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Abstract

When one drug influences the level or activity of another drug this is known as a drug-drug interaction (DDI). Knowledge of
such interactions is crucial for patient safety. However, the volume and content of published biomedical literature on drug
interactions is expanding rapidly, making it increasingly difficult for DDIs database curators to detect and collate DDIs
information manually. In this paper, we propose a single kernel-based approach to extract DDIs from biomedical literature.
This novel kernel-based approach can effectively make full use of syntactic structural information of the dependency graph.
In particular, our approach can efficiently represent both single subgraph topological information and the relation of two
subgraphs in the dependency graph. Experimental evaluations showed that our single kernel-based approach can achieve
state-of-the-art performance on the publicly available DDI corpus without exploiting multiple kernels or additional domain
resources.
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Introduction

In general, a DDI occurs when one drug influences the level or

activity of another drug. These DDIs in many ways affect the

overall effectiveness of the drug and can sometimes pose a risk of

serious side effects to patients [1,2]. Therefore, the detection of

DDIs is crucial for both patient safety and health care cost control.

Although health care professionals are supported by different DDI

databases, the update periods of these databases are generally

three years. Therefore, these databases are rarely complete [3].

Since drug interactions are frequently reported in clinical

pharmacology journals and technical reports, a major source of

detecting DDIs is the exponential increase in biomedical literature

[4]. Thus, the automatic approach of extracting DDIs from

biomedical literature can greatly contribute to the management of

DDIs and allow scientists and curators early access to new

discoveries.

Most biomedical relation extraction corpora have focused on

genetic and protein interactions [5], such as BioInfer [6], GENIA

[7] and AImed [9], rather than DDIs. Segura-Bedmar et al.

created the first annotated DDI corpus [8], which provided an

opportunity to use machine learning to automatically extract

DDIs. In addition, the DDI Extraction Challenge 2011[8] has

attracted more research interests.

One major methodology of relation extraction is pattern

engineering, which adopts specific types of patterns or matching

rules as the core relation discovery operation [10,11]. The patterns

are mainly represented in the form of sequences of words or

syntactic constituents. Blaschke et al. [12] built a set of lexical rules

based on clue words. Ono et al. [13], taking into account the

surface clues and part-of-speech (POS) rules, defined a group of

lexical and syntactic interaction patterns for biomedical relation

extraction. Fundel et al. [14] developed a RelEx system for

relation extraction, which is based on more syntactic rules.

However, the pattern forms are too rigid to capture semantic/

syntactic paraphrases or long-range relations. Therefore, these

pattern-based methods generally suffer from low recall rates.

Alternatively, with the public availability of large annotated

corpora, machine learning methodology has recently become a

dominant approach for relation extraction tasks. Although

relationships generally involve three or more entities, most of the

existing approaches in relation extraction have focused on the

extraction of binary relationships, such as DDIs and protein-

protein interactions (PPIs). Thus, the methodology of machine

learning generally tackles the relation extraction as a classification

problem. The major challenge is how to supply the learner with

the semantic/syntactic information to distinguish between inter-

actions and non-interactions [15].

Recent studies [1,2,14–19] have shown that the dependency

graph and syntactic parse tree of a candidate sentence carry vital

information for relation extraction tasks if their accuracy is

guaranteed. Therefore, approaches such as subsequence kernels

[16,17], tree kernels [18] and shortest path kernels [19] have been

proposed and successfully used for relation extraction. The basic

idea behind kernel methods is to map the dependency graph or

syntactic parse tree into a suitable feature space. Unfortunately,

due to the powerful expressiveness of graphs, defining appropriate

graph kernel functions has proved difficult [20]. In order to control

the complexity of kernel methods, existing kernel methods

generally exploit limited information of the dependency graph
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representing the sentence structure. For instance, the walk-

weighted subsequence kernel [17] matches the e-walk and v-walk

on the shortest path of the dependency graph, which can only

represent the semantic/syntactic information of the shortest path.

