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Abstract

Ensuring the safety of healthcare workers is vital to overcome the ongoing COVID-19 pan-

demic. We here present an analysis of the social interactions between the healthcare work-

ers at hospitals and nursing homes. Using data from an automated hand hygiene system,

we inferred social interactions between healthcare workers to identify transmission paths of

infection in hospitals and nursing homes. A majority of social interactions occurred in medi-

cation rooms and kitchens emphasising that health-care workers should be especially

aware of following the infection prevention guidelines in these places. Using epidemiology

simulations of disease at the locations, we found no need to quarantine all healthcare work-

ers at work with a contagious colleague. Only 14.1% and 24.2% of the health-care workers

in the hospitals and nursing homes are potentially infected when we disregard hand sanitiza-

tion and assume the disease is very infectious. Based on our simulations, we observe a

41% and 26% reduction in the number of infected healthcare workers at the hospital and

nursing home, when we assume that hand sanitization reduces the spread by 20% from

people to people and 99% from people to objects. The analysis and results presented here

forms a basis for future research to explore the potential of a fully automated contact tracing

systems.

Introduction

During the ongoing COVID-19 pandemic, the safety of healthcare workers (HCWs) is of great

importance to secure a functional level of staffing at hospitals and nursing homes. HCWs are

at high risk of SARS-CoV-2 exposure through direct or indirect contact with infected patients,

colleagues or equipment [1, 2]. With the upsurge in hospital admissions, this pandemic is

threatening to leave some healthcare systems overstretched and unable to operate effectively

[3].

One effective method to reduce the risk of transmission is effective and timely contact trac-

ing [4–7] which allows for containment of the pathogen by isolating potentially infected
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individuals. When an HCW is diagnosed with COVID-19, the healthcare organisation is

responsible for carrying out the contact tracing and identifying close contacts of the infected.

Currently, contact tracing is a manual process which makes it time-consuming, resource-

heavy and slow. If an HCW is tested positive for COVID-19, the person must remember inter-

actions with colleagues to identify who has been exposed and should self-isolate. Recalling

every social interaction is hard which in turn makes contact tracing very imprecise. Recent

research has highlighted these issues with traditional contact tracing and argue for data-driven

methods to make contact tracing efficient [8, 9]. With the onset of the SARS-CoV-2 pandemic,

there has been an increased focus on the importance of proper hand hygiene to reduce the

spread of diseases. Inspired by this, we here analyse data from an automated hand hygiene sys-

tem [10, 11], focusing on the interactions between HCWs. The main objective of this study is

to investigate the social interactions that occur at hospitals and nursing homes and identify

risk factors relevant to the spread of SARS-CoV-2. We aimed to use the data from the auto-

mated hand hygiene system. We will use Monte-Carlo methods to estimate the number of

infected HCWs and how many of them should be quarantined. The main contributions of this

study are:

• Evaluation of the risk of spread of infectious disease among HCWs.

• Identification of rooms which are central for the spread of disease in which HCWs should be

especially aware to wear personal protective equipment, sanitize hands and clean surfaces.

• Estimation of the numbers of infected HCWs in case of infectious disease outbreak.

This study is part of a larger research collaboration between Technical University of Den-

mark, Konduto, Aarhus University Hospital, and Sølund nursing home. The research project

aims to develop automated data-driven contact tracing, based on the hand hygiene monitoring

system. One of the benefits from this would be that only HCWs at risk are required to quaran-

tine and to be tested when there is an outbreak.

Methods and material

Study design and setting

We conducted a prospective, observational study between August 13, 2020, and November 11,

2020, in a Danish university hospital (Aarhus University Hospital, 4 wards, 64 beds) and a

nursing home facility (Sølund Nursing Home, 6 floors, 156 apartments).

