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Determination and correction 
of persistent biases in quantum 
annealers
Alejandro Perdomo-Ortiz1,2, Bryan O’Gorman1,3, Joseph Fluegemann1,4, Rupak Biswas5 & 
Vadim N. Smelyanskiy6

Calibration of quantum computers is essential to the effective utilisation of their quantum resources. 
Specifically, the performance of quantum annealers is likely to be significantly impaired by noise in their 
programmable parameters, effectively misspecification of the computational problem to be solved, 
often resulting in spurious suboptimal solutions. We developed a strategy to determine and correct 
persistent, systematic biases between the actual values of the programmable parameters and their 
user-specified values. We applied the recalibration strategy to two D-Wave Two quantum annealers, one 
at NASA Ames Research Center in Moffett Field, California, and another at D-Wave Systems in Burnaby, 
Canada. We show that the recalibration procedure not only reduces the magnitudes of the biases in 
the programmable parameters but also enhances the performance of the device on a set of random 
benchmark instances.

Quantum annealing (QA) is a metaheuristic for solving combinatorial optimization problems1. The recent intro-
duction of QA hardware by D-Wave Systems2,3 has invigorated theoretical and experimental research into the 
computational power and practical implementation challenges of the QA paradigm. Current research studies focus 
on both fundamental and applied aspects, including application to real-world problems4–8, criteria for detecting 
quantum speedup9, the computational role of quantum tunneling10, error-supression11, the relationship between 
classical simulated annealing and quantum annealing12–17, spin-glass perspectives on the hardness of computational 
problems18–22, and programming strategies that address intrinsic noise23,24.

The quantum annealers used for this study are of the second generation of D-Wave devices, also called D-Wave 
Two2: one located at NASA Ames Research Center in Moffett Field, California, (“NASA device”), and another 
located at D-Wave Systems in Burnaby, Canada (“Burnaby device”). These consist of 64 unit cells of a previously 
characterized eight-qubit unit cell3,25. In the NASA and Burnaby devices, post-fabrication characterization deter-
mined that only 509 and 424 qubits, respectively, out of the 512 qubit arrays can be reliably used for computation. 
The array of coupled superconducting flux qubits is, effectively, an artificial Ising spin system with programmable 
spin-spin couplings and longitudinal and transverse magnetic fields. It is designed to solve instances of the following 
(NP-hard26) classical optimization problem: Given a set of local fields {hi} ⊂ [− 2, 2] and couplings {Jij} ⊂ [− 1, 1], 
find the assignment = ∈ ±
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Finding the optimal s* is equivalent to finding the ground state of the corresponding quantum Ising Hamiltonian 
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Ising , where σi
z is the Pauli z operator acting on the ith spin. More details of QA can 

be found in the supplementary information.
Currently, D-Wave devices are only calibrated at the level of ensuring that the low-level control circuitry has 

its intended effect on the physical quantities like current, flux, etc., that it is meant to control27 (Lanting, T. Private 
communication, 2015). Early research into the performance of D-Wave devices has indicated the presence of 
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significant imprecision in the setting of the fields that define the problem to be solved, a significant impairment 
to the successful solution of the problem13,17,19,23. Recently, some work has used a phenomenological noise model 
of the fields {hi} and {Jij} in which the distributions of the deviations from the programmed values are given by 
Gaussians with means zero and standard deviations, respectively, of 0.05 and 0.035 (in units of the maximal Jij), 
independently instantiated for each qubit and anneal and constant throughout the course of a given anneal. The 
parameters of the Gaussians were derived by adding in quadrature the variances of several known microscopic 
sources of noise (Lanting, T. Private communication, 2015). This model has been used in an attempt to explain 
the failure rate of D-Wave devices as partly due to misspecification of the programmable values. There are many 
sources of noise in quantum annealers, each with a different effect and time scale, and we address here only one 
manifestation. The variances we report in this paper are in a sense incomparable to those just mentioned, and 
relevant only within the context of the experiments described below.

