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Abstract

The steady state distributions of phenotypic responses within an isogenic population of cells

result from both deterministic and stochastic characteristics of biochemical networks. A bio-

chemical network can be characterized by a multidimensional potential landscape based on the

distribution of responses and a diffusion matrix of the correlated dynamic fluctuations between

N-numbers of intracellular network variables. In this work, we develop a thermodynamic

description of biological networks at the level of microscopic interactions between network vari-

ables. The Boltzmann H-function defines the rate of free energy dissipation of a network system

and provides a framework for determining the heat associated with the nonequilibrium steady

state and its network components. The magnitudes of the landscape gradients and the dynamic

correlated fluctuations of network variables are experimentally accessible. We describe the use

of Fokker-Planck dynamics to calculate housekeeping heat from the experimental data by a

method that we refer to as Thermo-FP. The method provides insight into the composition of the

network and the relative thermodynamic contributions from network components. We surmise

that these thermodynamic quantities allow determination of the relative importance of network

components to overall network control. We conjecture that there is an upper limit to the rate of

dissipative heat produced by a biological system that is associated with system size or modular-

ity, and we show that the dissipative heat has a lower bound.

Introduction

Measurements of individual cells within a population indicate that phenotypic differences

between isogenic cells is common, even when they are in a homogeneous and stable environ-

ment. Despite differences between individuals, populations of cells can manifest apparently

stable distributions of phenotypic expression. The measured phenotypic parameters can

include concentration of protein products of gene expression, indicators associated with pro-

moter activation, RNA transcripts, and complex cell traits such as morphology. The steady

state distribution of phenotypes observed from single cell analysis is a probability density func-

tion and can be represented as a potential energy landscape [1–5]. Living cells are a clear exam-

ple of a nonequilibrium system [6].

Studies that involve imaging of live cells reveal that despite the observed consistency of a

steady state distribution of phenotypes across a population of cells, there can be significant
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dynamic variability in each cell and from one cell to another [3, 7–13]. A number of studies

provide direct evidence that the distribution of phenotypes in steady state distributions is ergo-

dic in that subsequent to a transient perturbation the population will eventually relax to the

steady state distribution [3, 14–18] when culture conditions are kept constant. The recapitula-

tion of the steady state distribution, even after single cell cloning, demonstrates that each cell

or its progeny can explore all microstates on the landscape. The population response appears

invariant, but the individual entities (cells) that comprise the population present a dynamic,

random expression of phenotypes, which ultimately results in the heterogeneity of the popula-

tion. These are characteristics of many physical systems that can be well-described by statistical

mechanics. The variations in populations of cells are often attributed to stochastic fluctuations,

or noise, due to small numbers of molecules associated with transcription and translation.

However, fluctuations in small numbers of molecules is not the only source of this variation

[9, 19–21]; correlation analysis has suggested that the main source of noise may be upstream

regulatory components [14]. Ensembles of biochemicals are responsible for producing an

observed phenotype [9, 21, 22], and these network components demonstrate coordinated con-

centration response functions. Importantly, dynamic fluctuations of network components,

and correlations in fluctuations among multiple network components, are defining features of

regulated networks [2, 13, 16, 21, 23–31]. An abbreviated biochemical network system is

depicted in the schematic in Fig 1, based on the interactions between transcription factors

involved in maintaining pluripotency [32], and provides an illustration of some of the general

network features that our model addresses.

Identification of network components and the nature of their interdependence remains a

challenge. While some “omics” analysis methods can probe many variables simultaneously

and in some cases at the level of individual cells, they provide only a snapshot in time. While

these methods allow determination of the coincidence of molecular species, without dynamic

data in individual cells that can reveal the rates and magnitudes of the interactions between

network species, it is impossible to determine unambiguously the relationship between them

or to determine a physical mechanistic basis for control of the network [11, 21, 33, 34]. A

promising approach for observing single cell dynamics is imaging of live cells over time, which

provides access to fluctuations in phenotypic expression in individual cells across a population

