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X-derived retrogenes contribute to genetic diversity in evolution and are usually
specifically expressed in testis and perform important functions during spermatogenesis.
Ubl4b is an autosomal retrogene with testis-specific expression derived from Ubl4a,
an X-linked housekeeping gene. In the current study, we performed phylogenetic
analysis and revealed that Ubl4a and Ubl4b are subject to purifying selection and
may have conserved functions in evolution. Ubl4b was knocked out in mice using
CRISPR/Cas9 genome editing technology and interestingly, we found no alterations
in reproductive parameters of Ubl4b−/− male mice. To get insights into whether
Ubl4a could compensate the absence of Ubl4b in vivo, we further obtained Ubl4a−/Y ;
Ubl4b−/− mice that lack both Ubl4a and Ubl4b, and the double knockout (dKO)
mice also displayed normal spermatogenesis, showing that Ubl4a and Ubl4b are both
dispensable for spermatogenesis. Thus, through the in vivo study of UBL4A and UBL4B,
we provided a direct evidence for the first time that some X chromosome-derived
autosomal retrogenes can be unfunctional in spermatogenesis, which represents an
additional evolutionary type of X-derived retrogenes.

Keywords: X chromosome, retrogene, evolution, Ubl4a, Ubl4b, spermatogenesis

INTRODUCTION

Biological diversity depends upon the possible emergence of duplicate genes in the genome of
organisms, and is also related with the changes in gene regulatory pathways (Gu et al., 2004;
Johnson et al., 2007; ENCODE Project Consortium, 2012; Stunnenberg et al., 2016; Roundtree
et al., 2017). Among the several mechanisms of procreating new genes, retroposition has been
considered as one of the important mechanisms in diverse species (Long et al., 2003; Wang et al.,
2006; Bai et al., 2007). Retroposition refers to the process where reverse transcriptase converts
mRNAs of progenitor genes into DNAs followed by integration into the genome to generate
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retrogenes (Schrader and Schmitz, 2019). Retrogenes show
diverse movement patterns because of their different genomic
positions compared with progenitor genes, which contributes
to genetic diversity in evolution (Dai et al., 2006; Schrader and
Schmitz, 2019).

Emerging data reveal that 14 out of 20 retrogenes derived
from 16 X-linked progenitor genes are specifically expressed in
testis (Wang, 2004). During meiosis, most X-linked genes become
transcriptionally silenced because of meiotic sex chromosome
inactivation (MSCI), and their functions can be compensated
by corresponding retrogenes (Wang, 2004; Turner, 2015). We
previously demonstrated that the X-linked gene RPL10, encoding
a ribosomal protein, and its autosomal paralog RPL10L can
functionally compensate for each other in vitro and in vivo
(Jiang et al., 2017). The majority of the retrotransposed genes are
inactivated and become pseudogenes, and some of the retrogenes
perform important functions during male meiosis (Schrader
and Schmitz, 2019). For example, the knockout of the well-
known testis-specific retrogenes, such as Cetn1, Cstf2t, Pgk2 and
Rpl10l, can result in spermatogenic failure (Dass et al., 2007;
Danshina et al., 2010; Tardif et al., 2010; Avasthi et al., 2013;
Jiang et al., 2017).

Generally, ubiquitin-like (UBL) proteins modify their target
substrates and may have important functions in spermatogenesis
(Schwartz and Hochstrasser, 2003). As a member of the UBL
proteins, Ubl4b is also an autosomal retrogene with testis-
specific expression derived from Ubl4a. Ubl4a (NM_145405)
maps to X chromosome and is ubiquitously expressed in
different tissues (Wang et al., 2012), hence regarded as a
housekeeping gene. It exerts a significant effect in protein
metabolism and the maintenance of cellular homeostasis. For
example, UBL4A can maintain the innate immune response
through positively regulating NF-κB signaling in dendritic
cells and macrophages (Liu et al., 2019). It also plays
an antitumor role on autophagy-related proliferation and
metastasis in pancreatic ductal adenocarcinoma by directly
targeting LAMP1 (Chen et al., 2019a). Intriguingly, Ubl4a
knockout (KO) mice were viable and during 6 months
after the birth, no obvious abnormality was observed in the
development and growth (Wang et al., 2012). What’s more,
single knockout of Ubl4a does not affect spermatogenesis and
fertility in mice, suggesting a possible compensatory role by
the Ubl4b retrogene (Wang et al., 2012). However, the role
of Ubl4b and its relationship with Ubl4a are still needed
to be elucidated.