The presence of systematic biases in quantum annealers has been reported elsewhere24. The biases referred 
to there are fundamentally different in nature from the ones address here, in that the former are collective biases 
on the qubits of ferromagnetic chains that depend on the strength and topology of the couplings therein and are 
due to the noise specifically caused by those couplings, and they must be determined anew for each embedding 
topology used. In this work, we present a methodology for determining, in parallel and using a relatively small 
amount of total annealing time, the persistent (see Fig. S3), systematic biases in all of the individually available 
programmable parameters of a quantum annealer. We show that correcting for these biases produces an increase 
in the quality of solutions found on a set of random benchmark instances. The strategy presented here is the first 
proposal for a software-level recalibration of the full device by the user, i.e. based only on the data from tailored 
instances and without access to the low-level control circuitry.

Results
Because actual quantum annealers operate at non-zero temperature, there exists some threshold for the values of 
the fields {hi} and couplings {Jij} below which thermal effects dominate the annealing process. When the strengths of 
the fields and couplings are set sufficiently small, the probabilities of the final states of the qubits are well described 
by a Boltzmann distribution. Roughly, the relevant energy scale is given by kT, where k is Boltzmann’s constant 
and T is an effective temperature, not necessarily equal to the device temperature. (Henceforth, we will work in 
units in which k =  1.) By running experiments in this regime, persistent biases in the values of the programmed 
fields can be uncovered, as described in detail in the Methods section.

In our model, = +( ) ( )h h hi i i
p b is the effective value of the local field of qubit i, where ( )hi

p  is the user-programmed 
value and ( )hi

b  is the ( )hi
p -independent bias. In an ideal device, =( )h 0i

b .
Let (↑ )( )p hi i

p  (↓ )( )p h[ ]i i
p  be the probability of qubit i being in the spin-up [spin-down] state at the end of an 

anneal with the programmed value ( )hi
p . A completely thermal model for this probability is given by
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(We assume that ( )hi
b  and Ti are constant at least over the course of the experiment.) More generally, we define the 

function α(p) ≡  (1/2) ln [(1 −  p)/p]. Once experimental values of α ( )
( )hi i
p  are obtained for various values of ( )hi

p , 
the data are fit to obtain the estimates of ( )hi

b  and Ti. The biases of the couplings between qubits can be determined 
in a similar fashion. (See Methods section for more details).

To illustrate the efficacy of our approach in quantum annealers, we applied our method to two D-Wave devices, 
the NASA device and the Burnaby device.

Determination of the h biases. Figure 1(a,b) shows two windows of α ( )( ) ( )


hh p  for one experiment on the 
NASA device. Figure 1(b) shows the range h(p) ∈  [− 0.1, 0.1] used in the calculation of the biases. There, the linearity 
of α( )

h , and thus the accuracy of the thermal model, is evident; this is typical of all the experiments reported. 
Figure 1(a) shows a wider window h(p) ∈  [− 0.35, 0.35], where the nonlinearity outside of the former range is evident, 
indicating the failure of the thermal model for larger magnitudes of h(p), where annealing dynamics start to dom-
inate thermal dynamics. Figure 1(c) shows α ( )( )


h2

p , revealing the limited resolution 0.025 of the digital-to-analog 
converters (DACs) used to implement h2. Such stepping behavior is typical for all of the qubits.

Narrowing of the bias distribution. To show the correctability of the persistent biases, we ran the experiment 
described above repeatedly, each time attempting to correct the biases using estimates thereof from the prior 
iteration. Let ( , )hi

kb  
( , )
T[ ]

h k
 be the experimentally determined value of the bias ( )hi

b  
( )
T[median temperature ]

h
 based 

on the k-iteration; by convention, set =( , )h 0i
b 0 . Let h(p,0) be the desired programmed value. In the k-th iteration, 

we set
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Figure 1(d,e) show the distribution of α≡
( , ) ( , ) ( , )




h T{ } { }i
b k

i
b k h k

 for the first and second iterations, i.e. before and 
after the recalibration procedure. The narrowing of the distribution is a clear indication that the procedure is 
working to remove the biases.