[10–12, 16, 26]. Live cell imaging can also provide spatial and temporal information across

scales and can provide ancillary information such as direct observation of the timing of cell

division. We have previously used quantitative microscopy [3, 8] to track temporal responses

of populations of individual cells, and Langevin/Fokker-Planck (L/FP) dynamics to analyze

the population distributions as potential energy landscapes [3]. A cell line expressing green

fluorescent protein (GFP) associated with the promoter for the gene for the extracellular

matrix protein, tenascin C, was monitored by live cell fluorescence microscopy. The steady

state distribution of expression levels of GFP in individual cells allowed construction of the

potential landscape for the population. Changes in fluorescence intensity in individual cells

were quantified at 15-minute intervals. By measuring real time trajectories of the activity of the

gene promoter, we determined the diffusion coefficient for fluctuations in the promoter. We

selected four subpopulations of cells by flow sorting, and by employing L/FP dynamics, accu-

rately predicted the time-dependent relaxation of the subpopulations to the steady state distri-

bution. The subpopulations were selected based on different levels of promoter activity and

they relaxed to steady state with very different kinetics, but the diffusion coefficient provided

excellent predictions of all relaxation kinetics with no adjustable parameters [3]. The study

demonstrated that accurate experimental data on gene expression fluctuations can be collected

by fluorescence microscopy, that data at the cellular level can provide additional details about

control of gene expression that cannot be determined at the population level, and that FP
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dynamics is an appropriate approach to probing intracellular control mechanisms from exper-

imental observations.

While such a one-dimensional landscape is a simple manifestation of a complex adaptive

system, it provides little insight into the mechanisms responsible for establishing and main-

taining the stability and dynamics of the steady state distribution because of the contributions

from unseen variables. In the current theoretical work, we consider a network of N numbers

of variables. An N-dimensional statistical thermodynamics analysis allows fundamental ques-

tions about the thermodynamic controls in a coordinated network system to be addressed,

including: how to identify the most important components of a regulated network, what is the

relative thermodynamic contribution of different network components, and what is the ther-

modynamic price of homeostasis of a regulated network?

We present an experimentally accessible theoretical framework, which we refer to as

Thermo-FP, that demonstrates that the rate of free energy dissipation associated with main-

taining a nonequilibrium steady state network of intracellular reactions (i.e. the housekeeping

heat) can be determined by the covariances in the temporal fluctuations in the components of

the network together with the gradients of the potential landscape. This analysis is enabled by

Fig 1. Schematic of an intracellular network. This is based on concepts presented by Rizzino and Wuebben [32] on control of pluripotency, and consists of

N = 3 variable components, or dimensions, of a network with activation and repression relationships as indicated. As described in the text, these relationships

define the measurable covariances in an NxN diffusion matrix, which contribute to the thermodynamics of the network together with the gradients of a

landscape (which are derived from the multi-dimensional steady state probability density). The nonequilibrium steady state in this open thermodynamic system

is supported by an influx of free energy from outside the system, which is dissipated as heat.

https://doi.org/10.1371/journal.pone.0230076.g001
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a recent application of FP dynamics [35] to demonstrate that the Boltzmann H-function

explicitly connects the relative entropy of a relaxing population with the rate of dissipation of

free energy involved in maintaining the network at steady state.

Results

The theoretical framework

In this work, we develop a thermodynamic description of biological networks at the level of

microscopic interactions between network variables. Experimentally accessible measurements

of network variables at the level of single cells can provide data about the fluctuations in, and

dynamic interactions between, those network variables. We build on the rigorous Kullback-

Leibler based definition of relative free energy presented by Rao and Esposito [36]. Instead of

using a master equation, we apply FP dynamics and the Boltzmann H-function to describe the

rate of approach to steady state in terms of the dynamical fluctuating behavior of network

components, and the thermodynamic quantities that can be derived from the correlations in

fluctuations of the network variables. We call this approach for interpreting the kinetics of

phenotype expression Thermo-FP. This coarse-grained approach diverges from a master equa-

tion approach, bypassing the need to have detailed knowledge of explicit reaction steps which

are often difficult to know with confidence; it allows evaluation of the thermodynamics of

complex networks for which there is insufficient knowledge to write chemical rate equations.

This approach emphasizes the role of fluctuations or “noise” in controlling a biological system

and provides a direct link between the dynamic correlations between network variables and a

thermodynamic understanding of network size, composition, and relative importance of net-

work variables as will be shown. This is possible through experimentally measurable

quantities.

