic cells [38]. The increase in

inflammation at ‘peak’ BP in the BPH/2J mouse is supported by

our GO and GST analyses, and the higher levels of inflammatory

markers that have been reported in hypertensive patients during

the morning BP surge [39].

Besides having a possible role in the onset and maintenance of

BP in hypertensive Schlager mice, Hcrt also seems to contribute to

the heightened stress response in this strain [37] and now in

circadian BP. Intracerebroventricular (i.c.v.) administration of

hypocretin, by acting on PVN neurons, increases mean arterial

pressure, heart rate and renal sympathetic nerve activity [40,41].

Hcrt knockout experiments showed that endogenous hypocretin

participates in BP maintenance [42], apparently by increasing

sympathetic outflow and consequent induction of the sympatho-

adrenomedullary system [42,43].

None of the 212 genes we identified here were clock genes,

highlighting the success of our statistical analysis in the elimination

of clock genes. Moreover our data analysis shows the potency of

the aFD statistics in microarray analysis, the latter being validated

by qPCR. In the case of Avp, Oxt and Trh, the aFD value measured

by qPCR was considerably larger than that generated by the

microarray analysis. Such findings are not unique [44] and most

likely represent differences between solid-state and solution

hybridization, coupled with use of the RMA algorithm, which

provides greater specificity and sensitivity, but blunts the

magnitude of the fold change [14].

The present study was facilitated by the large magnitude of the

circadian changes in BP characteristic of the genetic model of

hypertension studied. Other commonly used genetic models of

hypertension, such as the spontaneously hypertensive rat, would

be much less suitable because they show much smaller circadian

differences in BP [45]. Although the replication of our findings in

humans would be desirable, biopsy of hypothalamic tissue from

human subjects, especially at specific times of the diurnal cycle,

would present a challenge. Animal experiments in vivo will,

moreover, be necessary to discern whether the changes in

expression of these genes have a role in the circadian variation

in BP in the Schlager hypertensive mouse or if they merely reflect

secondary or coincidental phenomena that are not causally

influencing BP. Such investigations were beyond the scope of

the present study.

Although we sought to prevent clock genes from showing up in

our analysis, and no known clock genes were amongst the genes

we identified, we cannot absolutely rule out the possibility that

some of the genes found were ones not previously recognized as

having clock functions, and thus could nevertheless also be

contributing to the strain differences in circadian BP patterns

between the hypertensive and normotensive mice.

In conclusion, the present study has identified hypothalamic

gene signatures of exaggerated circadian BP changes in hyperten-

sion in the Schlager BPH/2J mouse, which displays a morning BP

surge similar to that seen in human essential hypertension. The

212 differentially expressed genes identified included Aldh1a2, Avp,

Ccl19, Hcrt, Oxt, Slc8a1, Trh and Zbtb16. The integration of

pathways involved in the neural and endocrine communication of

the hypothalamus with other tissues is highly complex, and much

remains to be elucidated. The particular genes revealed here were,

moreover, supported by a combination of validation by qPCR,

biological meaning and the use of robust statistical analyses with

stringent adjustments. Our findings should help guide further

research aimed at elucidation of the mechanisms involved in the

cause of circadian variation in BP in the Schlager hypertensive

mouse and, ultimately, in the morning BP surge in human

essential hypertension.

Supporting Information

Table S1 Genes that differed between ‘peak’ and ‘trough’ BP in

BPH/2J Schlager mice after correction by matched awake/asleep

controls using an adjusted fold difference (aFD) value of $1.5.

(DOC)

Table S2 Gene ontology analysis of the gene list for hyperten-

sion in the hypothalamus of the Schlager BPH/2J mouse.

(DOC)

Table S3 Gene set tests, based on gene ontology, of the gene list

for hypertension in the hypothalamus of the Schlager BPH/2J

mouse.

(DOC)

Acknowledgments

We thank Dr. Helen Speirs at the Ramaciotti Centre for Gene Function

Analysis for help with arrays and GEO submission, and Dr. Andrea

Markus for help with initial RNA extraction.

Author Contributions

Conceived and designed the experiments: FZM. Performed the experi-

ments: FZM. Analyzed the data: FZM AEC YHJY. Wrote the paper:

FZM. Handled funding and supervision: GAH BJM. Collected the

samples: FZM PJD. Statistical analyses: FZM AEC YHJY. Analysis and

interpretation of data: FZM. Drafted the article: FZM. Revised the article:

AEC PJD YHJY GAH BJM.

References

1. Lawes CM, Vander Hoorn S, Rodgers A (2008) Global burden of blood-

pressure-related disease, 2001. Lancet 371: 1513–1518.

2. Delles C, McBride MW, Graham D, Padmanabhan S, Dominiczak AF (2010)

Genetics of hypertension: from experimental animals to humans. Biochim

Biophys Acta 1802: 1299–1308.