Further support for the success of recalibration is provided by looking at the distribution over the qubits of the 
success probabilities for all values of h(p). Figure 1(f) shows a uniform reduction of the variance over the qubits in 
the values of h. Each point is the mean h over the qubits of h{ }i  for the corresponding h(p), and the shaded region 
indicates the standard deviaton. The narrowing of the distribution is clear evidence that the recalibration procedure 
not only narrows the distribution of the biases [Fig. 1(d,e)], as reflected in the shift of the mean, but also reduces 
the variance for all values of h(p).

Determination of the J biases. In the data presented here, the J biases were determined using (7). The 
programmable value of the local fields ( )h{ }i

p  were uniformly set to zero (see Methods section for more details).
Figure 2(a) shows the median quantity α( )

J  for evenly spaced values of J(p) in [− 0.1, 0.1], as well as a line fit 
thereto. The closeness of the fit of the line confirms the accuracy of the thermal model as for α( )

h .
Figure 2(b), analogous to Fig. S2(b), shows the standard deviation σ

J i
 over the qubits of the estimates 

α=,
( )

,
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J T{ } { }i j

k
i j
k J k  of {Ji,j} for different values of J(p), for each of the three iterations of experiments as described 

above. The estimates 
( )
J{ }ij

k
 were calculated independently for each iteration k using its mean effective temperature 

( , )T J k . There is a significant change from the first iteration of corrections, but then the standard deviation remains 
approximately the same after the second iteration. Considering the average over the values of J(p), the overall 

Figure 1. Detection and correction of systematic biases. (a) From a single experiment without correction, the 
median quantity α ( )( ) ( )


hh p , over the qubits, of the quantities α ( )( )


h{ }i

p  for various values of h(p) in [− 0.35, 0.35]. 
(b) Same as (a), but only using values of h(p) in [− 0.1, 0.1]. Note the tightness of the fit to a line, indicating the 
validity of the thermal model. (c) From the same experiment as in (b), the quantity α ( )( )


h2

p  for a single, typical 
qubit, 2. Note the step function resulting from the limited precision of the digital-to-analog converter used to 

control the field. (d,e) The estimated biases 
( , )


h{ }i
b k

 from two experiments k =  1, 2. The first is without 
correction; the second was corrected using the biases estimated from the first. Note that the distribution 
significantly more narrowed and centered near zero after correction. (f) The average over the qubits of the 
quantites h{ }i  for different values of the programmed h(p), with error bands given by the standard deviation. As 
for (d,e), note the narrowing and centering of the distributions.
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variance is about the same before and after correction, yet is much more uniform after correction, which we con-
sider beneficial.

Figure 2(c), analogous to Fig. S1(c), shows the standard deviation σ ,
( , )
J

r k
41 47 of the estimates ,

( )
J{ }

k
41 47 . The correction 

seems to have no effect in this regard, and the there is a consistent increase in the variance with increasing mag-
nitude of the programmed value J(p). A similar phenomenon occurred in the analogous h data.

Define ( , )Jij
kb  to be the estimate α( , ) ( , )


Tij

b k J k  for ( )Jij
b  using the data from the k-th iteration, with =( , )J 0ij

b 0  by con-
vention. In the kth iteration, we set the programmed values of the couplers to
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i.e. by subtracting the sums of the residual biases from the prior iterations from the desired values. Figure 2(d–f) 
show the narrowing of the distribution of residual J biases with correction.