The tree kernel [18] can represent tree structure, but it is still not

enough to completely represent all the semantic/syntactic

information of the dependency graph. The all-path graph kernel

[15] only computes the basic label of each node and neglects the

contiguous structure of the node. The NH kernel [21] can

represent the single subgraph topological information, but cannot

represent the relation information of different subgraphs in the

whole dependency graph. In an effort to improve the performance

of these kernel methods, researchers have concentrated on

combining them. Miwa et al. [22] proposed the composite kernel,

Figure 1. A sentence on the DDI corpus which underwent parsing with the Charniak and Lease parser.
doi:10.1371/journal.pone.0048901.g001
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which combines multiple kernels: the all-path kernel, the bag-of-

words kernel and the subset tree kernel. A similar approach was

used by Yang et al. [23] who proposed a weighted multiple kernel

learning-based approach including the feature-based kernel, tree

kernel, all-path kernel and POS path kernel. In particular, the

DDI Extraction Challenge 2011 [8] showed that approaches based

on multiple kernels achieved better results than other approaches.

In this paper, we propose the hash subgraph pairwise (HSP)

kernel-based approach for DDIs extraction tasks. We show that a

single kernel-based approach can achieve state-of-the-art perfor-

mance without exploiting multiple kernels. Compared to the

existing kernel approaches, the HSP kernel can efficiently

represent more structural information of the dependency graph.

Firstly, we represent the dependency structure and linear order of

candidate sentence by a graph representation including the

dependency subgraph and linear subgraph. Secondly, we

construct hierarchical labels for each node of graph and use the

hash operation to compute the value of the labels, which can

effectively represent the contiguous structure of the subgraph.

Generally, the relation between nodes or subgraphs has an impact

on the classification of graphs. Thirdly, based on this hypothesis,

the HSP kernel maps the graph into the subgraph pairs feature

space. In particular, the HSP kernel can set each subgraph pair

feature by different weights according to the distance between the

subgraph pair. Therefore, the HSP kernel can represent the single

subgraph topological information as well as the relation of two

subgraphs. Since the whole original sentential structure contains

noise for DDIs extraction tasks, we propose a graph pruning

method to prune apparently noisy information from the original

sentential structure and emphasize the relevant syntactic informa-

tion. We evaluate the HSP kernel approach on the DDIs

Extraction Challenge 2011 task corpus and compare our approach

with state-of-the-art approaches.

Methods

In this section, we first present the graph representation of

sentence structure. Then we introduce how to prune the graph

representation to remove the noisy information from the original

sentential structure. Finally, we describe in details how to use the

HSP graph kernel to extract DDIs.

Graph Representation of Sentence Structure
As in recent studies of DDIs extraction [1,2,8], we tackled the

task by learning a decision function that determines whether an

unordered candidate drug pair has a relevant relationship in a

sentence. Recent studies [1,2,14–19] have shown that biomedical

relation extraction can benefit from the dependency graph or

syntactic parse tree of candidate sentences. Therefore, the

candidate sentence underwent parsing with the Charniak and

Lease parser [24] and we then supplemented the syntactic

information as the unified format proposed by Pyysalo et al.

[25]. Figure 1 shows an example of a candidate sentence

(DrugDDI.s345) that contains syntactic information including

Figure 2. Graph representation of a sentence.
doi:10.1371/journal.pone.0048901.g002
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the dependency relation and POS of each token. Secondly, we

represented each sentence as a directed vertex-labeled graph that

consisted of a dependency subgraph and linear subgraph, which

was similar to previous studies [15,21]. The dependency subgraph

represented the dependency structure of the sentence and the

linear subgraph represented the linear order of the sentence.

Figure 2 is the graph representation generated from the sentence

in Figure 1. In Figure 2, every node has a label for the token or

dependency relation. For instance, ‘‘treated/vbn’’ denotes that the

text of the token node is ‘‘treated’’ and the POS is ‘‘vbn’’, whereas

‘‘nsubjpass’’ denotes that the dependency relation of token nodes

‘‘DRUG1’’ and ‘‘added/vbn’’ is ‘‘nsubjpass’’ type. DRUG1 and

DRUG2 denote candidate drug names, respectively, and the

shortest path between them is shown in bold in the dependency

subgraph.

HSP Graph Kernel
In recent years, various kernel methods have been employed for

this task. In general, the syntactic structures around the candidate

drug pairs contain more valuable information for DDIs tasks in the

dependency graph. Therefore, we proposed the HSP kernel for

DDIs task based on the all-path graph kernel [15], which can

represent the single subgraph topological information as well as

the relation of two subgraphs. We first briefly introduced the

following related notion:

Let n be a set of vertices (or nodes) and e be a set of edges (or

links). Then, a graph G = (n, e) is called a directed graph if e is a

set of directed links e5n|n.