Thus, the current study was focused to investigate in vivo
function of evolutionarily conserved Ubl4b gene by generation
of knockout mice. We also obtained double mutant mice
that lack both Ubl4a and Ubl4b to get insights into the
association of Ubl4a and Ubl4b in vivo. Interestingly, we
found no alterations in reproductive parameters of Ubl4b−/−

male mice, and Ubl4a−/Y ; Ubl4b−/− mice also displayed
normal spermatogenesis. Thus, Ubl4a and Ubl4b are both
dispensable for spermatogenesis through the in vivo study,
which provided a direct evidence for the first time that some X
chromosome-derived autosomal retrogenes can be unfunctional
in spermatogenesis.

MATERIALS AND METHODS

Phylogenetic Analysis and Selection
Analysis of UBL4A and UBL4B
Entire coding nucleotide and amino acid sequences of UBL4A
and UBL4B in different vertebrates were downloaded from
National Center for Biotechnology Information (NCBI).
UBL domain-based protein sequences were extracted from
UniProt database. The alignments were performed using the
online software MultAlin1. The phylogenetic construction was
performed on MEGA 6.06 software with the following workflow:
Muscle was used for the alignment of entire coding nucleotide
sequences of UBL4A and UBL4B in different eukaryotic
species with default settings (Edgar, 2004). Phylogenetic trees
were constructed by the Neighbor-joining (NJ) method. The
parameters used for the tree construction include phylogeny
test (bootstrap method with 1,000 replicates), substitutions type
(nucleotide), model/method (maximum composite likelihood),
substitutions (transitions and transversions), rates among sites
(uniform rates), pattern among lineages (same/homogeneous),
gaps/missing data treatment (complete deletion), and codon
positions (1st, 2nd, 3rd and non-coding sites). To investigate
whether UBL4A and UBL4B genes have undergone statistically
significant differences in selection pressures, we employed the
branch model in the CodeML program using the phylogenetic
analysis by maximum-likelihood (PAML) software version 4.4
with default settings.

Mouse Models
CRISPR/Cas9 technology was utilized to make Ubl4b mutant
mice as we described previously (Wang et al., 2013). The
following sequence 5′TCAGCACCTACAGGTGCCCG3′ was
designed to target the exon 1 of Ubl4b. Sanger sequencing of toe
biopsies was carried out and heterozygous founder mice were
bred to obtain homozygous mice. All mice were nourished with
proper food and ddH2O, and kept in definite photoperiod (lights
on 08:00–20:00). All animal experiments were approved by the
Institutional Animal Care Committee of the University of Science
and Technology of China. Primers that were used for genotyping
are listed in Supplementary Table 1.

Western Blot
Testes from 10-week-old mice were homogenized in lysis buffer
(50 mM Tris, pH 7.5, 150 mM NaCl, 0.5% Triton X–100,
5 mM EDTA and 1 mM Na3VO4) containing protease inhibitors
(Roche). Western blot was carried out as described previously
(Jiang et al., 2014). The primary antibodies are rabbit anti-β-
actin (Abcam, ab8227; 1:3,000), rabbit anti-UBL4A (Yang et al.,
2007) and rabbit anti-UBL4B (Yang et al., 2007). The secondary
antibody is HRP-conjugated donkey anti-rabbit IgG (BioLegend,
406401; 1:10,000).

Fertility Test
To check the fertility status, each 10-week-old male mouse was
mated with two 8-week-old wild-type (WT) females (C57BL/6J)

1http://multalin.toulouse.inra.fr/multalin/multalin.html
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for 3 months. All the females were monitored for pregnancy.
Dates of birth, numbers of pups and offspring sex ratios were
recorded for all the litters.