Unlike the case for the h biases, for which data indicate that the distribution is essentially converged after a single 
iteration, here we see two new phenomena. First, the distribution continues to narrow between the second and third 
iterations. Second, the distribution of the residual biases from the second iteration, while narrower than that from 
the first, is not centered around zero. We believe this is due to overcorrection; that is, the estimates of the biases 
from the first iteration have a high degree of uncertainty, and so simply subtracting their values from the intended 
value introduces some amount of bias itself. This is consistent with the overall small magnitudes of the J biases 
relative to those of the h biases, especially as compared to the corresponding noise levels. This overcorrection can 

Figure 2. J biases in the Burnaby device. Data from a series of three experiments (k =  1, 2, 3) in which for 
each experiment the sums of biases estimated in the previous ones are subtracted from the original 
programmed values, using Eq. 5. The first experiment is without any correction, and the second and third 
use increasingly accurate corrections. All quantities are calculated using the mean ( , )T J k  of the qubit 
temperatures, calculated indepently in each experiment. (a) From only the first experiment, the median 
quantity α ( )

( ) ( )


JJ p , over the couplers, of the quantities α ( )( )


J{ }ij
p  for evenly spaced values of J(p) in [− 0.1, 

0.1]. (b) The standard deviation over the couplers of the estimated ( )
Jij

k  at each value of the original J(p,0). 

(c) For a single, typical coupler, (41, 47), the standard deviation over 100 runs of the estimates ,
( )
J{ }

r
41 47  of J41,47 

versus the original J(p,0). (d–f) Residual biases ( , )Jij
b k  estimated from each of the experiments.
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be mitigated by weighting the correction in a way that accounts for the uncertainty in the estimate using Bayesian 
reasoning. We will explore these ideas further in future work.

Effect of correction on the performance of benchmark problems. Ultimately, the goal of calibration 
is to optimize the performance of a quantum annealer on problems of computational interest. It is not clear a priori 
that the biases present in one- and two-qubit experiments are the same as those present in anneals involving hun-
dreds of qubits. Even if they were, their estimation would be of no practical value unless their correction improves 
performance. To address this, we tested the effect of correcting the h biases on the performance of the quantum 
annealer at NASA Ames, using the same parameterized random ensemble of instances used in a previous study 
benchmarking a D-Wave quantum annealer9. As in those studies, r is a parameter that tunes the difficulty of the 
average instance (the larger the r the more difficult the average instance). We expected the recalibration to have a 
major positive impact in the harder family of instances.

For each instance, the uncorrected and corrected results were compared using two methods, a “greedy” one and 
the elite mean. The results of the comparison are summarized in Table 1, showing the proportion of instances, for 
each r, for which the correction improved the performance, using each of the two comparison methods described 
above. The data set indicates that correcting for the h biases improves performance according to these two rea-
sonable metrics. At a large enough range r, however, even correction of the biases is not enough. In this limit of 
large r, the spacing of 1/r between the different specifiedd J values is beyond the precision of the device and poorly 
resolved. In this limit inherent fluctuations lead to almost zero success probabilities due to problem misspecifica-
tion, i.e., the device is finding the solution to another problem different from the one indicated. This would explain 
the possible pattern seen in the elite mean comparison (Table 1) that the advantage of correction peaks seems to 
peak at the level of r considered to correspond to the precision limit of the device. (That such a pattern is not as 
apparent in the greedy comparison is easily explained by natural noisiness of that comparison method, especially 
for instances with extremely low success probability as was the case here).

Discussion
Disentangling the mutual effect of the h and J biases on each other by alternating between iterations of the iterations 
of h and J experiments (as opposed to doing each alone as reported) will likely lead to more accurate estimates of 
each individually. Lastly, the risk of overcorrection can be mitigated by weighting the correction by the degree of 
certainty of the estimate of the bias to be corrected.

Although we focused initially on a standard random ensemble of Ising instances for benchmarking the perfor-
mance of quantum annealers, the effect of correcting biases should be greatest on instances whose ground states 
are most sensitive to misspecification of the programmable parameters20,21.