Study subjects. In the hospital, the study subjects included nurses (n = 123), doctors

(n = 86), and cleaning staff (n = 11). In the nursing home, the study subjects included both

nurses and nurse assistants combined (n = 64). Participation of the study subjects was volun-

tary. We did not monitor HCWs who did not participate. Five HCWs from both the hospital

and nursing home did not participate. Data were anonymised to both study participants and

investigators. The HCWs in the nursing homes were stratified into the following groups: day

shifts (7.30 am to 3.30 pm), evening shifts (3.30 pm to 11.30 pm) and night shifts (11.30 pm to

7.30 am).

Data collection. Data were collected using an automated hand hygiene system (Sani

nudge, Copenhagen, Denmark, https://saninudge.com. Accessed Aug 5, 2021).

System setup. We here provide a brief description of the automated hand hygiene system.

Bluetooth sensors were placed on existing alcohol-based hand rub dispensers and above

patient beds. Anonymous Bluetooth sensor IDs were placed on the existing name badges of

HCWs and encoded with the occupation of the ID wearer. Furthermore, the sensors on the
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hand rub dispensers register when the dispenser is being used and nudges nearby HCWs to

perform hand hygiene using discrete lights [10, 11].

The stationary sensors continuously tracked the presence of nearby Bluetooth sensor IDs,

indicating the presence of an HCW. This data is combined into a hand hygiene event, giving

the location of an HCW (anonymized and known only by its sensorID) and whether the HCW

performed hand hygiene according to the WHO guidelines for patient interaction [10]. The

sensors were placed in rooms where hand hygiene is important, such as patient rooms and

medication rooms at the hospital and apartments (resident homes) and kitchens at the nursing

home A complete list of rooms can be found in S1 File. The system has been clinically validated

[12]. Fig 1 contains an overview of the system setup in a patient room.

Encounters. A single hand hygiene event has a location, time, duration and ID. The

data locates HCWs into specific rooms for a specific time-frame. If the system detected two

events within the same room at the same time-window, we infer that two HCWs have met

at that location. We define this meeting or interaction between two individuals as an

encounter between the two HCWs. These encounters naturally define the edges of a social

network.

Fig 1. The Sani nudge hygiene system in a hospital patient room. 1. A Sensor on a dispenser registering the number of alcohol-based hand rubbing

events; 2. An anonymous sensor on the name badge of each healthcare worker. The sensor is coded according to staff profession. 3. The patient zone

(illustrated with blue) created by the sensor near the head of the patient bed. Data captured by the sensors are sent to a secure cloud-based server and stored

at the device level. The two persons in the figure are volunteers and not part of the study.

https://doi.org/10.1371/journal.pone.0257684.g001
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Social network. A social network describes the social interactions between members of a

community. Graph theory and social networks have a rich tradition in epidemiological

research going back to the 1980s [13, 14], and have been used to perform contact tracing in

case of an infectious disease outbreak [15–18]. Through network analysis, we can identify

which person has been in contact with an infected person or identify chains of encounters

from a person to an infected person. We can use the network structure to identify central

members, which plays a central role in the spread of an infectious disease.

Modelling

We consider the set of nodes V and the set of edges E, which defines a social graph G = (V, E).

We include both rooms and HCWs in the set of nodes V, and E contains the encounters

inferred between two nodes in V. We use the set of edges to identify paths of transmission of

an infectious disease. We define two different type of edges in the network.

1. Edges between two different HCWs

2. Edges from the two HCWs to the room, where the encounter occurs.

We include edges between persons and rooms, because a virus could be transmitted to sur-

faces in these rooms and further transmit the disease to subsequent HCW using the rooms.

Centrality measure. One of the advantages of using a social network in infectious disease

analysis is the ability through centrality measures to identify key nodes in the network [18].

The centrality of a node v, indicates the ability for that node to transmit the infectious disease

to other nodes. The degree centrality of a node v is the fraction of nodes in V it is connected to.

