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A B S T R A C T

Single-cell RNA sequencing provides unprecedent opportunities to explore the heterogeneity and dynamics 
inherent in cellular biology. An essential step in the data analysis involves the automatic annotation of cells. 
Despite development of numerous tools for automated cell annotation, assessing the reliability of predicted 
annotations remains challenging, particularly for rare and unknown cell types. Here, we introduce VICTOR: 
Validation and inspection of cell type annotation through optimal regression. VICTOR aims to gauge the con-
fidence of cell annotations by an elastic-net regularized regression with optimal thresholds. We demonstrated 
that VICTOR performed well in identifying inaccurate annotations, surpassing existing methods in diagnostic 
ability across various single-cell datasets, including within-platform, cross-platform, cross-studies, and cross- 
omics settings.

1. Introduction

Single-cell RNA sequencing (scRNA-seq) has revolutionized biolog-
ical research, offering unprecedented opportunities to explore cellular 
heterogeneity, identify rare cell types and states, characterize cellular 
microenvironments, and reconstruct developmental trajectories [1–6]. 
An essential step in scRNA-seq analysis is assignment of cell identities, 
which is essential for interpretability. Manual annotation, while effec-
tive, is time-consuming, requires expert input, and becomes increasingly 
challenging as dataset size and complexity grow. Therefore, there is a 
rising demand for tools that leverage existing annotated datasets to 
automate cell annotation, as well as methodologies that assess the 
quality of these automatically assigned identities.

Numerous tools have been developed for the automatic assignment 
of cell identities. Some tools employ a cluster-and-annotate strategy, 
where cells are first clustered based on gene expression similarities, and 
each cluster is then assigned an identity as a whole [7–12]. In contrast, 
other tools directly annotate individual cells without prior clustering 
[13–32]. Most annotation tools utilize a reference expression profile 
with known labels and automatically assign cell identity by either 
finding the best match in the reference [7–23] or by using a supervised 
classifier trained on the reference [24–32]. Some tools, such as scmap 

[13], SCINA [14], CHETAH [15], scClassify [16], Seurat [17], and 
scPred [24], label cells with predictive probability scores lower than a 
predetermined threshold as "unknown" or "unassigned". Alternatively, 
methods like singleR [18] evaluate the confidence of labels based on the 
distribution of predicted scores. However, these assessment strategies 
have limited efficacy when cells are rare or absent in the reference, or 
when the reference contains highly similar cell types.

To overcome this limitation, we introduce VICTOR: Validation and 
Inspection of Cell Type Annotation through Optimal Regression. 
VICTOR utilizes an elastic-net regularized regression along with cell 
type-specific optimal thresholds selection, maximizing the sum of 
sensitivity and specificity based on Youden’s J statistic [33]. VICTOR 
effectively identified unreliable annotations from seven widely-used 
automated annotation methods, including singleR, scmap, scPred, 
SCINA, CHETAH, scClassify, and Seurat. Additionally, it outperformed 
these tools in diagnostic accuracy across different studies, platforms, 
tissues, and even cross-omics scenarios. Notably, VICTOR effectively 
pinpointed rare and unknown cells that were misclassified by these 
methods when such cells were underrepresented in the reference.
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2. Results

2.1. Challenges in existing cell type annotations

We assessed the performance of seven widely-used cell annotation 
approaches: singleR, scmap, SCINA, scPred, CHETAH, scClassify, and 
Seurat. After assigning each cell to a label, singleR evaluates the pre-
diction’s reliability using a diagnostic metric. If the difference between 
the score for the assigned label and the median score across all labels 
falls below a certain threshold, the prediction is designated as unreli-
able, and the corresponding cell is labeled as ’unknown’. In contrast, 
scmap, SCINA, scPred, CHETAH, scClassify, and Seurat directly reject 
unreliable annotations with predictive scores or probabilities below a 
certain threshold, labeling the corresponding cells as ’unknown’. We 
defined true positives (TP) as correct annotations diagnosed as reliable, 
true negatives (TN) as incorrect annotations diagnosed as unreliable, 
false negatives (FN) as correct annotations diagnosed as unreliable, and 
false positives (FP) as incorrect annotations diagnosed as reliable.

We utilized a PBMC dataset as the reference and a second dataset 
generated from the same platform (10xV2) as the query [34]. The 
reference comprised 1611 cells representing nine cell types: 141 B cells, 
273 CD4 + T cells, 325 CD14 + monocytes, 53 CD16 + monocytes, 568 
cytotoxic T cells, 26 dendritic cells, 120 megakaryocytes, 87 natural 
killer cells, 18 plasmacytoid dendritic cells. The query comprised 1681 
cells covering the same nine cell types, including 426 B cells, 479 CD4 +
T cells, 208 CD14 + monocytes, 24 CD16 + monocytes, 348 cytotoxic T 
cells, 47 dendritic cells, 13 megakaryocytes, 117 natural killer cells, and 
19 plasmacytoid dendritic cells. To simulate scenarios involving 

unknown cells, we deliberately excluded all B cells from the reference. 
Consequently, in this case, all B cells in the query were expected to be 
assigned as an unreliable and categorized as ’unknown’.