Definition 1 (Vertex-Labeled Graph) Let k be a set of labels (or

attributes) and m5n|k be label allocations. Then, G = (n, e, m)

is called a vertex-labeled graph.

Definition 2 (Inner Product) For two m|n matrices A and B,

the inner product is defined as (1).

SA,BT~
XDmD

i~0

XDnD

j~0

Ai,jBi,j ð1Þ

Firstly, we used a unique binary array consisting of D-bits (0 or

1) to denote each label of the graph G, such as

l0(v)~fb1,b2,:::,bDg, where the constant D satisfies

2D{1wwD
X

D. Therefore, it can represent an unsigned integer

value up to 2D{1, and the node label set
X

is a finite set of

discrete values. Thus, we can obtain a basic bit label l0(G) of G.

Secondly, we followed previous studies [21,26] to define the hash

operation. Let XOR(si,sj)~si+sj denote the XOR operation

between two bit labels si and sj, which produces another binary

array with each bit representing the XOR value for each digit. Let

ROTo(s)~fboz1,boz2,:::,bD,b1,:::,bog denote the ROTo op-

eration for s~fb1,b2,:::,bDg shifts the last D{o bits to the left by

o bits, and moves the first o bits to the right end. We can iteratively

calculate the hash label for each node using (2), where

V1
adj :::Vd

adj denote the adjacent nodes of v. Moreover, we can

distinguish between in-coming edge and out-going edge by setting

Figure 3. Illustration of pruning the dependency subgraph and linear subgraph.
doi:10.1371/journal.pone.0048901.g003
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Figure 4. An example of how to compute hierarchical hash labels.
doi:10.1371/journal.pone.0048901.g004
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Figure 5. Illustration of subgraph pairs features mapped from L0(G), L1(G),… Lr � (G).
doi:10.1371/journal.pone.0048901.g005
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different ROTedge operations. For instance, if the edge v1 v is an

in-coming edge of node v, let ROTedge~ROT2, and if the edge

v1 v is an out-going edge of node v, let ROTedge~ROT3.

liz1(v)~NH(v)~

ROT1(li(v))+(ROTedge1(li(v
adj
1 ))+:::,+ROTedged(li(v

adj
d ))) ð2Þ

Let L1(G)~NH(L0(G)) denote the neighborhood hash func-

tion to a graph G. Furthermore, the neighborhood hash function

can be applied iteratively as Liz1(G)~NH(Li(G)), and L0(G),
L1(G), Liz1(G), is the hierarchical hash labels of G. Since the

hash operation can aggregate the neighborhood nodes, l0(v) only

represents the basic information of node v, whereas l1(v) can

represent the structural information of the subgraph of radius 1.

Similarly, li(v) has the capability to represent the structural

information of the subgraph of radius i. All bit operations such as

XOR and ROT can be done in one clock, if the fixed length D is

no more than the bit size of the processor architecture (32 or 64).

Therefore, we can efficiently compute the hierarchical hash labels

of the whole graph. Finally, based on hierarchical hash labels, the

HSP graph kernel is defined as (3), where E is the adjacency

matrix of G and L0, L1… ,Lr are the hierarchical hash labels of G.

K(G,G
0
)~
Xr�
r~0

brSLr
X?
i~0

liEi

 !
LrT ,Lr

0 X?
j~0

ljE
0 j

 !
Lr
0TT

~
Xr�
r~0

XDkD

m~0

XDkD

n~0

br Lr
X?
i~0

liEi

 !
LrT

" #
mn

Lr
0 X?

j~0

ljE
0 j

 !
Lr
0T

" #
mn

ð3Þ

It is well known that each element ½E2�ij gives the number of walks

of length 2 from vi to vj. Similarly, each component ½En�ij gives

the number of walks of length n from vi to vj. Due to the

hierarchical hash labels, L0, L1… ,Lr can express the distribution

of the contiguous neighbors of each node. The matrix power seriesX?
i~0

liEi combines the effect of subgraph pairs with different

distances. k is the set of possible hash labels and r� is the upper

bound for the number of hierarchy. Hence, the HSP kernel can

represent the full graph by mapping the graph into high

dimensional subgraph pairs feature space, rather than concentrate

only on special types of graphs, such as the tree kernel and string

kernel. In particular, the HSP kernel can more effectively

represent the relation of subgraphs. l0,l1,:::li,::: are the weights

sequence for subgraph pairs with different distances (li[<; li§0).

