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Conjugated microporous polymers (CMPs) with robust architectures, facilely tunable pore
sizes and large specific surface areas have emerged as an important class of porous
materials due to their demonstrated prospects in various fields, e.g. gas storage/
separation and heterogeneous catalysis. Herein, two new pyrrole-based CMPs with
large specific surface areas and good stabilities were successfully prepared by one-
step oxidative self-polycondensation of 1,2,4,5-tetra (pyrrol-2-ly)benzene or 1,3,5-tri
(pyrrol-2-ly)benzene, respectively. Interestingly, both CMPs showed very high catalytic
activity toward Knoevenagel condensation reaction, which was attributed to the inherent
pore channels, high specific surface areas and abundant nitrogen sites within CMPs.
Additionally, both CMPs displayed excellent recyclability with negligible degradation after
10 cycles. This work provides new possibilities into designing novel nitrogen-rich high-
performance heterogeneous catalysts.

Keywords: heterogeneous catalysis, pyrrole, knoevenagel condensation, conjugated microporous polymers,
photocatalysis

INTRODUCTION

Porous materials play significantly important roles in many fields of science and technology and have
resurged with great popularity within last two decades. This, in part, is due to the emerging several
kinds of unprecedented architectures with intriguing properties, e.g. metal-organic frameworks (Jiao
et al., 2019), covalent organic frameworks (Cote et al., 2005) and conjugated microporous polymers
(CMPs) (Cooper, 2009). CMPs are conjugated 2-dimensional or 3-dimensional polymers in contrast
to many other porous materials and therefore are rigid and shape-persistent. Different from COFs,
CMPs (Yue et al., 2020; Xu et al., 2021) are synthesized under kinetic control and are generally
amorphous; thereby CMPs are more stable and obtained easier than COFs due to the much more
kinds of reactions available for construction of CMPs, such as Sonogashira-Hagihara coupling
reaction (Jiang et al., 2007) and Buchwald-Hartwig coupling reaction (Liao et al., 2018). Besides
extended conjugation and high flexibility in structural design, CMPs also bear the merits of
permanent porosity and tunable pore sizes. These characteristics of CMPs confer them with
diverse potential applications (Lee and Cooper, 2020). For example, their π-conjugation has
endowed CMPs with abundant electronic properties which have been employed to develop
photocatalysts (Zhao et al., 2018) and light harvesting materials (Chen et al., 2010a). In
addition, CMPs also exhibit promising prospects in heterogeneous catalysis (Chen et al., 2010a;
Jiang et al., 2011), gas adsorption (Dawson et al., 2011; Lu et al., 2012), light emission (Xu et al., 2011),
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chemical sensors (Liu et al., 2012), energy storage (Kou et al.,
2011; Xu et al., 2014; Yue et al., 2020), and biosensing (Gu et al.,
2014; Ding and Han, 2015; Tan et al., 2015; Rengaraj et al., 2016).

Catalyst is an indispensable part of organic synthesis.
Unfortunately, thus far, many catalysts used in industry are
still non recyclable. For a sustainable future, developing
reusable heterogeneous catalysts is regarded as an
environmentally benign approach due to their easy separation
and cleaning processes after reactions (Sartori et al., 2004). In this
regard, porous materials, e.g. MOFs (Huang et al., 2020), COFs
(Zhao et al., 2020) and CMPs (Tantisriyanurak et al., 2020; Xu
et al., 2021) have been demonstrated as promising platforms to
develop recyclable heterogeneous catalysts in part due to their
large specific surface areas which could accommodate abundant
guest molecules and afford many nanoreactors. In particular,
researchers have been actively studying CMP-based
heterogeneous catalysts over the last decade due to their
insolubility in common organic solvents, high stability,
inherent porosity and tailor-made functionality through facile
structural design. For example, CMPs could serve as the
nanoporous scaffolds for metals support to mediate catalysis
(Schmidt et al., 2009; Chan-Thaw et al., 2010; Hasell et al.,
2010; Gu et al., 2014). In addition, CMPs could also function
as catalysts for various chemical transformations, e.g. CO2

reduction reaction (Hou et al., 2020), water splitting for
hydrogen production (Zhao et al., 2018), erobic oxidations
(Jiang et al., 2020), a-alkylation of aldehydes (Luo et al., 2015),
Knoevenagel condensation (Feng et al., 2017) and singlet oxygen
generation (Zhang et al., 2013). However, the cost-effective CMP
based heterogeneous catalysts with excellent catalytic
performances is still very rare. Thus, the development of CMP
based heterogeneous catalysts is highly desired and continuously
attracting growing research interests.