Surprisingly, singleR, scmap, CHETAH, and scClassify misclassified 
most queried B cells as other cell types and mistakenly deemed those 
incorrect annotations as reliable, leading to high false positive rates and 
low accuracies of 1 %, 2 %, 15 %, and 4 %, respectively (Fig. 1A). In 
contrast, SCINA, Seurat, and scPred correctly identified most queried B 
cells as unknown, resulting in only 8, 4, and 1 FPs, respectively and 
achieved accuracies of > 98 % (Fig. 1A).

In addition to the challenge of annotating unknown cells, current 
methods have difficulty in determining the identities of rare cells or 
closely related cells. For example, scmap correctly annotated 13 rare 
megakaryocytes (Fig. S1A), but it mischaracterized these annotations as 
unreliable (Fig. S1B), resulting in 13 false negatives and 0 % of accuracy 
(Fig. 1A). scPred obtained 8 false negatives out of 19 rare plasmacytoid 
dendritic cells–only 58 % accuracy (Fig. 1A). All seven methods strug-
gled with cytotoxic T cells, showing elevated numbers of false positives 
and/or false negatives. This compromised performance is likely caused 
by similar expression profiles in CD4 + and cytotoxic T cells, making it 
challenging to distinguish between these two types of cells (Fig. 1A).

In summary, existing cell type annotation methods generated unre-
liable annotation assessments for cells that were underrepresented and 
among similar cell types included in the reference.

2.2. VICTOR improved diagnostic ability

VICTOR utilizes an elastic-net regularized regression to train a 

Fig. 1. One example in diagnosing the reliability of cell annotations. a) diagnostic performance of singleR, scmap, SCINA, scPred, CHETAH, scClassify, and 
Seurat. b) diagnostic performance of VICTOR when applied to annotations from singleR, scmap, SCINA, scPred, CHETAH, scClassify, and Seurat.

C.-J. Chang et al.                                                                                                                                                                                                                               Computational and Structural Biotechnology Journal 23 (2024) 3270–3280 

3271 



classifier. Instead of selecting one threshold across all cell types to assign 
annotation reliability, VICTOR chooses an optimal threshold for each 
cell type by maximizing the sum of specificity and sensitivity (Fig. 2) 
(details in Methods).

In the previous scenario where both the PBMC reference and query 
were generated from 10xV2 and B cells were absent from the reference, 
VICTOR significantly enhanced the diagnostic performance of all seven 
methods. Specifically, VICTOR successfully recognized that nearly all 
incorrectly annotated B cells from singleR, scmap, CHETAH, and 
scClassify were unreliable, resulting in accuracies exceeding 99 % 
(Fig. 1B). Additionally, VICTOR identified 13 false negatives as true 
positives in megakaryocytes from scmap, improving accuracy from 0 % 
to 100 % (Fig. 1B). The most significant improvement by VICTOR for 
SCINA annotations was observed in dendritic cells; SCINA misclassified 
10 out of 47 dendritic cells as reliable CD14 + monocytes (false posi-
tives), but VICTOR recognized these annotations as incorrect (true 
negatives), resulting in an accuracy improvement from 79 % to 100 % 
(Fig. 1B). In the case of scPred annotations, VICTOR significantly 
reduced the number of false negatives across all cell types except cyto-
toxic T cells. For instance, scPred mischaracterized the annotations of 8 
plasmacytoid dendritic cells as unreliable (false negatives), while 
VICTOR correctly identified 7 of these as reliable (true positives), 
improving accuracy from 58 % to 95 % (Fig. 1B). VICTOR also improved 
the accuracy of Seurat annotations for megakaryocytes from 77 % to 
100 % and natural killer cells from 84 % to 97 % (Fig. 1B). Additionally, 
VICTOR’s ROC curves displayed AUC values close to 1 for every cell 
type, demonstrating exceptional performance (Fig. S2).

We further evaluated the minimum number of B cells required in the 
reference to achieve optimal performance with VICTOR. As previously 
demonstrated, VICTOR maintained strong performance even without B 
cells in the reference. With as few as 10 B cells, VICTOR achieved nearly 
100 % accuracy, with performance remaining stable as the number of B 
cells increased. An exception was observed with scPred annotations, 
where VICTOR consistently achieved near-perfect accuracy with at least 
30 B cells. In contrast, other methods performed poorly without B cells 
and/or showed significant fluctuations in accuracy even as the number 
of B cells increased (Fig. S3).