Hematoxylin and Eosin (H&E) Staining
Adult mice at 10 weeks old were sacrificed, then their testes and
epididymides were detached immediately and fixed overnight
in Bouin’s solution. Further H&E staining was carried out
as explained previously (Jiang et al., 2015). To reduce the
experimental variations, all these procedures were performed
simultaneously in WT and KO mice.

Sperm Analysis
For sperm counting, epididymides were removed and chopped
into small pieces. After incubation at 37◦C for 30 min,
a hemocytometer was used for cell counting. For sperm
morphology, smear slides were analyzed by H&E staining. The
percentages of morphologically normal sperm were quantified
with at least 400 sperm examined for each mouse. For sperm
motility, cauda epididymides from 10-week-old mice were
collected and sperm were incubated in human tubal fluid (HTF)
media (Millipore) supplemented with 10% FBS at 37◦C for
5 min. Sperm samples were diluted and analyzed using Hamilton
Thorne’s Ceros II system.

Statistical Analysis
Student’s t-test was performed to statistically compare the
teste/body weight ratios, litter sizes, and sperm parameters.
Results were presented as mean ± SEM from at least three mice
for each group and p < 0.05 was considered significant.

RESULTS

Conserved Evolution of UBL4A and Its
Retrogene UBL4B
To explore the origin of UBL4A and UBL4B individually, the
genetic relationships among various organisms were included.
Since it has been previously reported that retroposition of Ubl4b
probably occurred at least 170 million years ago, prior to the
radiation of therian mammals (Yang et al., 2007), we collected
detailed information (Taxonomy ID, Organism name, Gene ID,
Chromosome and Exon count) of UBL4A and UBL4B among
vertebrates from NCBI database (Supplementary Table 2). We
found that UBL4A genes are detected in vertebrates such as fishes,
amphibians, reptiles, birds and mammals, while UBL4B members
are only present in reptiles and mammals (Supplementary
Table 2). Almost the half of the UBL4A genes are located on
X chromosomes with four exons, while most of the UBL4B
genes exist on autosomes with only one exon (Supplementary
Table 2). The entire coding nucleotide and amino acid sequences
of UBL4A and UBL4B among vertebrates were downloaded
from NCBI database. Multiple sequence alignments of the entire
coding nucleotide and amino acid sequences revealed a high
similarity in UBL4A and UBL4B (Supplementary Figures 1–
4). In particular, amino acid sequence alignments from UBL

domains of UBL4A and UBL4B in various organisms showed a
higher similarity (Figures 1A,B). Phylogenetic trees were then
constructed based on entire coding nucleotide sequences of
UBL4A and UBL4B using MEGA 6.06 software and NJ method,
and further revealed that UBL4A and UBL4B among vertebrates
may derive from the corresponding ancestral genes, respectively
(Figures 1C,D). Thus, these results based on sequence and
phylogenetic analysis indicated that UBL4A and UBL4B are
conserved in vertebrates.

To trace the evolution of UBL4A and UBL4B, we performed
phylogenetic analysis on UBL4A and UBL4B among vertebrates
simultaneously and found that UBL4A and UBL4B may originate
from a common ancestral gene (Figure 2). Furthermore, UBL4A
and UBL4B in mammalian vertebrates notably gather together,
respectively, in the phylogenetic tree (Figure 2). To better
understand which selection UBL4A and UBL4B underwent in the
course of evolution, we utilized the branch model in the CodeML
program for the phylogenetic analysis with PAML software 4.4.
The non-synonymous substitution per non-synonymous site
(dN)/synonymous substitution per synonymous site (dS), termed
as the ω value, indicates the nature of selective forces. We
defined the phylogeny of UBL4A in mammalian vertebrates as
a foreground branch, the other phylogenies as a background
branch, and calculated ω and p-values (Figure 2). The ω and
p-values for above group were 0.07033 and 0.00067, showing
that the branch of UBL4A in mammalian vertebrates evolves
under purifying selection. Similarly, we defined the phylogeny
of UBL4B in mammalian vertebrates as a foreground branch,
the other phylogenies as a background branch, and figured
ω and p-values (Figure 2). The ω and p-values for this
group were 0.00303 and 0.00204, revealing that the branch of
UBL4B in mammalian vertebrates is under strong purifying
selection process in evolution. Thus, these results suggested
that UBL4A and UBL4B may have conserved functions in the
course of evolution.