Pyrrole is a widely used monomer for constructing various
functional materials. For example, polypyrrole represents as one
of the state-of-the-art conductive polymer (Vernitskaya and
Efimov, 1997), and three-dimensional polypyrroles were
developed due to their enhanced performances in
supercapacitors, sensors, etc. compared with linear
polypyrroles. Porphyrin as a 4-fold pyrrole analog serves as a
versatile monomer to construct all kinds of architectures like
porphyrin-based belts (Minotto et al., 2021), polymers (Day et al.,
2015), MOFs (Zhang et al., 2015), COFs (Hao et al., 2019) and
CMPs (Chen et al., 2010b) for diverse applications. On account of
the many functions and broad prospects of pyrrole-based
materials, it is interesting to develop new kind of pyrrole-
based architectures and explore their properties and
applications. In this respect, even though several porphyrin-
based CMPs have been reported (Chen et al., 2010b; Modak
et al., 2013; Liu et al., 2014; Xu et al., 2019; Zhu et al., 2020), to the
best of our knowledge, pyrrole-based CMPs are very rare (Lee and
Cooper, 2020).

Herein, we designed and synthesized two new pyrrole-based
CMPs (TrPB-CMP and TePB-CMP) through a simple FeCl3-
oxidized self-condensation of multitopic pyrrole monomers
(Scheme 1). We further characterized the structures and
explored the properties of both CMPs with different

techniques and then evaluated their catalytic performances
toward Knoevenagel condensation reaction. Remarkably, both
CMPs exhibit excellent catalytic activity and show superior
recyclability.

EXPERIMENTAL

Synthesis of Pyrrole-Based Monomers and
CMPs
The corresponding pyrrole-based monomers, i.e. 1,3,5-tri
(pyrrol-2-ly) benzene and 1,2,4,5-tetra (pyrrol-2-ly) benzene
(Xue et al., 2019) (Scheme 1) were readily prepared by one-
step Suzuki coupling reaction between 1-(tert-butoxycarbonyl)-
pyrrole-2-boronic acid and 1,3,5-tribromobenzene or 1,2,4,5-
tetra-bromobenzene respectively (supporting information).
Subsequently, both CMPs were synthesized by oxidative self-
polymerization within chloroform at room temperature
(Supplementary, ESI).

RESULTS AND DISCUSSION

Structural Characterizations
The structures of both CMPs were characterized by Fourier
transform infrared (FT-IR) and solid-state 13C cross-
polarization magic angle spinning nuclear magnetic resonance
(CP-MAS NMR) spectroscopies. As for FT-IR spectra of both
pyrrole-based CMPs (Supplementary Figures S5, S6, ESI), the
bands between 3450 and 3200 cm−1 correspond to the stretching
vibrations of amino moieties (-NH-) originated from pyrroles
(Soliman et al., 2007; Mohamed et al., 2008; Karabacak and Cinar,
2012). In addition, the bands at 1250 cm−1 are attributed to the
-C-N- stretching vibrations (Zhang et al., 2004; Cai et al., 2011).
The peaks at 1408 cm−1 for both CMPs are assignable to the
stretching vibrations of -C�C- in the aromatic rings (Svatos and
Attygalle, 1997; Samran et al., 2004). 13CP-MAS NMR spectra
display broad signals between 100 and 140 ppm, which are
attributed to the carbon signals from pyrrole and benzene
rings (Supplementary Figures S13, S14, ESI) and the
positions of these peaks are also in accordance with those of
the monomers.

Properties of CMPs
The crystallinities of these polymers were determined by powder
X-ray diffraction (PXRD)measurements (Supplementary Figure
S10, ESI). Both materials show merely a broad diffraction band
between 15° and 35°, which suggests both TrPB-CMP and TePB-
CMP are amorphous in nature.

To gauge the thermal stabilities of the CMPs, thermal
gravimetric analysis (TGA) under nitrogen atmosphere were
carried out for both materials. The curves indicate that the
weights remain 97% for TrPB-CMP at 221°C and TePB-CMP
at 234°C respectively (Supplementary Figure S11, ESI), further
increasing the temperature renders rapid weight losses with 69%
of the initial weights at 800°C, which corresponds to the
degradation of the materials. To probe the photophysical

Frontiers in Chemistry | www.frontiersin.org May 2021 | Volume 9 | Article 6871832

Gao et al. Synthesis of Monomers and CMPs

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


FIGURE 1 | (A) SEM image of TrPB-CMP, (B) TEM image of TrPB-CMP, (C) SEM image of TePB-CMP and (D) TEM image of TePB-CMP.