We present Thermo-FP to describe the evolution to, and maintenance of, a steady state of an

N-dimensional network probability distribution with N x N diffusion matrices of variances and

covariances in and between network variables. The magnitude of the coupled fluctuations

between the different network variables, i.e., the covariances that comprise the diffusion matrix,

is a measure of the strength of the physical and functional interaction between those variables

[21]. The coordinated relationships between network components create an organized struc-

ture, thus reducing system entropy and resulting in the production of dissipative heat [37, 38].

Here we treat multidimensional landscapes of biochemical networks by applying the math-

ematical properties of positive definite quadratic forms and normal mode analysis common to

mathematical physics and statistical mechanics [39]. A diffusion matrix of the dynamic covari-

ances between the multiple variables of the network can be rotated through normal mode anal-

ysis to identify complex collective modes of network variables. We show that the product of

each eigenvalue of the rotated diffusion matrix with the square of the gradient of the rotated

multidimensional landscape allows determination of the contribution each degree of freedom

makes to the rate of dissipation of heat that maintains the regulated network of reactants.

We begin by showing that the Boltzmann H function describes the free energy of a popula-

tion relaxing by Thermo-FP dynamics to a steady state distribution.

The steady state landscape and the Boltzmann H function

The free energy of a system approaching a nonequilibrium steady state can be identified with

the Boltzmann H-function, H(t), and � dH=dt is the rate of dissipation of free energy as a sys-

tem that is transiently perturbed away from its steady state relaxes to a steady state distribution,

Wss.
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H(t) is a relative free energy defined by

H t; tð Þ ¼ kBT
Z

dNxW1 fxg; tð Þln
W1ðfxg; tÞ

W2ðfxg; t þ tÞ
ð1Þ

in terms of probability densities, where W1({x},t) is the probability density of the microstates

at some time, t during relaxation, W2({x},t+τ) is the probability density at time t+τ (depicted

schematically in Fig 2), and T is the thermodynamic temperature of the network system in

contact with an isothermal heat reservoir [40]. We assume that no entropy production is asso-

ciated with temperature gradients. Thus, the relative free energy of the system is defined by the

average of the logarithm of the ratio of the occupation probabilities of the microstates, {x}, of

the distribution. Keeping in mind that time-dependent relaxation is determined by stochastic

fluctuations of characteristic rates, a series of probability density functions is observed over

time (Fig 1), each of which can be described by FP dynamics in terms of a potential force, or

drift, term and a diffusive term at every microstate; the former corresponds to the gradient of

the landscape on which the microstate resides, and the latter is described in an N by N diffu-

sion matrix of variances and covariances of the fluctuations of the N network variables (see S1

Text). As the perturbed system relaxes, H(t) decreases with time (
dHðtÞ
dt � 0) and is a minimum

at steady state, SS.

The time derivative of the Boltzmann H-function,
dHðtÞ
dt can be written as a quadratic form

[35, 41], consistent with FP dynamics:

dHðtÞ
dt
¼ �

kBT
2

Z

dNxWðfxg; tÞ
XN

i;j

@

@xi
lnR � DijðfxgÞ �

@

@xj
lnR ð2Þ

where lnR ¼ ln Wðfxg;tÞ
WSSðfxgÞ

is the microscopic relative free energy associated with the microstate {x}

Fig 2. A steady state distribution, if transiently perturbed, will relax back to the steady state distribution. (Left) The rate of dissipation of free energy during

relaxation,
dHðtÞ
dt , approaches 0 as the steady state (Wss) is reached. A thermodynamically open, nonequilibrium system is less entropic, and of higher free energy, than an

equilibrium system. (Right) H(t) corresponds to population distributions (shown here for 1-dimensional distributions). A subpopulation resulting from cell sorting

(Day 0) is allowed to relax, and over time, the population achieves the initial steady state distribution from which the subpopulation was taken (3).

https://doi.org/10.1371/journal.pone.0230076.g002
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of the landscape. The quadratic form in the integrand of Eq 2 is the inner product of the

probability current and the thermodynamic force, which explicitly defines the contribution

to the rate of free energy dissipation due to fluctuations in network variables. The gradients

of the landscape, @

@xi
lnR and @

@xj
lnR are analogous to the gradients of a chemical potential;

and Dij is a diffusion matrix of experimentally determined dynamic covariances between

the N variables [41–44]. The N-dimensional diffusion matrix, Dij, reflects the fluctuations in

each of N network components, i.e. the diagonal elements (variances), and the dynamic corre-

lations (covariances) between the N variables, i.e. the off-diagonal elements of the diffusion

matrix.