Ubl4b Is Dispensable for Male Fertility
and Spermatogenesis
In order to investigate the function of Ubl4b in vivo, we
generated Ubl4b knockout mice using CRISPR/Cas9 technology
(Supplementary Figure 5A). The knockout of Ubl4b was
firstly validated by a large deletion at the genomic DNA level
(Supplementary Figure 5B). Sanger sequencing confirmed an 80
base pairs (bp) deletion in Ubl4b, which introduced a frameshift
mutation at amino acid 13 (Supplementary Figure 5C). Then,
Western blot confirmed a complete absence of UBL4B protein in
Ubl4b−/− testis, which further confirmed the successful deletion
of Ubl4b in our gene modified mice (Figure 3A).

Ubl4b−/− mice were outward normal, and showed normal
growth and development similar to their WT littermates.
Subsequently, the fertility status was analyzed by keeping WT
and Ubl4b−/− male mice with WT females, respectively. The
statistical analysis showed that the Ubl4b−/− male mice had
comparable number of pups per litter and offspring sex ratios to
the WT group, which suggested that the deficiency of Ubl4b does
not affect male fertility (Table 1).
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FIGURE 1 | UBL4A and its retrogene UBL4B are evolutionarily conserved. (A,B) Amino acid sequence alignments of UBL domains in UBL4A (A) and UBL4B (B)
from various organisms. Residues that are identical appear in red and as uppercase letters in the consensus line. Residues highly similar are indicated by red
symbols (!, any one of I and V;%, any one of F and Y; #, any one of N, D, Q, E, B, and Z). Unconserved residues are written in blue or as asterisks in the consensus
line. (C,D) The phylogenetic trees based on entire coding nucleotide sequences of UBL4A (C) and UBL4B (D) in various organisms. The bootstrap confidence
values of nodes are displayed.

To determine the possible role of Ubl4b in spermatogenesis,
we firstly analyzed the testes from adult WT and Ubl4b−/−

mice and found no any noteworthy between-group difference
in the testis morphology and testes to body weight ratios
(Figures 3B,C). Moreover, the histology of testes by H&E
staining revealed intact seminiferous tubule architecture along
with the presence of all types of germ cells from spermatogonia

to spermatozoa in Ubl4b−/− mice (Figure 3D). Additionally,
the cauda epididymides of adult Ubl4b−/− mice were filled
with abundant mature spermatozoa (Figure 3E). Unilateral
epididymal sperm from adult WT and Ubl4b−/− mice were
counted and statistical analysis showed that there is no significant
difference (Figure 3F). Then we further compared the sperm
parameters of WT and Ubl4b−/− mice. Epididymal sperm from
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FIGURE 2 | Purifying selection of UBL4A and UBL4B in various organisms. The phylogenetic tree based on entire coding nucleotide sequences of UBL4A and
UBL4B in various organisms. The number on the branch shows the ω value. The ω values refer to the non-synonymous substitution per non-synonymous site
(dN)/synonymous substitution per synonymous site (dS). The bootstrap confidence values of nodes are also displayed.

adult Ubl4b−/− mice displayed normal morphology, similar to
that of WT mice (Figures 3G,H). Furthermore, we did not
observe any remarkable difference in sperm motility between