The degree centrality is normalised by dividing by the maximum possible degrees of a node,

which is the length of V minus 1, as self-loops are excluded:

CDðvÞ ¼
degðvÞ
jVj � 1

ð1Þ

Dynamic graph. Not only is the encounter between HCWs important for the spread of

disease, but the time of the encounter is vital, too. For an edge between two HCW to be able to

spread a disease, one of the HCW must have been infected or infectious at the time of the

encounter. We extend the social graph to include the temporal dynamics of the disease

spread. We still keep the entire set V, however, denoting the temporal edges Et, where t is the

time-step in the simulation. The temporal dynamics allow the edges to evolve, as new social

interactions occur, and old ones are updated based on social interactions. An example of a

dynamic graph can be seen in Fig 2.

Using the social graph we can analyse individuals who might be infected by analysing

chains of infected HCWs. We can also use the dynamics of the network to determine when an

HCW was possibly infected.

Simulations

For assessing the number of infected people by a disease outbreak, we used a Monte-Carlo

based approach using the SIR-model [19] dynamics on the social graph. The SIR model was

adopted due to its common use in epidemiological research [15, 19, 20]. In a SIR model, indi-

viduals in a population transition between the states of Susceptible, Infectious and Recovered
(SIR), similar to the approach in [20]. We model the state of employees as a binary boolean
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vector Yt containing all nodes in the set of nodes

yi;t ¼

(
1 if node i is infected

0 otherwise
ð2Þ

The state indicates the state of a node either Infectious (1) or Susceptible (0). Assume we

have an employee yi,t who is not sick at time t, and has an encounter with employee yj,t for a

duration of t0, we then compute the probability of yj,t being sick based on the duration of the

encounter and the state of yi,t. We use this probability as the weight of the edge e{i,j},t in the

set Et.
Reed-Frost. We model the epidemic using a Reed-Frost model [21], which is a discrete-

time epidemic model. Initially, at time-step t = 0 we let a randomly chosen person be infectious

and the rest of the network be susceptible. Individuals who are affected at time t infect suscep-

tible connected nodes in G by edge et independently with probability p. Those who become

infectious at time t are the infectious t + 1 and can spread the disease through Et+1. Even

though the true transmission probability p is unknown, some kind of Poisson transmission

dynamics is often assumed [15, 22–24]. Here we model the probability of transmission p as

an independent Poisson process with a rate λ and time interval as the observed time in

encounter t0.

efi;jg;t ¼ pðyj ¼ 1 j yj ¼ 0; yiÞ ¼

(
0; yi ¼ 0

1 � e� lt0 yi ¼ 1
ð3Þ

Using the estimated transmission probabilities (Eq 3), we set up a stochastic simulation.

When 2 HCWs meet we draw Bernoulli random variables using the estimated p for the distri-

bution to simulate if an HCW transmits the disease to another HCW. We also note that if a

node is susceptible and not sick, we will allow for any spread of disease across the edge con-

necting the two nodes. We assume that any transmission of diseases between individuals fol-

lows the probability from Eq 3. The rate λ can be altered to model different diseases or the

same disease with or without sufficient personal protective equipment. The λ is the number of

events we expect within a 15-minute time window. We applied three different λ values in our

simulations:

Fig 2. Here a dynamical graph is depicted. There are 4 nodes (1,2,3 and 4), which represent 4 different HCWs. At

t = 1, node 1,2 and 3 connect; then at t = 2, node 2, 3 and 4 connect.

https://doi.org/10.1371/journal.pone.0257684.g002
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• λ = 1, which is equal to a high probability of being infected if a contact has been 15 minutes

or longer.

• λ = 15, which means that there is a high probability of spreading the disease after each min-

ute of an encounter

• λ = 200, which is an extreme case. Where there is a high probability of transmission even for

encounters lasting a few seconds. We use this to identify a worst-case scenario in case of a

disease outbreak.

Using these three different values we evaluate a range of scenarios, from the extreme cases

to the more realistic scenario.