There is reason to suspect that correction will also have a beneficial effect in reducing the effect of gauge selec-
tion on success probability. While there are other suspected reasons for the effect of gauge selection (which would 
be non-existent in an ideal device), biases such as the ones corrected here could be one of the leading factors. The 
effect of gauge selection is significant, sometimes leading to an orders-of-magnitude difference in the success 
probabilities, and so this is a promising application for bias correction.

Importantly, while the J biases determined here are in general smaller than the h biases, numerical studies 
indicate that often instances are more sensitive to misspecification in the J parameters than in the h parameters20.

The methods presented here complement a growing suite of tools for optimal programming of quantum 
annealers23,24, tuning the performance thereof to cope with the intrinsic noise in current and future physical 
implementations.

Methods
Calculation of the h biases. To experimentally determine the biases ( )h{ }i

b , we set all =( )J 0ij
p  and initially 

assume the effect of nonzero ( )J{ }ij
b  to be negligible. We therefore ran the experiments for all qubits within a given 

device simultaneously, with the same value of =( ) ( )h hi
p p  for every working qubit. Each value of h(p) was run 100 

times, where each run consisted of 1,000 annealing cycles. The probability ( ↑ )( )pi
r  was calculated for each run r, 

and the median probability (↑ )( )p hi i
p  taken over the 100 (↑ )( ) ( )p h{ }i

r
i

p  calculated. From this, we define the 
“median” α α( ) = ( (↑ )) = . − (↑ ) − . (↑ )( ) ( ) ( ) ( )

  


h p h p h p h0 5 ln [1 ] 0 5 lni i i i i i i i

p p p p . Technically, this is a slight 
abuse of terminology; while the median of α( )( )p{ }i

r  is almost the same as α( )pi  because the function α(p) is 
monotonic, the two quantities can differ slightly in the case of an even number of values.

Since α = / + /( ) ( )h T h Ti i i i
b

i
p , for each qubit, we fit a line to α( , )( )


h{ }i i

p  by minimizing the quadratic loss; the 
resulting slope gives us an estimated inverse qubit temperature β = /

T1i i , and from the intercept α( )
i

b  we can 
determine the bias in several ways.

Range rJ 1 2 4 8 16

Greedy 0.58 0.63 0.59 0.68 0.53

Elite mean 0.65 0.65 0.73 0.72 0.67

Table 1.  Comparison of performance with and with h-correction on benchmarks. The probability that 
correcting for h biases (using data from a single experiment) improved performance on 100 random instances 
from an ensemble parameterized by the range of values r. Performance was compared according to two metrics: 
greedy comparison of the energies and degeneracies, and comparison of the elite mean score function.
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One way is to simply use the fitted parameters as is: α=
( ) ( )




h Ti
b

i
b

i. Experimental data, however, indicate that the 
estimates of the qubit “temperatures” calculated as above are not exactly that, but include in their calculation effects 
other than that due to true variation in temperature between the qubits. Some estimate of a uniform device temper-
ature should therefore be used. (See Sec. III in the SI for more detail.) In our experiments, we used two different 
quantities. The first is the “mean temperature”, = ∑

( )
=
T Th

n i
n

i
1

1 , where β= /T 1i i and n is the number of (working) 
qubits. The second is the “median temperature” 

( )
T

h
, called thus not because it is the median of T{ }i  but because it 

is calculated by taking the inverse of the slope of the line fit to the points α( , )( ) ( )


h{ }hp , where α ( )( ) ( )


hh p  is defined 
as the median over the qubits of α ( )( )


h{ }i

p . In practice, the quantities 
( )
T

h
 and ( )T h  are effectively the same.