adult WT and Ubl4b−/− mice (Figures 3I,J). Taken altogether,
these findings suggested that Ubl4b is not required for normal
fertility and spermatogenesis in mice.
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FIGURE 3 | Spermatogenesis in Ubl4b knockout mice. (A) Western blot analysis of UBL4B expression in testes from 10-week-old WT and Ubl4b−/− mice. β-Actin
was used as the loading control. (B) Representative image of testes from 10-week-old WT and Ubl4b−/− mice. (C) Ratios of testes to body weight were determined
from 10-week-old WT and Ubl4b−/− mice. (D) H&E staining of testes from 10-week-old WT (a,b) and Ubl4b−/− (c, d) mice. Scale bars, 50 µm. (E) H&E staining of
caput and cauda epididymides from 10-week-old WT (a, b) and Ubl4b−/− (c,d) mice. Scale bars, 50 µm. (F) Average sperm count in unilateral epididymis from
10-week-old WT and Ubl4b−/− mice. (G) H&E staining of sperm in cauda epididymides from 10-week-old WT and Ubl4b−/− mice. Scale bars, 20 µm. (H)
Percentages of sperm with normal morphology were shown. (I,J) Percentages of motile sperm (I) and progressively motile sperm (J) from 10-week-old WT and
Ubl4b−/− mice. n, the number of animals. The data shown were represented as the mean ± SEM. Student’s t-test was performed between WT and Ubl4b−/−

mice. NS, no significant difference.

TABLE 1 | Fertility assay.

Genotype Mating period (months) No. of fertile males/No. of mice tested Average pups/litter Offspring sex ratio (% males)

WT 3 3/3 7.80 ± 0.32 0.49 ± 0.12

Ubl4b−/− 3 3/3 8.05 ± 0.46NS 0.50 ± 0.08NS

Each male was engaged with two WT females. Student’s t-test was used for comparison of average pups/litter and offspring sex ratios (% males) between WT and
Ubl4b−/− mouse groups. NS, no significant difference. Data were presented as mean ± SEM.
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Double Knockout of Ubl4a and Ubl4b
Has No Effect on Fertility and
Spermatogenesis
As Ubl4b−/− mice showed normal fertility and spermatogenesis,
we hypothesized that Ubl4a and Ubl4b may be functionally
redundant. In order to investigate the functions of these two
genes in vivo, we crossed Ubl4a−/Y mice with Ubl4b−/− female
mice (Wang et al., 2012). After two generations of breeding, we
obtained desired Ubl4a−/Y ; Ubl4b−/− mice. The genotypes of
Ubl4a−/Y ; Ubl4b−/− mice were firstly verified on genomic level
(Supplementary Figure 6). Then, the observation of complete
absence of both UBL4A and UBL4B proteins in Ubl4a−/Y ;
Ubl4b−/− testes confirmed the successful deletion of Ubl4a and
Ubl4b simultaneously (Figure 4A).

After the confirmation of successful generation of Ubl4a−/Y ;
Ubl4b−/− mice, we assessed the fertility of WT and dKO males.
Mice lacking both Ubl4a and Ubl4b showed normal growth
and development. The average pups per litter and offspring sex
ratios of adult Ubl4a−/Y ; Ubl4b−/− mice were not significantly
different from those in WT group (Table 2).

The testis morphology and testes to body weight ratios of adult
Ubl4a−/Y ; Ubl4b−/− mice did not exhibit notable difference
from those of WT group (Figures 4B,C). Subsequently,
histological analysis showed normal spermatogenesis in
seminiferous tubules and abundant sperm in epididymides
of Ubl4a−/Y ; Ubl4b−/− mice (Figures 4D,E). Epididymal
sperm count did not significantly differ between adult WT
and Ubl4a−/Y ; Ubl4b−/− mice (Figure 4F). Moreover, sperm
morphology was analyzed by H&E staining and we found no
obvious difference between adult WT and Ubl4a−/Y ; Ubl4b−/−

mice (Figures 4G,H). Additionally, sperm motility of adult
WT and Ubl4a−/Y ; Ubl4b−/− mice was indistinguishable
from each other (Figures 4I,J). Altogether, these data strongly
demonstrated that the simultaneously deletion of Ubl4a
and its retrogene, Ubl4b, did not affect male fertility and
spermatogenesis in mice.

DISCUSSION

The mammalian genome contains various retrotransposed genes
and most of them are transcriptionally silent (Venter et al.,
2001; Brosius, 2019). Here we showed that Ubl4a and Ubl4b
are subject to purifying selection in phylogenetic analysis
and may have conserved functions in evolution. In order
to determine the functional role of testis-specific X-derived
retrogene Ubl4b in mice, we generated a knockout mouse
line by CRISPR/Cas9 technology and found no alternations in
reproductive parameters. Subsequently, to explore the possibility
of compensation by the ubiquitously expressed Ubl4a gene,
we further produced double mutant mice lacking both Ubl4a
and Ubl4b genes. Interestingly, adult Ubl4a−/Y ; Ubl4b−/− mice
also displayed normal fertility and spermatogenesis, showing
dispensable roles of both genes in mouse reproduction.