2.3. VICTOR improved diagnostic ability in within-platform annotations

We first conducted a comprehensive evaluation of VICTOR’s 

performance using PBMC datasets [34] within a single-platform setting. 
Each PBMC dataset was randomly divided into halves, with one desig-
nated as the reference and the other as the query. This strategy ensured 
that both the reference and the query originated from the same platform, 
minimizing any technical or platform biases. Additionally, we excluded 
individual cell types from the reference to simulate scenarios involving 
unknown cell types. Since PMBC datasets include nine cell types, this 
process yielded a total of 10 scenarios, including one where no cell types 
were excluded (’none’ in Fig. 3), and nine scenarios where one cell type 
was omitted from the reference. The PBMC datasets originate from seven 
distinct platforms, including three samples from the 10X V2 platform, 
and one sample each from six other platforms. Resulting in a total of 
fifteen sets, this includes nine sets from the 10X V2 platform (3 samples 
combined in pairs) and six additional sets from the other platforms. In 
each set, both the reference and the query originated from the same 
platform.

In the scenario where the reference included all cell types (the ’none’ 
scenario), VICTOR exhibited improved diagnostic performance, with a 
median accuracy increase of 23.8 % compared to singleR, 22.7 % 
compared to CHETAH, 11.5 % compared to scmap, 7.1 % compared to 
SCINA, 3.9 % compared to scClassify, 2.8 % compared to Seurat, and 
2.7 % compared to scPred (Fig. 3).

In scenarios where the reference lacked certain cell types, VICTOR 
demonstrated even greater improvements in performance (Fig. 3). When 
cells were annotated by singleR, VICTOR enhanced diagnostic accuracy 
with median increases ranging from 19.7 % to 40.7 %. It is important to 
note that VICTOR performed especially better in scenarios where B cells 
were absent, resulting in a median accuracy increase of 40.7 % (Fig. 3). 
For instance, in the scenario lacking B cells in the 10xV2 platform, 
singleR misidentified 140 B cells as CD4 + T cells, 7 as dendritic cells, 
and 48 as plasmacytoid dendritic cells, erroneously considering all 195 
annotations as reliable (FP). In contrast, VICTOR correctly identified all 
195 annotations as unreliable (TN) (Fig. S4A). When cells were anno-
tated by scmap, VICTOR exhibited median accuracy increases ranging 
from 10.3 % to 29.1 %, with the most substantial improvement occur-
ring when megakaryocytes were absent from the reference (Fig. 3). In 
the scenario without megakaryocytes in the inDrop platform, scmap 
correctly annotated 74 natural killer cells but mischaracterized 71 cells 
as unreliable (FN); VICTOR reduced the number of FNs to 4 (Fig. S4B). 
For SCINA annotations, VICTOR showed median accuracy increases 
ranging from 0.2 % to 6.8 %, with a particularly notable enhancement 

Fig. 2. Overview of VICTOR.
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in the scenario where plasmacytoid dendritic cells were missing, 
increasing median accuracy from 81.7 % to 88.5 %. For instance, in the 
10xV2 platform, SCINA accurately identified 390 CD4 + T cells but 
incorrectly labeled 198 as unreliable (FN). VICTOR correctly recognized 
378 out of the 390 as reliable (Fig. S4C). scPred consistently performed 
well across various scenarios, with VICTOR slightly enhancing diag-
nostic accuracy by 0.6 % to 4.9 % (Fig. 3). Notably, in the scenario 
lacking plasmacytoid dendritic cells in the 10xV2 platform, scPred 
incorrectly annotated 19 plasmacytoid dendritic cells as CD14 + mo-
nocytes and considered them reliable (FP). VICTOR correctly identified 
these annotations as unreliable (TN) (Fig. S4D). When cells were an-
notated by CHETAH, VICTOR demonstrated median accuracy increases 
ranging from 7.9 % to 26.2 %, with the most significant improvement 
observed when B cells were absent from the reference (Fig. 3). For 
example, in the scenario where B cells were missing in the 10xV3 plat-
form, CHETAH incorrectly identified 159 B cells as dendritic cells, 3 as 
cytotoxic T cells, and 3 as CD4 + T cells, mistakenly classifying them as 
reliable (FP). In contrast, VICTOR correctly flagged 169 out of 171 an-
notations as unreliable (TN) (Fig. S4E). For scClassify annotations, 
VICTOR’s median accuracy gains ranged from 1.3 % to 13.3 %, except 
in cases where CD4 + T cells were missing, with the most notable 
enhancement occurring when B cells were missing from the reference 
(Fig. 3). For instance, scClassify misidentified 160 B cells as dendritic 
cells, considering 158 reliable (FP), 1 as a cytotoxic T cell and marked it 
as reliable, and 10 as CD4 + T cells, with 6 marked as reliable. VICTOR 
accurately recognized 169 out of those 171 annotations as unreliable 
(TN) (Fig. S4F). With Seurat annotations, VICTOR showed median ac-
curacy improvements between 0.5 % and 3.9 %, except in cases where B 