To control the complexity of the HSP kernel, we let

l0~l0,l1~l1,:::li~li,::: and lv1, and efficiently calculated

the matrix power series using (4). In equation (4), matrix inversion

is only the cubic time complexity.

X?
i~0

liEi~(I{lE){1{I ð4Þ

In addition, we set the decay factor sequence b0,b1,:::br� for

hierarchical hash labels in (3) to scale the impact of subgraph pairs

with different sizes, where bw0.

Graph Pruning Method
The HSP kernel can accurately compute the contiguous

topological information and the relative information of subgraph

pairs in a graph. Therefore, the noisy information of graph

representation can obviously reduce the performance of the HSP

kernel. Unfortunately, previous studies [15,17,21] have shown that

the whole original sentence structure contains too much noise for

biomedical relation extraction tasks. To address this problem, we

proposed a pruning method to prune apparently noisy information

from the sentence representation and emphasize the relevant

syntactic information.

Pruning methods for relation extraction were first introduced by

Zhang et al. [27] who suggested seven types of pruning methods

[28]. For biomedical relation extraction, the study [15] showed

that the shortest path between candidate proteins in the

dependency subgraph contained more vital distinguishing infor-

mation. Bunescu et al. [19] followed this hypothesis and only

exploited the shortest path information of the dependency graph.

Furthermore, Zhou et al. [29] reported that subtrees enclosed by

the shortest path between two entities describe their relation better

than other subtrees, even though, in some cases, these subtrees can

miss important syntactic structures. However, few approaches

have been used to prune the dependency graph for biomedical

relation extraction tasks. Next, we introduced the method to prune

the graph representation in Figure 2. We divided the graph

representation into the dependency subgraph and linear subgraph.

For the dependency subgraph, we preserved only the tokens on the

shortest path between candidate drug pairs, their direct neighbor

tokens and dependency relations between these tokens. For the

linear subgraph, we preserved the tokens between candidate drug

pairs and the direct neighbor tokens of candidate drugs. Figure 3

shows how to prune the dependency subgraph and linear

subgraph. To preserve the vital context, we pruned the syntactic

structure out of the shadow region and preserved only the

syntactic structure encompassing the candidate drug entities and

between them. From Figure 3, it can be seen that we mainly

preserved the syntactic structures between ‘‘when/wrb’’ and

‘‘DRUG2’’, and pruned the syntactic structure of ‘‘However,

there has been one report of prolonged prothrombin time’’ in both

the dependency subgraph and linear subgraph. Without pruning,

all the syntactic structures of the sentence will intricately

participate in deciding the candidate DDI. Therefore, the pruning

method prunes apparently noisy information as well as emphasizes

the relevant syntactic information. For example, without pruning,

although the syntactic structure of ‘‘However, there…prothrom-

bin time’’ contains little valuable information, it still participates in

predicting the candidated DDI. Instead, after pruning, the

classifier can concentrate on the syntactic structure of ‘‘when

…DRUG2’’. In addition, the pruning method can effectively

separate features when two or more interactions exist in a

sentence.

Table 1. Statistics of the DDI corpora.

Training sets Test sets Total

Documents 435 144 579

Candidate DDI pairs 23827 7026 30853

Positive DDI pairs 2402 756 3158

Negative DDI pairs 21425 6270 27695

doi:10.1371/journal.pone.0048901.t001
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DDIs Extraction
We next present how to use the HSP graph kernel to extract

DDIs from biomedical literature. Firstly, we used a D-bits binary

array to encode each node of the graph representation. To reduce

the problematic hash collisions, we chose D = 24 in our

experiments. Figure 4A shows the encoding process of the graph

representation in Figure 3 and the bit labels are represented by hex

forms. Thus, we can obtain the L0(G) of the dependency subgraph

and linear subgraph, as shown in Figure 4B. Secondly, we

computed the hierarchical hash labels for each node in the

dependency subgraph and linear subgraph. Figure 4C illustrates

how to calculate the hash label of the node ‘‘patient/nn’’. The

value of L0(patient=nn) was ‘‘675D2A’’ which only represented

the basic token information of the node. However, the value of

L1(patient=nn) was ‘‘EE274B’’ which represented the contiguous

structure information of 1-neighbors. Furthermore, we can obtain

the L1(G) by calculating the whole graph representations from

L0(G). Similarly, we iteratively computed the hierarchical hash

labels of G, that is L2(G), …, Lr � (G). Thirdly, we assigned the

same weight l~0:9 to all edges of the graph representation and

computed the similarity of two graph representations using (3).