Calculation of the J biases. Let = +( ) ( )J J Jij ij ij
p b  be the effective value of the coupling between qubits i and 

j and (↑↑ , , , , , )( ) ( ) ( ) ( ) ( ) ( )p h h h h J Jij i i j j ij ij
p b p b p b  be the probability of qubits i and j both being in the spin-up state, 

where ( )Jij
p  is the programmed value of the coupler and ( )Jij

b  the bias, analogous to ( )hi
p  and ( )hi

b , respectively. Here, 
we set = =( ) ( )h h 0i j

p p , and write simply (↑↑| ) ≡ (↑↑| , , , )( ) ( ) ( ) ( ) ( )p J p h h J Jij ij ij i j ij ij
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One approach to determine the bias ( )Jij

b  is to naively assume that = =( ) ( )h h 0i j
b b , in which case the thermal 

distribution is modeled by
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where α ( ) ≡ / = ( + )/( ) ( ) ( )J J T J J Tij ij ij ij ij ij ij
p p b . For concision, we leave the dependence of pij and αij on hi, hj, ( )Jij

b , 
and Tij implicit. Similarly to the case for hi, this yields
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For a given value of J(p), the experiment was run in six batches. In each batch, the programmed coupling ( )Jij
p  

was uniformly set to J(p) for each coupler of a pairwise disjoint subset of all of the couplers, and for each of the rest 
( )Jij
p  was set to zero. Over the six batches, each coupling ( )Jij

p  was set to J(p) exactly once. As for the h biases, each 
value of J(p) was run 100 times (for each coupler), with each run consisting of 1,000 annealing cycles. The median 
probability (↑↑∨↓↓ )( )p Jij ij

p  was taken over the 100 ( )p{ }ij
r  calculated from the runs, from which we calculate the 

“median” α α( ) = ( (↑↑∨↓↓| )).( ) ( )



J p Jij ij ij ij

p p   For each coupler, a line was fit to α( , )( )


J{ }ij ij
p , yielding a slope β = /
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and an intercept α( )

ij
b . As for h, we define the mean temperature = ∑
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,
T TJ

m i j ij
1

{ } , where m is the number of 
couplers.

A more accurate estimate for ( )Jij
b  can be obtained by considering nonzero ( )hi

b  and ( )hj
b  (but still setting 
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Note that the assumption that = =( ) ( )h h 0i j
b b  implies that pij(↑ ↑ ) =  pij(↓ ↓ ) and pij(↑ ↓ ) =  pij(↓ ↑ ), and that in this 

case (12) reduces to (7).

Benchmark studies. To generate a single instance with range r, the local fields {hi} were uniformly set to 
zero, and each available Jij was independently and uniformly selected from {− r, − r +  1, …, − 1, 0, 1, …, r}. The 
resulting instance was then scaled by the overall factor 0.9/r so that the largest magnitude |Jij| was 0.9. (This was 
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necessary, rather than scaling to 1 as in previous studies, to allow for consistency with future experiments in which 
the J biases are corrected.) 100 such instances were generated and run twice with 1,000 annealing cycles for each 
of the same (uniformly randomly generated) 10 gauges. In all runs, {Jij} were programmed as in the instances. For 
the first set of runs, which we call “uncorrected”, the {hi} were also programmed as in the instances, i.e. to zero. For 
the other set, which we call “h-corrected”, the local fields were programmed to the inverse of the biases computed 
via experiments as in Eq. 4.

Greedy and elite mean metrics. The greedy comparison is as follows: the energies of all states returned were com-
puted, and those for all gauges were grouped together. Whichever method (uncorrected or corrected) returned 
the lower minimum energy was deemed to have performed better. If the minimum energies were the same, the 
tie was broken by the number of times that energy was returned. If this number was the same, the method with 
the second-lowest energy was deemed to have performed better, with ties broken by the number of times the 
second-lowest energy was returned, and so on. The “elite mean” score function23, a quantity previously introduced 
to allow comparison of the performance of different programming parameters in quantum annealers when the 
success probabilities are too low (and thus noisy), is defined as the mean energy of the “elite” states, i.e. those with 
the lowest energies. The elite mean is parameterized by the fraction of energies over which to take the mean; here 
we use 2%. For r =  1 and r =  2, there were 6 and 2 instances, respectively, for which the elite mean comparison was 
tied, all but one due to success probabilities greater than 2% for both the corrected and uncorrected experiments.
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