During male meiosis, most of the X-linked genes are
transcriptionally silent due to formation of heterochromatin XY

body and the functions of these genes can be compensated
by their corresponding autosomal retrogenes so that
spermatocytes can complete meiosis (Richler et al., 1994;
Turner et al., 2002). The expression profile indicates that
Ubl4a transcription is transiently silenced during MSCI,
while Ubl4b mRNA could be detected from pachytene stage,
indicating that Ubl4b may compensate the silence of Ubl4a
in MSCI (Yang et al., 2007). Previously knockout of such
types of retrogenes, including Cetn1, Cstf2t, Pgk2 and Rpl10l,
always resulted in spermatogenic abnormalities and male
infertility (Dass et al., 2007; Danshina et al., 2010; Tardif
et al., 2010; Avasthi et al., 2013; Jiang et al., 2017). However,
the deletion of either Ubl4a or Ubl4b in mice showed no
overt abnormalities in spermatogenesis and fertility (Wang
et al., 2012). What is more, the mice with dKO of Ubl4a
and Ubl4b also displayed normal spermatogenesis with no
obvious alternation in fertility status. Thus, our unexpected
results revealed that both genes have no roles in fertility and
spermatogenesis.

Several hypotheses have been described about the evolution
and function of retrogenes in mammals. One of them is the
compensation hypothesis of X-derived retrogenes, for example,
we previously demonstrated that the X-linked gene RPL10,
encoding a ribosomal protein, and its autosomal paralog RPL10L
can functionally compensate for each other (Jiang et al.,
2017). Another hypothesis about retrogene evolution is the
specialization hypothesis in which many X-originated retrogenes
have evolved novel functions to meet the special needs of
germ cells. This is supported by different mechanisms including
alternative splicing, polyadenylation and apoptosis in somatic
and germ cells, and the obvious examples of genes are hnRNPG-
T, CSTF2T, and BIRC8 (Elliott et al., 2000; Richter et al., 2001;
Dass et al., 2002; Grozdanov et al., 2018; Bousoik et al., 2019;
Zhou et al., 2019; Yan et al., 2021). RBMX protein has been
implicated in splice site selection, and RBMX-derived retrogene
product, hnRNPG-T, could be specialized in alternative splicing
in germ cells (Elliott et al., 2000; Zhou et al., 2019; Yan et al., 2021).
CSTF2T could function in the non-canonical polyadenylation of
mRNAs in germ cells (Dass et al., 2002; Grozdanov et al., 2018).
Another well-known hypothesis regarding X-derived retrogenes
is the haploid syncytium hypothesis based on non-equality of sex
chromosomes in haploid germ cells and this disequilibrium is
fulfilled by the presence of “back up” autosomal retrogenes (Dahl
et al., 1990; Casola and Betran, 2017). An explanatory example
of this hypothesis is that G6pd2, a spermatid specific expressed
gene, is considered as a “back up” gene for equal amount of its
product for both X and Y bearing spermatids (Hendriksen et al.,
1997; Homolka et al., 2011). In addition, the possession of novel
adjacent sequences in the form of untranslated regions (UTRs)
to attain a special regulatory mechanism was put forward to
explain the emergence of retrogenes from X chromosomes (Shiao
et al., 2007). The function and evolution of these autosomal
retrogenes derived from X-linked genes might be unrelated with
MSCI during male meiosis and an explanatory example is that
CHML, an ubiquitous expressed gene, has been reported to have
function in cancer but not in reproduction (Chen et al., 2019b).
However, none of these hypotheses can explain the observation
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FIGURE 4 | Spermatogenesis in Ubl4a and Ubl4b double knockout mice. (A) Western blot analysis of UBL4A and UBL4B expression in testes from 10-week-old
WT and Ubl4a−/Y ; Ubl4b−/− mice. β-Actin was used as the loading control. (B) Representative image of testes from 10-week-old WT and Ubl4a−/Y ; Ubl4b−/−