SCHEME 1 | Synthetic routes for TrPB-CMP and TePB-CMP.
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properties of the CMPs, solid state diffuse reflectance UV-vis
spectra of the TrPB-CMP and TePB-CMP were measured
(Supplementary Figure S12, ESI). Both TrPB-CMP and
TePB-CMP exhibited broad absorption band centered at 572
and 526 nm, respectively, which is assignable to the π-π*
transitions of pyrrole-based conjugated networks within
CMPs. Remarkably, the absorption edges of both CMPs
extend to the short-wavelength infrared region (up to
2000 nm). Moreover, the morphologies of both microporous
polymers were investigated by field-emission scanning electron
microscopy (FE-SEM) and transmission electron microscopy
(TEM). SEM images reveal TrPB-CMP consists of
submicrometer-sized spheres while TePB-CMP is composed of
submicrometer-sized flakes (Figure 1). In addition, TEM images
show that the pore does not produce a specific texture which
verify the amorphous nature of both CMPs.

The porosities of CMPs were evaluated by nitrogen (N2)
sorption measurements. As shown in Figure 2, the nitrogen
adsorption rate is extremely fast in the low relative pressure
range, which indicates CMPs possess micropores. The hysteresis

loop appeared in the middle pressure range of N2 adsorption
curves indicates the existence of mesopores in CMPs (Thommes
et al., 2015). The Brunauer-Emmett-Teller (BET) specific surface
areas of TrPB-CMP and TePB-CMP were calculated as 810 and
800 m2g−1 respectively. The pore size distributions (PSDs) of
CMPs were computed based on the adsorption branch by
nonlocal density functional theory (NLDFT) method, which
showed the average pore sizes of TrPB-CMP and TePB-CMP
were around 1.53 and 0.80 nm respectively. Interestingly, the pore
size of TrPB-CMP obtained by theoretically modeling one
hexagonal segment (Supplementary Figure S18, ESI) was
around 1.51 nm, which was in good consistence with the
experimental result. While the pore size of TePB-CMP
obtained by theoretically modeling one hexagonal segment
(Supplementary Figure S19, ESI) was around 0.7 nm, which
was also close to the experimental result.

Catalytic Performances Toward
Knoevenagel Condensation
Considering the presence of weakly basic pyrrole moieties within
both CMPs, the CMPs might be used as heterogeneous catalysts
for base-catalyzed reactions which are extremely important in
catalyzing the synthesis of various small molecules for chemical
and pharmaceutical industries (Perryman et al., 2013; Volchkov
and Lee, 2013; Denmark et al., 2014). In this respect, base-
catalyzed Knoevenagel condensation was selected as the model
reaction to evaluate the catalytic activity of both CMPs.
Knoevenagel condensation as a well-known and powerful
reaction to formulate -C�C- bonds, exhibits broad applications
in producing natural products, fine chemicals and
pharmaceuticals (Knoevenagel and Dtsch, 1898; Khare et al.,
2019). Recently, some representative exploratory researches on
Knoevenagel condensation with porous materials as the catalysts
were reported including benzimidazole-based porous organic
polymers (Wang et al., 2015), 3D imine-linked COF (Fang
et al., 2014), and porphyrin-based porous polymer (Modak
et al., 2013).

Various reaction substrates were used to test the catalytic
activities of the CMP catalysts under classical reaction conditions
(Wang et al., 2015; Taher et al., 2020). In addition, the reaction
temperature, solvent and reaction temperature were investigated
in details to find the best conditions for the reaction
(Supplementary Table S2, ESI). The yields of the substrates in
the Knoevenagel condensation reaction were summarized in
Table 1. As displayed in Table 1, remarkably, the reactions
were completed after 1 h and the yields for all substrates
under the catalysis of CMPs were quite high, which was much
higher than that without addition of CMPs (44%)
(Supplementary Table S3, entry 1, ESI). As for benzaldehydes
with strong electron-withdrawing substituents in the para-
position, the catalytic efficiency of both TrPB-CMP and TePB-
CMP are basically the same with nearly quantitative conversions
(entries 4, 5). The catalytic effects of both CMPs proved to be
obviously different when the electron-withdrawing strength of
the para-substituent on benzaldehyde was weakened (entries 2
and 3). It suggests TrPB-CMP renders higher conversions than