In essence, the HSP graph kernel can map the dependency

subgraph and linear subgraph into subgraph pairs feature space.

In Figure 5, the shadow regions denote the subgraph pairs features

which were extracted from the L0(G), L1(G),…Lr � (G). For

L0(G), each subgraph only contained one node, and any two

subgraphs in the dependency subgraph or in the linear subgraph

formed a subgraph pair feature. For instance, the nodes

‘‘DRUG1’’ and ‘‘regimen/nn’’ in L0(G) of the dependency

subgraph formed a feature ‘‘DRUG1’’-‘‘regimen/nn’’. For L1(G),
each subgraph contained one central node and its direct neighbor

nodes (1-neighbors). In other words, each subgraph can represent

the topology information and syntactic information of the region

with a radius of 1. We compared the feature space of the HSP

kernel with the tree kernel and string kernel. On the one hand, the

features extracted from the linear subgraph were similar to the

features extracted by the string kernel. On the other hand, the

features extracted from the dependency subgraph were more

complex than the features extracted by the tree kernel. Therefore,

compared with the tree kernel and string kernel, the HSP kernel

can map the graph representation into both simple features and

complex syntactic features. Moreover, the subgraph pair feature

can represent the relation between any two complex syntactic

structures in the dependency subgraph or linear subgraph.

Obviously, the subgraph pair feature of L1(G) contained much

more valuable information than the feature of L0(G). However,

with the enlargement of the subgraph, the large-scale subgraph

pair feature will cause the system to classify instance in a strict

manner, which will generally lead to over-fitting problems. Thus,

we should control the upper bound parameter r� to balance the

performance of the HSP kernel for different tasks.

Experimental Setting
We evaluated our method using DDI Extraction Challenge

2011 corpora [8] which is the first publicly available corpora for

DDI extraction tasks. The statistics of the DDI corpora are listed

in Table 1, which contains 579 documents and 30853 candidate

DDIs pairs. These documents were randomly selected from the

DrugBank database, which were split into training sets and test

sets. In addition, all sentences in the documents underwent parsing

with the Charniak and Lease parser [24], and the syntactic

information was added similar to the example shown in Figure 1.

The implement of our method with the name DDI_Extraction_-

Tool.zip is available in Supplementary Information.

To keep our evaluation metrics the same as the DDI Extraction

Challenge 2011 task [8], we optimized the parameters of our

approach for DDIs extraction tasks by conducting 10-fold cross

validation on the training datasets, and then tested the test

datasets. This guaranteed the maximal use of the available data

and allowed a comparison with the other approaches. We

implemented the HSP kernel with the user defined kernel

interface of SVM-light (http://svmlight.joachims.org/). Similar

to previous studies [15,21], we empirically estimated the

regularization parameters of SVM (C-values) on training datasets.

Table 3. Performance of our approach in comparison with other approaches.

Approach TP FP FN TN P R F Acc MCC AUC

WBI [31] 543 354 212 5917 60.5 71.9 65.7 91.9 61.5 -

Our approach 508 297 248 5973 63.1 67.2 65.1 92.2 60.8 92.4

LIMSI-FBK [32] 532 376 223 5895 58.6 70.5 64.0 91.5 59.5 -

FBK-HLT [33] 529 377 226 5894 58.4 70.1 63.7 91.4 59.2 -

UTurku [34] 520 376 235 5895 58.0 68.9 63.0 91.3 58.4 -

BNBNLEL [36] 420 266 335 6005 61.2 55.6 58.3 91.5 53.6 -

Naive Bayes approach 603 786 153 5484 43.4 79.8 56.2 86.6 52.3 84.1

SVM approach 382 346 374 5924 52.5 50.6 51.5 89.8 45.8 87.2

F: F-score; P: precision; R: recall; Acc: accuracy; MCC: Matthews correlation coefficient.
doi:10.1371/journal.pone.0048901.t003

Table 2. Effectiveness of parameterb.