The energetic components of the non-equilibrium steady state

By setting R fxg; tð Þ ¼
Wðfxg;tÞ
WssðfxgÞ

in Eq 2, where Wss({x}) refers to a time-invariant steady state, we

see that Thermo-FP dynamics ensures that
dHðtÞ
dt vanishes as the stationary state is approached

and R approaches unity and ln R ({x},t) approaches 0.

At equilibrium, the rate of increase in entropy and the rate of dissipation of free energy will

approach zero. Living biological systems do not exist at equilibrium, and instead reach a non-

equilibrium steady state with reduced entropy and higher free energy compared to an equilib-

rium state. The equilibrium state is defined by detailed balance, in that the probability flux

between any pair of points on the landscape is equal to the probability flux in the reverse direc-

tion; in the nonequilibrium state there is a lack of reversibility. Regulated interactions between

network components create a coordinated set of reactions; this allows the system to respond

dynamically to arbitrary perturbations in order to recover homeostasis. This molecular organi-

zation reduces entropy and keeps the network system in a nonequilibrium steady state that is

maintained by the injection of free energy from outside the network system; that energy is dis-

sipated by the system as heat [37, 38]. During relaxation to an equilibrium steady state,
dHðtÞ
dt is

the rate of free energy dissipated from the production of entropy during approach to the steady

state, i.e., dH=dt ¼ � T _QEN where _QEN is the entropy production rate. During relaxation to a

nonequilibrium steady state distribution,
dHðtÞ
dt is the rate of free energy dissipated from two

sources, namely _QEN , and the rate of dissipation of heat from the free energy that is required to

maintain the nonequilibrium steady state, _QHK , the housekeeping heat. (The dot indicates the

time rate of change of the quantity). Thus, for a nonequilibrium system: _QHKðtÞ � 0 [38],

_QENðtÞ � 0 [38], and dH/dt�0 [44], and

_QHK tð Þ ¼ T _QEN tð Þ þ
dHðtÞ
dt

ð3Þ

Before reaching steady state:

_QHK tð Þ ¼
kBT
2

Z

dNxWðfxg; tÞ
XN

i;j

@

@xi
ln

WssðfxgÞ
WeqðfxgÞ

� DijðfxgÞ �
@

@xj
ln
Wðfxg; tÞ
WeqðfxgÞ

" #

� 0 ð4Þ

where _QHKðtÞ is the instantaneous housekeeping heat and is a functional that varies with the

probability distribution, W({x},t); Wss is the nonequilibrium steady state; and Weq is the equi-

librium steady state (where detailed balance holds). The first gradient term in the bracket

before the diffusion tensor is the thermodynamic force at steady state and the remainder of the

term is the probability flux. The diffusion term, Dij({x}), explicitly connects network compo-

nent fluctuations to housekeeping heat.
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The instantaneous housekeeping heat _QHK as shown in Eq 4 is a bilinear form, which at

steady state reaches a constant value:

_QHK ¼
kBT
2

Z

dNxWssðfxgÞ
XN

i;j

@

@xi
ln

WssðfxgÞ
WeqðfxgÞ

� DijðfxgÞ �
@

@xj
ln

WssðfxgÞ
WeqðfxgÞ

" #

� 0 ð5Þ

The steady state expression for _QHK is a quadratic form for any trial steady state distribu-

tion. The steady state distribution that is a solution of the multidimensional FP equation for

the cellular network minimizes the quadratic form in Eq 5.

The Boltzmann H function thus provides us with a measure of the housekeeping heat, _QHK

introduced by Oono and Paniconi [45] and further developed by others [38, 46]. The positive,

semi-definite quadratic form of _QHK at steady state is immediately apparent from Eqs 4 and 5.

Normal mode representation of the diffusion matrix

The nonequilibrium steady state distribution of a cell population can be thought of as com-

posed of microstates, {x}, i.e. the different ways the population can achieve its continuum of

phenotypic expressions. The phenotypic expressions of the population are determined by the

dynamic interactions of the components of the network; these interactions are represented in

the N x N diffusion matrix, Dij({x}), as the autocorrelations and the dynamic covariances of the

fluctuations of the activities of the N network variables. The dynamic covariances are the mean

square fluctuations about the average relative expression levels divided by time. The H func-

tion provides us with the time-derivative of the relative free energy of the system, from which

we can identify _QHKðtÞ, the rate at which heat is dissipated during the maintenance of the non-

equilibrium steady state of the network. We will use these relationships to determine the rela-

tive rate of heat dissipation by the various network components to support the homeostatic

steady state distribution.