cells, CD14 + monocytes, and cytotoxic T cells were missing. The most 
substantial boost was noted when CD16 + monocytes were absent from 
the reference (Fig. 3). For instance, in the absence of CD16 + monocytes 
in the 10xV2 platform, Seurat misclassified all 31 CD16 + monocytes as 
CD14 + monocytes, incorrectly deeming them reliable (FP), whereas 
VICTOR correctly identified 16 out of the 31 annotations as unreliable 
(TN) (Fig. S4G).

2.4. VICTOR improved diagnostic ability in cross-platform annotations

We assessed VICTOR’s performance using PBMC datasets [34] in a 
cross-platform setting. For these comparisons, the reference and query 
datasets were generated on different sequencing platforms. Each plat-
form possesses specific features or biases, rendering the annotation of 
one to another to be challenging. As in previous comparisons, we 
excluded individual cell types from the reference to simulate scenarios 
with unknown cell types. This process yielded a total of 10 scenarios. In 
the baseline scenario, no cell types were excluded (’none’ in Fig. 4), 
whereas 9 scenarios were created to represent cell type that were 
excluded from reference. The PBMC datasets include three samples from 
the 10X V2 platform and each of six samples from six other platforms, 
resulting in a total of 66 sets. This comprised 18 sets created by pairing 
three queries from the 10X V2 platform with six references from 
non-10X V2 platforms, and an additional 48 sets formed by pairing six 
queries from non-10X V2 platforms with eight references from platforms 
other than themselves.

VICTOR consistently outperformed singleR, scmap, CHETAH, 
Seurat, and scClassify across all scenarios, while demonstrating slight 

Fig. 3. Diagnostic performance in within-platform annotations using PBMC datasets generated from the same platform.
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improvements over SCINA and scPred. In the scenario where the refer-
ence included all cell types (the ’none’ scenario), VICTOR achieved a 
median accuracy increase of 26.5 % compared to scmap, 24.6 % 
compared to singleR, 16.5 % compared to CHETAH, 14.9 % compared 
to Seurat, 10.4 % compared to scClassify, 0.5 % compared to scPred, but 
a slight decrease of 1.6 % compared to SCINA (Fig. 4).

In scenarios where the reference excluded specific cell types, 
VICTOR significantly enhanced the diagnostic performance of singleR, 
resulting in median accuracy increases ranging from 19.7 % to 37.7 %. 
The most notable improvement was observed when VICTOR raised the 
median accuracy of singleR annotations from 45.6 % to 83.4 % in the 
scenario lacking CD4 + T cells in the reference (Fig. 4). For instance, 
with the reference from inDrop and the query from 10xV2, singleR 
misclassified 465 CD4 + T cells as B cells, along with 14 cells of other 
types, leading to 479 erroneous diagnoses as reliable (false positives). 
VICTOR correctly identified 471 of these as unreliable (true negatives) 
(Fig. S5A). Similarly, VICTOR consistently outperformed scmap, with 
median accuracy increases ranging from 14.6 % to 42.8 % (Fig. 4). The 
most significant improvement occurred when megakaryocytes were 
absent from the reference, with median accuracy increasing from 35.7 % 
to 78.5 % (Fig. 4). For example, with the query from 10xV2 and the 
reference from Smart-seq2, scmap correctly identified 117 megakaryo-
cytes but misdiagnosed them as unreliable (false negatives). VICTOR 
effectively recognized 113 of these as reliable (true positives) (Fig. S5B). 
VICTOR also showed slight improvements with SCINA and scPred. For 
SCINA annotations, the most significant increase was observed in the 
scenario lacking CD4 + T cells in the reference, with median accuracy 
rising from 75.5 % to 77.7 %. In this case, with the query from the 