b P R F sF AUC sAUC

b= 0.2 55.5 64.6 59.7 2.1 88.3 1.8

b= 0.4 56.4 66.5 61.0 2.8 89.5 1.7

b= 0.6 56.8 68.0 61.9 2.4 90.1 2.2

b= 0.8 57.1 67.4 61.7 2.7 90.6 1.5

b= 1.0 56.7 65.6 60.8 1.8 91.0 1.4

b= 1.5 57.3 63.3 60.2 2.0 90.7 1.9

b= 2.0 57.6 62.5 59.9 1.7 90.2 1.2

F: F-score; P: precision; R: recall. sF andsAUC are the standard deviation of the
F-score and AUC in cross validation, respectively.
doi:10.1371/journal.pone.0048901.t002
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The majority of DDI extraction system evaluations use the

balanced F-score measure for quantifying the performance of the

systems, which is defined as F-score = (2PR)/(P+R), where P

denotes precision and R denotes recall. In addition, we reported

the AUC measure [30] and MCC measure [37], which have been

recommended for performance evaluation [15,21,23,38].

Results and Discussion

Performance on Training Datasets
Firstly, we set the parameter r� in (3), which is the upper bound

for the number of hierarchy. In general, an increase in the

hierarchy of hash labels will cause the HSP kernel to compute

more large-scale subgraph pairs and the system classifies each

instance in a strict and detailed manner. Therefore, when the

value of r� is too large, over-fitting problems will generally occur

particularly for biomedical relation extraction tasks. After prelim-

inary experiments, we set r�~2 in our experiment.

Secondly, we investigated the effect of decay factor b in (3) for

DDIs extraction tasks, which can balance the degree of

contribution of subgraph pairs with different sizes in the HSP

kernel computation. Table 2 shows the evaluation results on the

training datasets and the value in bold is the highest value of each

column. It is obvious that parameter b influenced the overall

performance of DDIs extraction. The gap between the best and

worst F-score was 2.2%. In particular, our approach achieved the

best performance (an F-score of 61.9%), when b~0:6. From

Table 2, it can be seen that the precision can be improved when b
is increased (from 55.5% to 57.6%). Similarly, the recall can be

improved significantly when b ranged from 0.2 to 0.6. However,

when b ranged from 0.6 to 2.0, the recall dropped sharply. The

main reason for this is that the increase in b promoted the weights

of larger subgraph pairs for the HSP kernel. Since large subgraph

pairs contain more syntactic/semantic structural information than

small subgraph pairs, this caused our approach to classify each

instance in a strict and detailed manner. Therefore, the increase in

b generally contributes to the precision. However, if b is too large,

it will reduce the recall drastically. In addition, our approach

achieved best AUC of 91.0% at b~1:0, which was similar to the

change in F-score as a whole. Consequently, we choose b~0:6 as

the optimal parameter for DDIs extraction tasks.

Performance of our Approach Compared to Other
Approaches

We tested our approach on test datasets using optimal

parameters. In recent years, some kernel methods have been

proposed and successfully applied to biomedical relation extrac-

tion. However, most of these studies focused on PPI extraction,

and not DDI extraction. Although PPI extraction is similar to DDI

extraction, there are some differences between them. For instance,

the terminological specificity and the way researchers report their

findings in different biomedical domains vary considerably.

Therefore, the results from PPI extraction do not necessarily

extrapolate to DDI extraction. To evaluate the performance of our

approach for DDI extraction, we compared our approach with

other approaches (Table 3) which included the top rank

approaches reported in the DDI Extraction-2011 Challenge and

other simple machine learning approaches, such as SVM and

naive Bayes (NB). We built rich features for the SVM and NB

approaches and empirically estimated the regularization param-

eters of SVM (C-values). The rich features consisted of bag-of-

words (BOW) features, bigrams features and trigrams features.

The NB approach achieved a high recall of 79.8%, but overall

both the NB approach and SVM approach were inferior to our

approach. For instance, our approach achieved an F-score of

65.1% which was an 8.9% point margin compared to the NB

Fig e 6. Examples of false negatives and false positives generated by our approach.
doi:10.1371/journal.pone.0048901.g006
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approach and a 13.6% point margin compared to the SVM

approach. These results indicated that the common features such

as BOW features and word-gram features are not enough for DDI

extraction tasks, because the vital syntactic information of the

dependency graph cannot be directly mapped into the feature

space.