Hand sanitizer. The effect of using hand sanitizer in respiratory diseases transmission

between individuals is difficult to determine in the general society [25–27]. Previous studies

have estimated the effect of using hand sanitizer to be within 16–21% reduction in transmis-

sion in the general public [25–27], and for transmission to rooms (surfaces and equipment)

to be a reduction of 99% [28]. In these simulations, we assume that if an HCW uses hand

sanitizer, we reduce the transmission probability p by either 20% for HCW to HCW and 99%

for HCW to a room. We opted for a 20% reduction which is a round value within the

interval.

We weight the edges in the network according to transmission probabilities computed

using Eq 3. If the system observes a hand sanitation then the probability is reduced by 20%.

We assume that HCWs can spread the disease for 4 days, before they contract symptoms and

stay at home. The 4 day threshold was selected to account for the variability (between 2 and 4

days) in the presymptomatic spread of SARS-CoV-19 [29].

Ethics

Pursuant to the Danish law, approval was queried and evaluated as not needed by both the

Ethics Committee (J. no. 20028629) and the Danish Data Protection Agency (J. no. 2020–211-

4867). Participation in the study was voluntary. Participants were informed verbally and

received written information about the project. Informed consent was given by the partici-

pants active choice to pickup and carry a tag during their working hours.

Results

In total, the system observed 89791 hand hygiene opportunities from the hospital wards

and 18590 hand hygiene opportunities from the nursing home facility, which resulted in

17008 encounters (HCW interactions) at the hospital and 4717 encounters at the nursing

home.

The average meeting duration between two individuals was higher for nursing homes (191

seconds) compared to the average meeting duration at the hospitals (100 seconds). We found

that hospital meetings are frequent and short, compared to the nursing home where the

encounters are less frequent but with a longer duration. Only a small fraction (Hospital = 1.1%

and Nursing homes = 5.3%) of the actual meetings occur for a length of more than 15 minutes

(Table 1). Health authorities use a threshold of 15 minutes of exposure to an infected person to

determine if an HCW should self-quarantine. We observe that the risk of being exposed to an

infected person for more than 15 minutes is not likely. We see that the risk of 15 minutes con-

tinued exposure is higher at nursing homes compared with hospitals.

PLOS ONE Analysis of social interactions relevant to the spread of infectious diseases at hospitals and nursing homes

PLOS ONE | https://doi.org/10.1371/journal.pone.0257684 September 20, 2021 6 / 14

https://doi.org/10.1371/journal.pone.0257684


Staff distributions

The nurses accounted for the majority of the hand hygiene opportunities and interactions that

took place between the HCWs in the hospital (Fig 3). The nurses spend the most time in the

different rooms, whereas the doctors rarely spent more than 5 minutes inside a room (Fig 3).

At the nursing home, we observe a similar spread between the different employee types (Fig

4). The night guards have a slightly lower number of observations compared to the day guard

and the afternoon guard. The distribution of meetings appears to be similar across the different

HCWs types (Fig 4). The employees at the nursing home have comparable tasks to complete

during a working day, and there is not a large difference between the day shift and afternoon

shift. We find that the distribution of HCW types are spread equally at the nursing home, com-

pared to the hospital, where the nurses account for a large majority.

Centrality measure

We here present the centrality measures (Eq 1) for the different nodes at the two locations. We

used a dynamical graph that spans four days. This duration reflects the duration where an

HCW is assumed to be infectious to the time when they start to show symptoms. Once the

HCW shows symptoms, the HCW must self-isolate and notify management, to initiate contact

Table 1. Overview of the duration of the different observations at the different locations. Not accumulated.

Location 0–1 minut 1–5 minute 5–10 minutes 10–15 minutes > 15 minutes

Nursing Home 33.7% 39.5% 15.8% 5.6% 5.3%

Hospital (all rooms) 46.7% 43.0% 7.3% 1.8% 1.1%

Hospital (only patient rooms) 46.2% 49.1% 4.2% 0.4% 0.001%

https://doi.org/10.1371/journal.pone.0257684.t001

Fig 3. Distribution of encounter durations of the different types of HCW at Aarhus University Hospital.

https://doi.org/10.1371/journal.pone.0257684.g003
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tracing. We used a period of four days to assess the risk of spread at the locations. The simula-

tion uses a time-step of 15 minutes.