3. Head GA, Reid CM, Shiel LM, Jennings GL, Lukoshkova EV (2006) Rate of

morning increase in blood pressure is elevated in hypertensives. Am J Hypertens

19: 1010–1017.

4. Kario K (2010) Morning surge in blood pressure and cardiovascular risk:

evidence and perspectives. Hypertension 56: 765–773.

5. Grassi G, Seravalle G, Quarti-Trevano F (2010) The ‘neuroadrener-

gic hypothesis’ in hypertension: current evidence. Exp Physiol 95: 581–

586.

6. Grassi G, Bombelli M, Seravalle G, Dell’Oro R, Quarti-Trevano F (2010)

Diurnal blood pressure variation and sympathetic activity. Hypertens Res 33:

381–385.

7. Hashimoto J, Chonan K, Aoki Y, Ugajin T, Yamaguchi J, et al. (2003)

Therapeutic effects of evening administration of guanabenz and clonidine on

morning hypertension: evaluation using home-based blood pressure measure-

ments. J Hypertens 21: 805–811.

Genes for Circadian Hypertension

PLoS ONE | www.plosone.org 8 April 2011 | Volume 6 | Issue 4 | e19203



8. Davern PJ, Nguyen-Huu TP, La Greca L, Abdelkader A, Head GA (2009) Role

of the sympathetic nervous system in Schlager genetically hypertensive mice.
Hypertension 54: 852–859.

9. Badoer E (2001) Hypothalamic paraventricular nucleus and cardiovascular

regulation. Clin Exp Pharmacol Physiol 28: 95–99.
10. Horiuchi J, McAllen RM, Allen AM, Killinger S, Fontes MA, et al. (2004)

Descending vasomotor pathways from the dorsomedial hypothalamic nucleus:
role of medullary raphe and RVLM. Am J Physiol Regul Integr Comp Physiol

287: R824–832.

11. Davern PJ, Jackson KL, Nguyen-Huu TP, La Greca L, Head GA (2010)
Cardiovascular responses to aversive and nonaversive stressors in schlager

genetically hypertensive mice. Am J Hypertens 23: 838–844.
12. Schlager G, Sides J (1997) Characterization of hypertensive and hypotensive

inbred strains of mice. Lab Anim Sci 47: 288–292.
13. Davern PJ, Jackson KL, Nguyen-Huu TP, La Greca L, Head GA (2010)

Cardiovascular reactivity and neuronal activation to stress in Schlager

genetically hypertensive mice. Neuroscience 170: 551–558.
14. Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, et al. (2003)

Exploration, normalization, and summaries of high density oligonucleotide array
probe level data. Biostatistics 4: 249–264.

15. Marques FZ, Campain AE, Yang YH, Morris BJ (2010) Meta-analysis of

genome-wide gene expression differences in onset and maintenance phases of
genetic hypertension. Hypertension 56: 319–324.

16. Saeed AI, Bhagabati NK, Braisted JC, Liang W, Sharov V, et al. (2006) TM4
microarray software suite. Methods Enzymol 411: 134–193.

17. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, et al. (2000) Gene
ontology: tool for the unification of biology. The Gene Ontology Consortium.

Nat Genet 25: 25–29.

18. Beissbarth T, Speed TP (2004) GOstat: find statistically overrepresented Gene
Ontologies within a group of genes. Bioinformatics 20: 1464–1465.

19. Smyth GK (2004) Linear models and empirical bayes methods for assessing
differential expression in microarray experiments. Stat Appl Genet Mol Biol 3:

Article 3.

20. Rozen S, Skaletsky H, eds (2000) Primer3 on the WWW for general users and
for biologist programmers. Totowa, NJ: Humana Press. pp 365–386.

21. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the
comparative C(T) method. Nat Protoc 3: 1101–1108.

22. Sober S, Org E, Kepp K, Juhanson P, Eyheramendy S, et al. (2009) Targeting
160 candidate genes for blood pressure regulation with a genome-wide

genotyping array. PLoS One 4: e6034.

23. Adeyemo A, Gerry N, Chen G, Herbert A, Doumatey A, et al. (2009) A
genome-wide association study of hypertension and blood pressure in African

Americans. PLoS Genet 5: e1000564.
24. Senbonmatsu T, Saito T, Landon EJ, Watanabe O, Price E, Jr., et al. (2003) A

novel angiotensin II type 2 receptor signaling pathway: possible role in cardiac

hypertrophy. EMBO J 22: 6471–6482.
25. Schefe JH, Menk M, Reinemund J, Effertz K, Hobbs RM, et al. (2006) A novel

signal transduction cascade involving direct physical interaction of the renin/
prorenin receptor with the transcription factor promyelocytic zinc finger protein.