It is known that the combination of multiple kernels is the best

option for improving the effectiveness of kernel-based approaches

[22,23]. From Table 3, it can be seen that the WBI approach [31]

achieved best performance (an F-score of 65.7%, a recall of 71.9%

and a MCC of 61.5%), this approach exploits the combination of

several kernels and a case-based reasoning system using a voting

approach. In addition, the WBI approach also achieved best

performance in the DDI Extraction 2011 Challenge. Similarly, the

LIMSI-FBK approach [32] and the FBK-HLT approach [33]

achieved competitive performances (F-score of 64.0% and 63.7%,

respectively), and both approaches benefited from compositing

several kernels including the MEDT kernel, PST kernel, and SL

kernel. In addition, the UTurku approach [34] exploits the

domain knowledge such as DrugBank [35], and achieved an F-

score of 63.0% and a MCC of 58.4%. The BNBNLEL approach

[36] constructs rich features and uses random forests to extract

DDIs. However, due to a low recall of 55.6%, the BNBNLEL

approach only achieved an F-score of 58.3% and a MCC of

53.6%. Compared with the above approaches, our single kernel-

based approach achieved the best precision (63.1%) and the best

accuracy (92.2%). Moreover, our approach achieved an F-score of

65.1% and a MCC of 60.8%, which was only slightly inferior to

the WBI approach. In particular, our approach was obviously

superior to the LIMSI-FBK approach [32] and FBK-HLT

approach [33], which are composed of the tree kernel, context

kernel and other kernels. This indicated that our approach can

more accurately compute and represent the syntactic structural

information than other such kernels for DDIs extraction tasks.

However, we also note that our approach only achieved a recall of

67.2%, which was far below the multiple kernel-based approaches.

This was mainly because the multiple kernel approaches can take

into account richer features than the HSP kernel. For instance, as

the WBI [31] approach consists of three kernels, it can classify

each candidate DDI based on all-paths graph features, shortest

path features and shallow linguistic features. Overall, we can only

use the HSP kernel to achieve state-of-the-art performance rather

than combine several kernels or exploit additional domain

resources.

Error Analysis
Finally, we manually analyzed drug mention pairs which were

not correctly classified by our approach. Evaluated using the final

test set, our approach made a total of 545 errors, 297 of which

were false positives and 248 of which were false negatives. Figure 6

shows the principal causes for the false positives and false negatives

generated. The two drugs of each candidate pair are in bold.

The most frequent cause of false positives is our approach was

the failure to identify negation expressions. In Figure 6a, FP1 is an

example of these false positives. Therefore, a possible approach to

improve performance is to introduce a pre-processing step for

negation expressions. Another frequent cause of false positives is

the DDI cannot be verified without the context. For instance, in

Figure 6a FP2, there is very little information in the sentence and

we could not verify the interaction between ‘‘Alcohol’’ and

‘‘cimetidine’’ without context. Furthermore, some false positives

are caused by corpus errors. In FP3, ‘‘prevent’’ is a verb, but the

corpus treats ‘‘prevent’’ as a drug due to parsing error. Moreover,

according to the sentence FP4, the DDI between ‘‘Amiodarone’’

and ‘‘CYP1A2’’ should be annotated by ‘‘True’’, however, the

corpus annotates the DDI with ‘‘False’’.

With regard to false negatives, most errors are caused by

coordinate structures and appositions. In Figure 6b, FN1 and FN2

are two examples of these false negatives. Further studies should be

performed on coordinate structures and appositions. In addition, it

is difficult for our approach to deal with complex sentences in

which two drugs are in different subordinate clauses. For example,

our approach failed to verify the DDI in FN3. As in false positives,

some false negatives are due to the need for more context

information. In FN4 and FN5, we could not verify the DDIs

without more context information. Therefore, such candidate

DDIs should be taken out of the DDI corpus.

Conclusion

In this paper, we propose a single kernel-based approach to

automatically extract DDIs from biomedical literature. To

preprocess the dependency graph, we applied a novel pruning

method to prune apparently noisy information and emphasize the

relevant syntactic information. The experimental results demon-

strated that our approach can effectively represent the syntactic

structural information of the dependency graph. Furthermore, it is

encouraging to see that our single kernel-based approach was

comparable to the top rank multiple kernel-based approaches, and

achieved state-of-the-art performance. Our major contributions to

this research field are:

1. We proposed the HSP kernel approach for DDIs extraction

tasks and evaluated our approach on a publicly available DDI

corpus.

2. We proposed a novel pruning method to prune apparently

noisy information of the dependency graph and emphasize the

relevant syntactic information.

3. We evaluated our approach on a publicly available DDI corpus

and compared the performance of our approach with state-of-

the-art approaches.

4. The experimental results indicated that state-of-the-art perfor-

mance can also be achieved by the single kernel approach.
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