mice. (C) Ratios of testes to body weight were determined from 10-week-old WT and Ubl4a−/Y ; Ubl4b−/− mice. (D) H&E staining of testes from 10-week-old WT
(a,b) and Ubl4a−/Y ; Ubl4b−/− (c,d) mice. Scale bars, 50 µm. (E) H&E staining of caput and cauda epididymides from 10-week-old WT (a,b) and Ubl4a−/Y ;
Ubl4b−/− (c,d) mice. Scale bars, 50 µm. (F) Average sperm count in unilateral epididymis from 10-week-old WT and Ubl4a−/Y ; Ubl4b−/− mice. (G) H&E staining
of sperm in cauda epididymides from 10-week-old WT and Ubl4a−/Y ; Ubl4b−/− mice. Scale bars, 20 µm. (H) Percentages of sperm with normal morphology were
shown. (I,J) Percentages of motile sperm (I) and progressively motile sperm (J) from 10-week-old WT and Ubl4a−/Y ; Ubl4b−/− mice. n, the number of animals. The
data shown were represented as the mean ± SEM. Student’s t-test was performed between WT and Ubl4a−/Y ; Ubl4b−/− mice. NS, no significant difference.

TABLE 2 | Fertility assay.

Genotype Mating period (months) No. of fertile males/No. of mice tested Average pups/litter Offspring sex ratio (% males)

WT 3 3/3 7.60 ± 0.23 0.52 ± 0.09

Ubl4a−/Y ; Ubl4b−/− 3 3/3 7.91 ± 0.56NS 0.56 ± 0.08NS

Each male was engaged with two WT females. Student’s t-test was used for comparison of average pups/litter and offspring sex ratios (% males) between WT and
Ubl4a−/Y ; Ubl4b−/− mouse groups. NS, no significant difference. Data were presented as mean ± SEM.
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that both X-linked Ubl4a and its autosomal retrogene, Ubl4b are
dispensable in spermatogenesis.

In the current study, we found Ubl4a and Ubl4b double
knockout mice evinced normal fertility and spermatogenesis
similar to Ubl4a and Ubl4b single knockout mice, which does
not support the existing hypotheses for X-derived retrogenes.
We deduce that the evolutionarily conserved Ubl4a and Ubl4b
genes may initially have essential functions in spermatogenesis,
but are no longer required during evolution. On the other hand,
it is also plausible that Ubl4b may be derived from insertion
of Ubl4a mRNA into autosomal genomes by accident, which
did not lead to any deleteriousness and thus was kept during
evolution or has not yet begun its degeneration to oblivion.
What is more, Ubl4b and Ubl4b may be hitchhiked by other
genes under purifying selection in the genome. For example,
Ubl4a is close to mouse Slc10a3, while Ubl4b is near Slc6a17, in
which both Slc10a3 and Slc6a17 are regarded as housekeeping
genes that play important functions in many biological processes.
Alternatively, a few substitutions are sufficient to acquire a new
function, and UBL4A and UBL4B may have obtained some
important functions that is not related to male fertility. Thus, we
propose a new “junk” hypothesis that some autosomal retrogenes
derived from X-linked progenitor genes may not have functions
in spermatogenesis, which is supported by the in vivo study of
Ubl4a and Ubl4b. In future, more intensive and sophisticated
studies are needed to reinforce this hypothesis by other groups of
X-linked genes and autosomal counterparts. Additionally, all the
examinations were performed under normal laboratory mating
conditions and challenging the UBL system in mice, such as a
toxicology study, deserves further consideration.

CONCLUSION

We generated Ubl4b−/− and Ubl4a−/Y ; Ubl4b−/− mice which
displayed normal fertility and spermatogenesis, proposing that
both X-linked Ubl4a and its autosomal counterpart Ubl4b are not
necessary for male fertility and providing the first direct evidence
for the “junk” hypothesis regarding X-derived retrogenes.
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