The normal modes of the diffusion matrix result from rotation of the matrix Dij({x}) to a

diagonal form and provide us with a matrix Dii({x�}) in which the eigenvalues of all diagonal

elements are greater than 0 and the off-diagonal elements are equal to 0, i.e., the components

of the matrix are independent of one another. The purpose of this transformation is to identify

combinations of network components as composite variables that are the major contributors

to the rate of heat dissipation of the system; these are effectively the degrees of freedom. The

original diffusion matrix consists of self- and cross-correlations between network variables,

where some of the cross-correlations can be positive and some negative. Rotation of the matrix

allows us to define composite variables (degrees of freedom) as clusters of N-wise interactions

between the N components of the network. The rotation operation guarantees eigenvalues that

are positive as well as eigenvectors that are mutually orthogonal, and yields an expression for

the energetics of the system at steady state as

_QHK ¼ kBT
Z

dNx�WSSðfx
�gÞ �

XN

i

liðfx
�gÞV2

i ðfx
�gÞ ð6Þ

In Eq 6, λi({x�}) are the eigenvalues of the rotated diffusion matrix and represent interac-

tions between network components and the magnitude of their coordinated fluctuations.

Eigenvectors represents ways, i.e., modes, in which network components are organized with

respect to their interactions with one another. The eigenvalues are the diffusion coefficients

associated with those independent collective modes of the network components. The term

Vi({x�}) is equal to the gradient of the potential defined by the rotated landscape and expressed
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as Vi
2ðfx�gÞ½ � ¼ @

@xi�
ln Wss

Weq
ðfx�gÞ

h i2

. It should be noted that the eigenvalues as well as the gra-

dients of the potentials are functions of the entire coordinate set of x�. Eq 6 shows that the rate

of free energy dissipation to maintain the nonequilibrium steady state will be largest when

eigenvalues are large because of strong dynamic interactions between components of the net-

work and when those interactions are occurring in a part of the landscape that is characterized

by steep gradients. The rotated diffusion matrix produces positive eigenvalues and corre-

sponding orthogonal eigenvectors, which simplifies the next step which is to sum the most

important contributors to the rate of free energy utilization and heat dissipation.

Network contributions to _QHK

_QHK in Eq 6 is the rate at which the N-dimensional network is dissipating heat associated with

the maintenance of the nonequilibrium steady state. It can also be regarded as the rate at

which external free energy is injected into the network. The summation term on the right side

of Eq 6 is a positive definite quadratic form; in keeping with statistical thermodynamics we use

this term to determine the energy that each of the degrees of freedom contribute to the system.

The magnitude of λi({x�}) and [Vi({x�})]2 in _QHK integrated over the probability distribution

defines the rate of heat dissipation by the various components of the homeostatic network.

This treatment implies that some interactions between network components or variables are

more dissipative than others and therefore are more important thermodynamic contributors

to the steady state. Below we will address the significance of this.

If we consider each composite network variable that is identified by rotation of the matrix

as a contributor of a degree of freedom, their sum, C, represents the total rate of heat dissipa-

tion associated with the system as shown in Eq 7.

C ¼
XN

i

li½V
�

i �
2

ð7Þ

Each term is an implicit function of x� and reflects a heat that is dependent on the magni-

tudes of the eigenvalues of the matrix, λi, and the square of the gradient, V�i , of the landscape

that corresponds to the rotated coordinate system. Together these terms constitute a quadratic

representation of the microscopic dissipation of the regulated circuit, a sequence of partial

sums that increases monotonically as the number of terms increases. We are proposing that

reactions that involve high rates of free energy dissipation are more important to the function

of the cell vis a vis stability and adaptability.

We now make an assumption that for a biological system, there will likely be an upper

bound, CUB, on the local rate of dissipative heat produced. It is well established that living sys-

tems are sensitive to nonoptimal temperatures [47], so the rate of heat production cannot

exceed the rate at which heat can be dissipated without a failure of the system. This upper limit

may arise from the temperature associated with heat generation or the limited rate of transport

of energy or matter from the environment into the system. The value of the sum of the energet-

ics of the network components thus cannot exceed the upper bound denoted by:

CUB � C ¼ l1V
�

1
2þ l2V

�

2
2þ l3V

�

3
2þ � � � lNV

�

N2 ð8Þ

Each of the elements in Eq 8 is a contributor to the summation of network dissipative heat.