FIGURE 2 | Nitrogen adsorption and desorption isotherms of TrPB-
CMP (A) and TePB-CMP (B) and simulated pore size distributions of CMPs
(insets) at 77 K.
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TePB-CMP for the benzaldehyde substrates, which is probably
due to more adequate interactions between the substrates and
the basic sites within the pores of TrPB-CMP than those of
TePB-CMP rendered by the bigger pore size of TrPB-CMP
(entries 1 and 2). Moreover, for larger size molecules, there is a
significant difference in catalytic efficiency, probably because
the steric hindrance of the larger substrate molecules is not

conducive to entering the micropores (entry 7). When using
benzaldehyde substrates with electron-donating substituents,
the catalytic yields of both TrPB-CMP and TePB-CMP were
lower (entries 8 and 9). In addition, compared with the results
reported in the previous literatures, the reaction conditions of
the current work have advantages over others, e.g., metal-free
catalysis and shorter reaction time (Supplementary Table
S4, ESI).

To illustrate the high catalytic performance and gain further
insights into the catalytic mechanism, additional comparison
experiments were performed to evaluate the catalytic activity
of pyrrole-based small molecules, i.e. TrPB and TePB (Scheme 1)
and linear polypyrrole toward Knoevenagel condensation under
the same conditions as those of CMPs. As shown in
Supplementary Table S3, the catalytic activity of TrPB, TePB
and polypyrrole was not obvious, which was similar to without
any catalyst. Consequently, compared with non-porous
analogues, the open porous structure allows the reactants to
easily enter the catalytic center. In addition, the larger the
specific surface area of the pore, the better the catalytic
performance. Due to the high specific surface area and
microporous character, benzimidazole-based CMPs (BPOP-1
and BPOP-2) was favorable for the accessibility of substrates
to catalytic active sites inside the framework (Wang et al., 2015),
which make the heteroatoms on the pore wall fully exhibit
catalytic activity. Moreover, Similar pore restriction effects also
appeared in other catalytic reactions (Mackintosh et al., 2008; Hu
et al., 2020; Yang et al., 2020).

As for testing the rates of the reactions, p-nitrobenzaldehyde
was used as the substrate which catalyzed by both TrPB-CMP and

TABLE 1 | Catalytic activities of TrPB-CMP or TePB-CMP toward Knoevenagel condensation with different aromatic aldehyde substrates.

Entry R Substrates Product Yield (%)a

TrPB-CMP TePB-CMP

1 H 74 66

2 Br 79 74

3 OH 95 89

4 NO2 99 99

5 CN 99 99

6 C(CH3)3 7 6

7 Ph 41 18

8 CH3 36 23

9 OCH3 17 12

aReaction conditions: A (1 mmol), B (1.1 mmol), TrPB-CMP or TePB-CMP (0.1 mmol), H2O (0.5 ml), toluene (1.5 ml). All reaction yields were obtained by the results of GC-MS.

FIGURE 3 | Recyclability of TrPB-CMP (blue) and TePB-CMP (red) as
catalysts with p-nitrobenzaldehyde as the substrate.
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TePB-CMP (Supplementary Figures S15, S16, ESI). The results
suggested the substrates are quickly converted into the products
within 30min for both CMP-catalyzed reactions and reached the
maximum conversion within 1 h. The conversion rate of TrPB-
CMP is faster than that of TePB-CMP, which was probably
benefited from the bigger pore size and specific surface area of
TrPB-CMP. As to the recyclability of both CMP catalysts, as shown
in Figure 3, the catalytic activities of both CMPs are basically
unchanged within 10 cycles. After 10 cycles, FT-IR spectra of both
recycled CMPs appeared the same as those of the pristine CMPs,
which suggests the structures of both CMPs are robust and intact
(Supplementary Figures S7, S8, ESI). In addition, after 10 cycles,
the N2 adsorption tests indicated the BET specific surface areas of
TrPB-CMP and TePB-CMP were 800 and 781 m2g−1, respectively,
both of which were only slightly decreased compared with those of
the pristine CMPs (Supplementary Figures S17, ESI).
Consequently, it reveals both CMPs serve as efficient
heterogeneous catalysts with excellent recyclability.

CONCLUSION

In summary, two new pyrrole-based conjugated microporous
polymers were successfully synthesized by self-polymerization of
1,3,5-tri-(pyrrol-2-ly)benzene or 1,2,4,5-tetra (pyrrol-2-ly)
benzene. These two CMPs effectively catalyzed Knoevenagel
condensation reaction with diverse substrates and showed
excellent recycling performance, which was attributed to the
open pore channels, large specific surface area and abundant
heteroatoms as active sites within CMPs. This work suggests a

new approach to fabricate pyrrole-based heterogenous catalysts.
Additionally, both CMPs exhibit broad absorptions between 250
and 2400 nm, which might promise application potentials in
photocatalysis.
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