10xV2 platform and the reference from the SeqWell platform, SCINA 
correctly annotated 631 cytotoxic T cells but erroneously labeled 531 as 
unreliable (false negatives). VICTOR reduced the number of false neg-
atives to 38 (Fig. S5C). For scPred annotations, the largest improvement 
was observed when cytotoxic T cells were absent from the reference, 
with median accuracy increasing from 64.7 % to 67.7 %. For instance, 
with the query from 10xV2 and the reference from CELSeq2, scPred 
misclassified 337 cytotoxic T cells as CD4 + T cells, 110 as natural killer 
cells, and 16 as B cells, resulting in a total of 463 erroneous diagnoses as 
reliable (false positives). VICTOR successfully reduced these false posi-
tives to 296 (Fig. S5D). VICTOR consistently outperformed CHETAH, 
with median accuracy improvements ranging from 9.1 % to 19.9 % 
(Fig. 4). The most striking enhancement occurred in the scenario where 
B cells were absent from the reference, with median accuracy increasing 
from 62.0 % to 81.9 % (Fig. 4). For instance, with the query dataset from 
10xV3 and the reference from 10xV2, CHETAH misclassified 478 cyto-
toxic T cells as megakaryocytes and incorrectly identified them as reli-
able (false positives). VICTOR correctly identified all these as true 
positives (Fig. S5E). VICTOR demonstrated superior performance 
compared to scClassify, with median accuracy improvements ranging 
from 4.9 % to 17.2 % (Fig. 4). The most notable improvement was 
observed when B cells were absent from the reference, boosting median 
accuracy from 61.5 % to 78.7 % (Fig. 4). For example, with the query 
dataset from 10xV2 and the reference from 10xV3, scClassify incorrectly 
identified 177 B cells as dendritic cells and mistakenly classified them as 
reliable (false positives). VICTOR accurately recognized all these den-
dritic cells as unreliable (true negatives) (Fig. S5F). With Seurat anno-
tations, VICTOR consistently outperformed except in the scenario where 

Fig. 4. Diagnostic performance in cross-platform annotations using PBMC datasets generated from different platforms.
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cytotoxic T cells were absent from the reference, achieving median ac-
curacy gains ranging from 3.6 % to 14.8 % (Fig. 4). The most significant 
improvement was observed when plasmacytoid dendritic cells were 
missing from the reference, with median accuracy increasing from 
66.7 % to 81.5 % (Fig. 4). For instance, with the query dataset from 
10xV2 and the reference from Smart-seq2, Seurat correctly annotated 
457 CD4 + T cells but mistakenly labeled 425 of them as unreliable 
(false negatives). VICTOR impressively reduced the number of false 
negatives to just 8 (Fig. S5G).

2.5. VICTOR improved diagnostic ability in cross-platform and cross- 
study annotations

Moreover, we evaluated VICTOR’s performance in a cross-platform 
and cross-study framework using pancreas datasets from multiple 
studies, including Baron [35] (inDrop), Muraro [36] (CEL-seq), and 
Segerstolpe [37] (Smart-seq2). Cross-platform and -study designs 
introduce biases and batch effects, further complicating automated 
annotation. We selected seven common cell types that are present in 
every pancreas dataset: acinar, alpha, beta, delta, ductal, endothelial, 
and epsilon cells. Similarly, we excluded individual cell types from the 
reference to simulate scenarios involving unknown cell types. This 
process resulted in eight scenarios, including one scenario in which no 
cell types were excluded (’none’ in Fig. 5) and seven in which one cell 
type was omitted from the reference.

In the ‘none’ scenario where the reference included all cell types, 
VICTOR exhibited improved diagnostic performance overall all seven 
methods, with a median accuracy increase of 15.2 % compared to 

CHETAH, 13.4 % compared to singleR, 10.8 % compared to scmap, 
8.3 % compared to scClassify, 3.5 % compared to Seurat, 1.8 % 
compared scPred, and 0.1 % compared to SCINA (Fig. 5).

When certain cell types were excluded from the reference, VICTOR 
markedly enhanced the diagnostic performance of singleR, resulting in 
median accuracy increases ranging from 8.6 % to 38.6 %. The most 
notable improvement occurred in the scenario where alpha cells were 
absent from the reference, with VICTOR boosting the median accuracy 
for singleR annotations from 54.8 % to 93.4 % (Fig. 5). For instance, 
with the query from Nanodrop and the reference from Smart-seq2, sin-
gleR misclassified 206 alpha cells as delta cells and 3 as epsilon cells, 
erroneously classifying all 209 as reliable (false positives). VICTOR 
successfully reduced the number of false positives to 0 (Fig. S6A). 
VICTOR also demonstrated superior performance to scmap, with median 
accuracy increases of 0.3 % to 21.9 %. The most significant improve-
ment occurred in the scenario lacking alpha cells, where VICTOR 
increased the median accuracy from 73.7 % (scmap) to 95.6 % (Fig. 5). 
In this case, with the query from Nanodrop and the reference from 
Smart-seq2, scmap incorrectly labeled 243 out of 248 cells as reliable 
(false positives), including 241 alpha cells misclassified as delta cells, 1 
as an epsilon cell, and 1 as a beta cell. VICTOR accurately identified 247 
of these cells as unreliable (true negatives) (Fig. S6B). For SCINA an-
notations, VICTOR improved performance in most scenarios except 
when beta cells were missing. The most pronounced enhancement was 
in the scenario lacking alpha cells, where VICTOR increased the diag-
nostic accuracy from 87.4 % to 98.8 % (Fig. 5). Specifically, with the 
query from Nanodrop and the reference from Smart-seq2, SCINA mis-
classified 248 alpha cells as epsilon cells and wrongly deemed 129 of 