Circ Res 99: 1355–1366.
26. Schefe JH, Neumann C, Goebel M, Danser J, Kirsch S, et al. (2008) Prorenin

engages the (pro)renin receptor like renin and both ligand activities are

unopposed by aliskiren. J Hypertens 26: 1787–1794.
27. Cuadra AE, Shan Z, Sumners C, Raizada MK (2010) A current view of brain

renin-angiotensin system: Is the (pro)renin receptor the missing link? Pharmacol
Ther 125: 27–38.

28. Kc P, Dick TE (2010) Modulation of cardiorespiratory function mediated by the

paraventricular nucleus. Respir Physiol Neurobiol 174: 55–64.

29. Zingg HH, Lefebvre D, Almazan G (1986) Regulation of vasopressin gene

expression in rat hypothalamic neurons. Response to osmotic stimulation. J Biol

Chem 261: 12956–12959.

30. Silverthorn DU (2009) Human Physiology: An Integrated Approach. San

Francisco: Pearson Education.

31. Mack SO, Kc P, Wu M, Coleman BR, Tolentino-Silva FP, et al. (2002)

Paraventricular oxytocin neurons are involved in neural modulation of

breathing. J Appl Physiol 92: 826–834.

32. Michelini LC, Marcelo MC, Amico J, Morris M (2003) Oxytocinergic regulation

of cardiovascular function: studies in oxytocin-deficient mice. Am J Physiol

Heart Circ Physiol 284: H2269–2276.

33. Takahashi K, Hiraishi K, Hirose T, Kato I, Yamamoto H, et al. (2010)

Expression of (pro)renin receptor in the human brain and pituitary, and co-

localisation with arginine vasopressin and oxytocin in the hypothalamus.

J Neuroendocrinol 22: 453–459.

34. Bansinath M, Das S, Bhargava HN (1987) Spontaneously hypertensive rats

exhibit supersensitivity to the hypertensive and hyperthermic effects of

thyrotropin releasing hormone. Peptides 8: 227–230.

35. Landa MS, Garcia SI, Schuman ML, Burgueno A, Alvarez AL, et al. (2007)

Knocking down the diencephalic thyrotropin-releasing hormone precursor gene

normalizes obesity-induced hypertension in the rat. Am J Physiol Endocrinol

Metab 292: E1388–E1394.

36. Garcia SI, Pirola CJ (2005) Thyrotropin-releasing hormone in cardiovascular

pathophysiology. Regul Pept 128: 239–246.

37. Marques F, Campain A, Davern P, Yang Y, Head G, et al. (2011) Neurogenic

hypertension in young and adult Schlager hypertensive mice involves different

genes acting by similar mechanisms. (abstract) 32nd Annual Scientific Meeting

of the High Blood Pressure Research Council of Australia, Melbourne, Dec 1-3,

2010, 112 Hypertension 57: in press [Full manuscript submitted for publication].

38. Lalor SJ, Segal BM (2010) Lymphoid chemokines in the CNS. J Neuroimmunol

224: 56–61.

39. Marfella R, Siniscalchi M, Nappo F, Gualdiero P, Esposito K, et al. (2005)

Regression of carotid atherosclerosis by control of morning blood pressure peak

in newly diagnosed hypertensive patients. Am J Hypertens 18: 308–318.

40. Shirasaka T, Nakazato M, Matsukura S, Takasaki M, Kannan H (1999)

Sympathetic and cardiovascular actions of orexins in conscious rats.

Am J Physiol J Physiol Regul Integr Comp Physiol 277: R1780–1785.

41. Shirasaka T, Kunitake T, Takasaki M, Kannan H (2002) Neuronal effects of

orexins: relevant to sympathetic and cardiovascular functions. Regul Pept 104:

91–95.

42. Kayaba Y, Nakamura A, Kasuya Y, Ohuchi T, Yanagisawa M, et al. (2003)

Attenuated defense response and low basal blood pressure in orexin knockout

mice. Am J Physiol Regul Integr Comp Physiol 285: R581–593.

43. Zhang K, Mayhan WG, Patel KP (1997) Nitric oxide within the paraventricular

nucleus mediates changes in renal sympathetic nerve activity. Am J Physiol J Physiol

Regul Integr Comp Physiol 273: R864–872.

44. Yuen T, Wurmbach E, Pfeffer RL, Ebersole BJ, Sealfon SC (2002) Accuracy and

calibration of commercial oligonucleotide and custom cDNA microarrays.

Nucleic Acids Res 30: e48.

45. Head GA, Lukoshkova EV, Mayorov DN, van den Buuse M (2004) Non-

symmetrical double-logistic analysis of 24-h blood pressure recordings in

normotensive and hypertensive rats. J Hypertens 22: 2075–2085.

Genes for Circadian Hypertension

PLoS ONE | www.plosone.org 9 April 2011 | Volume 6 | Issue 4 | e19203