This treatment thus provides us, in principle, with an experimentally tractable way of assessing

the relative contribution that each multivariable component makes to the rate of heat dissipa-

tion in the maintenance of the network, and the free energy cost associated with keeping the
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network in homeostasis. When the number of network dimensions, N, is sufficiently large, C
reaches a limit, CUB and after integrating over the multidimensional probability distribution

this constant rate is identical to _QHK . A geometric approach for estimating the size of N
required for convergence of C to CUB is described in S1 Text.

The upper limit to the dissipative heat CUB can constrain the maximum dimension of com-

ponents in a cellular network. However, at each microstate {x} of the network all the N eigen-

values would not be strictly greater than zero. In fact, if a cellular network is modular then

only a small subset of the N network components will have non-zero eigenvalues at each

microstate. There is strong evidence that biological networks are hierarchical and modular in

their topology [48], which allows for a large number of network components without crossing

the dissipation rate threshold.

In addition to the assumption of an upper bound on dissipative heat, we utilize a generaliza-

tion of the maximum entropy principle to show that the homeostatic heat generation rate,

_QHK , also has a lower bound [49], i.e., there exists a finite dissipative gap between the non-equi-

librium stationary state and the equilibrium (detailed balance) distribution (see S1 Text).

Discussion

It has been frequently noted that stochastic fluctuations in molecular components in in-

dividual cells are important to regulatory mechanisms in one-dimensional systems [14, 26,

50, 51] and in multidimensional networks [23, 27, 29–31, 52, 53]. For example, Mojtahedi et.

al. [31] analyzed transitions in lineage progression in a population that was attributed to a fluc-

tuation-driven disappearance of an attractor basin. But to our knowledge, the current work is

the first to show the direct relationship between fluctuations in and dynamic covariances

between network variables and the thermodynamic quantities that contribute to housekeeping

heat.

We have limited our theoretical Thermo-FP approach to one that is experimentally tracta-

ble. We have shown here how the use of a potential landscape and a diffusion matrix provides

a framework for determining the relative energetic contributions of the components of a regu-

lated network. We use FP dynamics because it allows us to apply fluorescence microscopy data

from living individual cells and cell populations to directly determine distributions and fluctu-

ations. This approach precludes the need to infer transition probability rates that are needed

for a master equation.

With this approach, we derive an experimentally accessible value for _QHK , the rate of heat

dissipation associated with maintaining the nonequilibrium steady state, directly from the

Boltzmann H function. While we have presented this method as applied to analyzing steady

state distributions, this approach is also applicable to dynamic population state transitions as

discussed in S1 Text.

Large magnitudes of correlated fluctuations of network components are associated with

large rates of heat dissipation [54], and our theoretical treatment shows that this is especially

true when these fluctuations occur in areas of steep landscape gradients. Noise and complexity

are defining features of biological systems, and the Thermo-FP analysis suggests a thermody-

namic basis for the relationship between noise and complexity and the stability of a regulated

network. Fluctuations are required to ensure ergodicity by allowing cells to escape from deep

attractor basins and maintain the stability of the entire landscape structure. We may consider

that a biological system requires both stability and adaptability even though these may seem to

be opposing characteristics. The Thermo-FP treatment presented here provides a thermody-

namic basis for understanding why both the diffusion matrix and barrier gradients are impor-

tant for maintaining the distribution of phenotypes. Deeper attractor basins associated with
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non-negligible diffusion coefficients enable stability of the network landscape during nomi-

nally constant environmental conditions, and shallower attractors allow adaptation to chang-

ing conditions through transition to a new steady state. Very small diffusion coefficients could

result in long-lived metastable states, analogous to glassy conditions.