Fig. 5. Diagnostic performance in cross-platform and cross-study annotations using pancreas datasets from multiple studies.
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these as reliable (false positives). VICTOR correctly identified all 248 
alpha cells as unreliable (true negatives) (Fig. S6C). VICTOR also out-
performed scPred in most scenarios, except when beta cells were missing 
from the reference. The most significant improvement was in the 
absence of ductal cells, with median accuracy rising from 76.8 % to 
97.2 % (Fig. 5). For instance, with the query from Nanodrop and the 
reference from Smart-seq2, scPred misclassified 79 ductal cells as 
endothelial cells, erroneously marking all as reliable (false positives). 
VICTOR accurately identified all these cells as unreliable (true nega-
tives) (Fig. S6D). VICTOR consistently surpassed CHETAH, with median 
accuracy improvements ranging from 6.7 % to 21.1 % (Fig. 5). The most 
notable enhancement occurred when ductal cells were excluded from 
the reference, increasing median accuracy from 72.7 % to 93.8 % 
(Fig. 5). For example, with the query from Nanodrop and the reference 
from Smart-seq2, CHETAH correctly identified 43 delta cells but mis-
classified 37 of them as unreliable (false negatives). VICTOR accurately 
recognized all 43 delta cells as reliable (true positives) (Fig. S6E). With 
scClassify annotations, VICTOR demonstrated superior performance, 
with median accuracy improvements ranging from 4.9 % to 22.6 % 
(Fig. 5). The most significant improvement occurred in the scenario 
lacking alpha cells, where median accuracy increased from 67.9 % to 
90.5 % (Fig. 5). For instance, with the query from Nanodrop and the 
reference from inDrop, scClassify misclassified 203 alpha cells as beta 
cells, incorrectly marking 192 of these as reliable (false positives). 
VICTOR effectively reduced the number of false positives to just 1 
(Fig. S6F). VICTOR consistently outperformed Seurat, except in sce-
narios where acinar, beta, or delta cells were missing (Fig. 5). The most 
substantial improvement was in the absence of alpha cells, with median 

accuracy rising from 80.4 % to 92.2 % (Fig. 5). For instance, with the 
query from Nanodrop and the reference from Smart-seq2, Seurat mis-
identified 204 alpha cells as delta cells, mistakenly classifying 165 of 
these as reliable (false positives). VICTOR successfully identified all as 
unreliable (true negatives) (Fig. S6G).

2.6. VICTOR improved diagnostic ability in large-scale annotations

To evaluate VICTOR’s performance on large-scale datasets, we uti-
lized an integrated cell atlas of the human lung in health and disease 
from the Human Cell Atlas (HCA HLCA core), comprising 584,944 cells 
[38]. This dataset includes 11 different studies from the 10X platform. 
We designed the queries by splitting each of the 11 studies into units of 
20,000 cells, resulting in a total of 36 queries. Each query was then 
annotated against references formed by randomly selecting 5000 cells 
from the remaining 10 studies, excluding the study from which the 
query originated. Additionally, we excluded specific cell types from the 
references to simulate scenarios involving unknown cell types. Since the 
HLCA dataset includes 61 cell types, we randomly selected 13 cell types 
to be excluded, along with one scenario where no cell types were 
excluded (’none’ in Fig. 6), resulting in a total of 14 scenarios.

VICTOR significantly outperformed singleR, scmap, SCINA, CHE-
TAH, and Seurat across all scenarios, while demonstrating slight im-
provements over scClassify and scPred. In the ‘none’ scenario where the 
reference included all cell types, VICTOR exhibited improved diagnostic 
performance over all seven methods, with a median accuracy increase of 
23.4 % compared to Seurat, 19.4 % compared to scmap, 13.3 % 
compared to SCINA, 11.8 % compared to CHETAH, 11.1 % compared to 

Fig. 6. Diagnostic performance in annotating large-scale datasets from the HLCA core.
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singleR, 5.3 % compared to scClassify, and 5.0 % compared scPred 
(Fig. 6).