In the hospital, we found that medication rooms are by far the most central locations in the

social network. This indicates there is an increased risk of disease transmission in medication

rooms because many HCWs have edges connecting to this room (Fig 5). We also see that the

nurses are central nodes in the network because they have many connections when compared

to the centrality measure of a doctor.

At the nursing home, we find an equal distribution of the centrality measure compared to

the hospital (Fig 6). The kitchen is the place where most employees are present at the same

time, which indicates that this is an important risk area. Also, we observe interactions occur-

ring in the hallway. At the nursing home, the hallway is where residents spend time with lei-

sure activities and social gatherings. In the hallway, HCWs should be cautious, as they interact

with residents but also with other HCWs.

Common for both locations is that we found that the rooms where there exists an interac-

tion between an HCW and a patient/resident are not the most central rooms. However, we

find that rooms, such as the kitchens and the medication rooms, play far more important roles

in the structure of the social networks.

Results from simulations

We used Eq 3 with different λ to simulate different scenarios. We adjusted λ to simulate differ-

ent levels of infectiousness and HCWs use of masks and other protective gear. In the social net-

work, we identify 123 nodes at the hospital (43 rooms and 80 HCWs) and 52 nodes at the

Nursing home (29 HCWs and 23 rooms). We found that for the extreme case (λ = 200) there

is no need to isolate and quarantine the entire staff and clean every room (Table 2.). For the

more reasonable cases (λ = 1 and λ = 15) we see that only a few rooms and HCWs get infected,

and therefore a complete shutdown is not required.

Fig 4. Distribution of encounter duration of the different types of HCW at Sølund nursing home.

https://doi.org/10.1371/journal.pone.0257684.g004
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Fig 6. Boxplot showing rooms where the duration of the encounters are above 15 minutes at Sølund nursing home.

https://doi.org/10.1371/journal.pone.0257684.g006

Fig 5. Boxplot showing rooms where the duration of the encounters are above 15 minutes at Aarhus University Hospital.

https://doi.org/10.1371/journal.pone.0257684.g005
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For both locations (Table 2, Figs 7 and 8), we observe a reduction in the number of infected

people, when we included hand sanitizing in the models. At the hospital, we see a lowering on

an average of 7.04 infected HCWs and at the nursing home 3.37 HCWs using λ = 15, which

corresponds to a 41% and 26% reduction in infected HCWs. Even if we underestimate the

effect of hand sanitizer, there appears to be a reduction in the number of infected persons.

Discussion

Through the analysis and results, we have identified rooms which are central to the spread of

disease at hospitals and nursing homes. These rooms are areas of risk where HCWs should be

extra careful to follow the infection prevention guidelines, such as social distancing, wearing

masks and sanitizing hands.

Interestingly, we found that a majority of encounters in the hospital (98.9%) and the nurs-

ing home (94.5%) are shorter than 15 minutes which otherwise is the time-period used as a

guideline for being classified as a close contact in Denmark [30]. To our knowledge, the 15

minutes cut-off is based on theoretical assumptions and consensus and is not evidence-based,

as for COVID-19 cases are coming from multiple shorter exposure to infected [31]. Our results

question the clinical relevance of this cut-off time as it appears conservative. We find that a

Table 2. Number of infected rooms and HCWs at the different locations using different λ in Eq 3.