The reasonable assumption that there will be an upper limit to the rate of heat dissipation

in a biological system suggests that characteristics of landscapes and diffusion coefficients pro-

vide insight into numbers of network variables and the stability and composition of the net-

work. There exists a geometric estimation of the number, N, of variables required for

convergence in terms of the volumes of N-balls and N-ellipsoids [55]. Depending on charac-

teristics of the system, such as roughness of the landscape, sufficient numbers of network

terms can be predicted to be as small as a few, or many times larger. A reasonable estimate for

the number of variables is between 8 and 10. How a sufficient number of terms for conver-

gence to N can be determined is discussed in S1 Text. For example, very large landscape gradi-

ents that correspond to large eigenvalues would contribute strongly to the overall dissipative

heat of the network, and a small number of such contributors may be sufficient to reach a ther-

mal limit. This condition would be indicated by a landscape containing one or a small number

of very deep attractor basins.

The measurement of dynamic correlations of many cellular variables over time in individ-

ual cells is in principle achievable with time-resolved fluorescence microscopy of live cells (see

S1 Text for details), especially when enabled by automation and advances in handling of large

image datasets [56, 57]. Although transcriptomics analysis can probe a larger number of genes

compared to live cell imaging, the appropriate interpretation of the relative significance of

these changes to network function and their relationships to one another can be ambiguous

[21, 33]. Methods like transcriptomics analysis that rely on “snapshots” of populations at single

points in time can infer temporal and treatment-dependent relationships between variables,

but real time trajectories of changes in gene expression in individual cells, such as is accessible

by live cell imaging, can provide unambiguous determination of correlations in stochastic fluc-

tuations between network variables.

In Thermo-FP, stochasticity is captured in the dynamic fluctuations of the network vari-

ables. The magnitudes of the correlations in dynamic fluctuations provide a direct measure of

the thermodynamics of network component interactions (since the magnitudes of the fluctua-

tions are proportional to kBT, Boltzmann’s constant times temperature). Thus the magnitudes

of the correlations are proportional to the relative energetic significance of their contribution

to the network. The correlations in fluctuations between each pair of N variables of the net-

work are assigned to an N x N diffusion matrix for each microstate. The rate of heat dissipation

associated with each composite variable is determined by the magnitude of the fluctuations

and the gradient of the landscape. A variable that is a negligible contributor to dissipative heat

would be predicted to play a small role in maintaining the network, and could indicate that the

variable is coincidental, but not causative, to network function. To achieve unambiguous inter-

pretation, we show here how these putative relationships can be assessed experimentally by

directly measuring trajectories in variable space and their covariance.

This analysis has potential practical implications. _QHK is a quantitative measure of the rate

of heat produced to maintain a regulatory network. The magnitude of _QHK can be used to

compare the relative thermodynamic cost of different steady-state phenotypic distributions.

For example, as a metric it could provide insight into the thermodynamics of different regula-

tory networks, or the same network functioning in cells from different individuals. It will be a

useful metric to guide cell therapy manufacturing conditions, and to guide the engineering of

regulatory pathways in synthetic biology applications.
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Conclusions

Thermo-FP analysis, through rigorous connection to the Boltzmann H function and the rate

of dissipation of free energy of the nonequilibrium steady state, provides a direct relationship

between composite network variables and their contribution to the heat of maintaining

homeostasis of the network.

The application of the Thermo-FP approach allows dynamical analysis of network interac-

tions and cell states on a continuous landscape. A multidimensional (or multi-variable) land-

scape that considers the dynamics of network components can provide unique understanding

of the correct interpretation of cellular phenotypic indicators in the context of other network

components, stable attractor states and rates at which neighboring phenotypic states can be

accessed. Furthermore, we have shown how _QHK , the dissipative heat required to maintain a

multi-variable network can, in principle, be determined from experimentally tractable data

consisting of a steady state distribution and a diffusion matrix of dynamic covariances in net-

work variables. Each eigenvalue/eigenvector of the N-dimensional rotated matrix represents a

unique and independent cluster of cooperative interactions of network components, and each

constitutes a degree of freedom of the network.

Experimental observations of short-time changes in multiple network variables allows

determination of the extent to which the time-dependent expression of variables is correlated.

The observation of these correlations over time in individual living cells provides confirmation

of causative relationships between variables.

This approach to analysis of the multivariable landscape of microstates provides unique

insight into the components, paths, and the thermodynamic price associated with maintaining

a nonequilibrium regulated network. While we have focused this analysis on the steady state

distribution, this approach will also be useful for tracking how cellular populations transition

from one steady state to another in response to environmental changes, by helping to identify

and quantify interactions between network components during transitions.
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