In scenarios where the reference lacked certain cell types, VICTOR 
consistently enhanced the diagnostic performance of singleR, resulting 
in median accuracy increases ranging from 10.5 % to 15.2 %. The most 
notable improvement occurred in the scenario where Alveolar Type II 
(AT2) cells were absent from the reference, with VICTOR increasing the 
median accuracy for singleR annotations from 52.0 % to 67.3 % (Fig. 6). 
In one example, 99 SMG mucous cells were mistakenly identified as 
Bronchial serous SMG cells and were incorrectly classified as reliable 
(FP) by singleR. VICTOR successfully identified all of these cells as un-
reliable (TN) (Fig. S7A). Moreover, VICTOR outperformed scmap, with 
median accuracy improvements ranging from 14.8 % to 22.8 %. The 
greatest improvement was observed in the scenario lacking suprabasal 
cells, where VICTOR increased the median accuracy from 51.7 % to 
74.4 % (Fig. 6). For instance, although scmap correctly identified 606 
mast cells, it erroneously diagnosed them as unreliable (FN). In contrast, 
VICTOR correctly identified 605 of these as reliable (TP) (Fig. S7B). 
Regarding SCINA annotations, VICTOR enhanced performance across all 
scenarios, with median accuracy increases ranging from 14.9 % to 
28.1 %. The most pronounced improvement was observed in the sce-
nario where classical monocytes were absent from the reference, with 
diagnostic accuracy increasing from 55.3 % to 83.4 % (Fig. 6). In one 
example, SCINA incorrectly categorized 21 alveolar Mph proliferating 
cells as interstitial Mph perivascular cells and 20 as T cells proliferating 
cells, all of which were mistakenly considered reliable (FP). In contrast, 
VICTOR accurately classified all 41 alveolar Mph proliferating cells as 
unreliable (TN) (Fig. S7C). Furthermore, VICTOR demonstrated higher 
median accuracy than scPred across most scenarios, except when the 
reference lacked AT2 cells. The most notable improvement occurred in 
the scenario where EC arterial cells were absent from the reference, with 
median accuracy increasing from 72.0 % to 76.9 % (Fig. 6). In one 
example, 377 nasal serous SMG cells were mislabeled as bronchial se-
rous SMG cells, 373 of which were mistakenly considered reliable by 
scPred (FP). VICTOR successfully reduced the number of FPs to 231 
(Fig. S7D). When cells were annotated by CHETAH, VICTOR consis-
tently outperformed it, leading to median accuracy improvements 
ranging from 9.2 % to 12.9 % (Fig. 6). The most notable enhancement 
occurred in the scenario where myofibroblasts were excluded from the 
reference, resulting in a median accuracy increase from 6.6 % to 7.9 % 
(Fig. 6). For example, CHETAH incorrectly identified 212 smooth mus-
cle cells as Pericytes, and mistakenly classifying 199 of them as reliable 
(FP). VICTOR reduced the number of FPs to 14 (Fig. S7E). When cells 
were annotated using scClassify, VICTOR demonstrated higher median 
accuracy across most scenarios except when the reference lacked AT2 
cells. The most significant improvement was observed when pericytes 
were absent from the reference, resulting in a median accuracy increase 
from 76.1 % to 82.4 % (Fig. 6). For instance, although scClassify 
correctly identified 427 Non-basal club cells, it erroneously classified 
288 of them as unreliable (FN). In contrast, VICTOR correctly recog-
nized 425 of these as reliable (TP) (Fig. S7F). VICTOR consistently 
outperformed Seurat, with median accuracy improvements ranging 
from 18.8 % to 23.8 % (Fig. 6). The most substantial improvement 
occurred when plasma cells were missing from the reference, leading to 
a median accuracy increase from 53.3 % to 77.0 % (Fig. 6). For example, 
although Seurat correctly identified 92 smooth muscle cells, it errone-
ously classified 88 of them as unreliable (FN). In contrast, VICTOR 
correctly recognized 85 of these as reliable (TP) (Fig. S7G).

2.7. VICTOR improved diagnostic ability in cross-omics annotations

Finally, we explored VICTOR’s ability in cross-omics annotations 
using a PBMC dataset, where both scRNA-seq and scATAC-seq profiles 
were generated for ~12,000 cells. By using scRNA-seq as the reference 
and scATAC-seq as the query, VICTOR demonstrated superior diagnostic 
ability compared to all seven methods (Fig. S8). Specifically, VICTOR 

significantly enhanced the performance of singleR, CHETAH, and 
Seurat, with accuracy increases of 39.3 %, 34.0 %, and 19.5 %, respec-
tively. It also achieved slight improvements over SCINA, scmap, 
scClassify, and scPred, with accuracy increases of 6.5 %, 2.7 %, 1.9 %, 
and 0.2 %, respectively (Fig. S8). These results underscore VICTOR’s 
effectiveness in improving annotation evaluation in cross-omics 
applications.