Location λ = 1 λ = 15 λ = 200 λ = 15 with sanitizer

Nursing Home 2.14 12.57 30.17 9.20

Hospital 2.46 17.31 63.31 10.27

https://doi.org/10.1371/journal.pone.0257684.t002

Fig 7. Histogram over the number of infected and the frequency over 100 simulations at the hospital.

https://doi.org/10.1371/journal.pone.0257684.g007
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contact tracing system must account for short encounters down to encounters between 1 to 5

minutes to identify a majority of contacts to be effective and work in clinical practice, and use

this to calculate the cumulative exposure time to an infected. When relying on manual contact

tracing, short encounters can be difficult to remember which introduces a high risk of recall

bias and potentially forgetting important interactions with an infected person. One of the

strengths of an automated contact tracing system is that it can identify these short encounters

and use it to identify and alert exposed personnel who should quarantine. This can be done

quickly and effectively which minimises the risk of further disease transmission as otherwise

seen with time-delaying processes during manual contact tracing. We therefore argue that the

research presented here provides a basis for future research to explore a fully automated con-

tact tracing system.

We recognise some of the limitations of our approach. First, we only monitored HCWs but

it might also be relevant to collect data on visitors once the healthcare organisations allow visi-

tors again. In nursing homes, the residents spend much of their time in common areas where

interactions with other residents take place. These interactions constitute paths for disease

transmission but were not the focus of this study. Likewise spread of disease from hospitalised

patients to the staff has not been studied here. Given the current circumstances at nursing

homes and hospitals wards without COVID-patients, it is more likely that HCWs contract the

disease outside of the workplace, and bring the virus to work where spread of disease takes

place [32].

Some HCWs might have altered some of their routines, knowing that they are being moni-

tored. Previous research has shown that the HCWs alter their routines when they are nudged

using light to use hand sanitizer more, which in turn increases the sanitation of the locations

[10, 11].

Fig 8. Histogram over the number of infected and the frequency over 100 simulations at the nursing home.

https://doi.org/10.1371/journal.pone.0257684.g008
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Second, we did not install the sensors in the offices, nursing stations, and kitchens where

some of the social interactions take place. These interactions are therefore not included in the

analysis. The locations of the sensors were carefully selected by their importance on hand

hygiene according to official guidelines and by extension, their relevance for disease spread.

However, we believe that interactions in the offices and kitchens also pose a risk of disease

transmission, and should be included in future studies. We remark that we used a simplified

model of the rooms, and do not account for HCWs wearing Infection Control and Prevention

(ICP) equipment. We did not incorporate and account for cleaning of the rooms, as rooms no

longer are infectious after being cleaned. However, we argue that for the case where a patient is

infected, cleaning the patient room will not prevent the disease from spreading from patient to

HCW. To account for this, we let the rooms follow the same dynamics as HCWs in the simula-

tions. Ideally, knowledge of which rooms contain a patient can alleviate this limitation.

Third, these simulation-based results have not been clinically validated during disease out-

breaks in the wards. Ideally, the transmission probabilities would be estimated using statistical

models. These statistical models would provide a basis for assessing the actual probability of an

HCW contracting an infectious disease. With further analysis of the data and the statistical

models, the effect of hand sanitizer to reduce the spread of respiratory disease could be

measured.

Based on the points made in this research paper, we believe there is justification for future

work to expand on this social network structure by including all room types and by investigat-

ing the probability of transmission between HCWs, which we here assumed to be determined

by an independent Poisson process.

Conclusion

In conclusion, we have analysed the social interactions and risk factors which are relevant to

the spread of infectious diseases at hospitals and nursing homes. We generated a dynamical

social graph using an already installed hand hygiene monitoring system. Through analysis of

the social graph, we identified medication rooms and kitchens as key rooms where HCWs

should be particularly aware of following the infection prevention guidelines as there is a high

risk of infectious disease transmission due to a high number social interactions occurring in

these rooms. We observed a reduction of 41% and 26% of the number of infected HCWs, from

the hospital and nursing home, respectively, when we account for the use of hand sanitizer.

When considering the extreme case of a very contagious disease and no hand sanitation, we

find that 14.1% and 24.2% of HCWs in the hospitals and nursing homes are potentially

infected.
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