3. Discussion

Single-cell transcriptomics has become widely utilized for charac-
terizing cellular heterogeneity and uncovering novel cell types and 
states in multicellular systems. Determination of cell identities is 
essential to effectively interpret single-cell data. Despite the develop-
ment of numerous methods for automating cell annotation, assessing 
which annotations are truly correct versus those that are unreliable re-
mains a significant challenge. Here, we presented VICTOR, an approach 
designed to assess the reliability of cell annotations through elastic-net 
regularized regression with optimized thresholds. VICTOR effectively 
quantified cell annotation reliability in a wide variety of scenarios as 
demonstrated by our study. VICTOR demonstrated superior identifica-
tion of inaccurate labeling across within-platform, cross-platform, cross- 
study, and even cross-omics designs. VICTOR effectively pinpointed 
problematic annotations, thereby enhancing cell labeling. This advance 
holds significant promise to improve downstream analyses, such as 
marker gene identification and enrichment analysis, and improves the 
value of insights about cellular function and heterogeneity.

VICTOR employs elastic-net regularized logistic regression to build 
optimal models for individual cell types. Elastic net is the hybrid of ridge 
and lasso regularization, striking a balance between variable selection 
and model accuracy. Moreover, VICTOR enhances its efficacy by cali-
brating optimized thresholds tailored to each cell type. These cell-type- 
specific thresholds ensure both specificity and sensitivity, particularly 
for rare, unknown, or subtly distinct cell types.

VICTOR is a reference-based method, therefore its performance de-
pends on the quality and the completeness of the reference utilized. 
Performance would be compromised if the reference is incomplete, 
contains inaccurate annotations, or poorly aligns with the query. Despite 
VICTOR’s superior evaluation of cell annotation, the selection of a 
reference encompassing a broad spectrum of meticulously characterized 
cell types is paramount for labeling accuracies in single-cell data anal-
ysis. With single-cell data expanding exponentially, one potential solu-
tion is to construct a comprehensive reference atlas by aggregating 
multiple datasets from diverse platforms and conditions with stan-
dardized annotations. Cell types frequently undergo continuous change, 
therefore defining and characterizing them poses significant challenges 
[39]. Establishing a knowledge base of cell types to facilitate a thorough 
understanding of dynamic changes in cellular states would greatly 
enhance single-cell interpretation.

Although VICTOR is specifically designed as a tool for assessing the 
reliability of cell-type annotations, it can be extended to function as a 
cell-type annotation tool. The extension would involve training the 
model on the reference for each cell type, then scoring queried cells 
based on the trained model, and assigning them to the cell type with the 
highest score that passes specific thresholds for final annotation. Cells 
that do not meet any thresholds would be labeled as unassigned.

Currently, natural language processing (NLP) and large language 
models (LLM) offer advanced capabilities for cell type annotations 
[40–42]. However, these approaches require extensive computational 
resources. In contrast, VICTOR is much less computationally intensive, 
making it particularly effective for minor cell types and smaller datasets. 
It demonstrates robustness in handling limited observations, whereas 
NLP and LLM models often need substantial data to perform optimally 
and may suffer from performance issues, bias, or overfitting when 
certain cell types are underrepresented [42–44]. Furthermore, VICTOR 
can complement NLP- and LLM-based methods by preprocessing and 
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cleaning data before training those models, thereby enhancing perfor-
mance and offering an assessment of annotation reliability generated by 
such models.

4. Materials and methods

4.1. VICTOR

VICTOR comprises two primary steps (Fig. 2). The first step involves 
training the model using the reference profile with labeled cells, 
encompassing data processing, the selection of informative PCs, elastic- 
net regularized logistic regression, and determination of cell type- 
specific optimal thresholds. The second step involves projecting the 
query profiles to the selected PCs and assessing the reliability of cell 
annotations predicted by any methods. For instance, when a query cell is 
annotated as cell type A, VICTOR applies the cell profile to the trained 
model specific to cell type A, thereby obtaining a reliability score. If the 
score surpasses the optimal threshold for cell type A, the annotation is 
deemed reliable; otherwise, it is considered unreliable.

4.2. Data preprocessing and feature Selection

VICTOR utilizes Seurat [17] for data preprocessing, which includes 
normalization, the selection of highly variable genes, and dimensional 
reduction. VICTOR normalizes data by the total count of each cell, and 
selects the top 2000 highly variable genes, followed by principal 
component analysis.

After preprocessing, VICTOR identifies the most informative prin-
cipal components (PCs) to train the model. Following a strategy similar 
to scPred [24], VICTOR employs a two-tailed Wilcoxon rank-sum test on 
the top 50 PCs to select those with projected scores showing significant 
differences between cell types. VICTOR adjusts the p-values using the 
Benjamini-Hochberg false discovery rate correction (FDR) and selects 
PCs with an FDR < 0.01.

4.3. Model training using elastic-net regularized logistic regression

VICTOR trains one model for each cell type using elastic-net regu-
larized logistic regression [45].

X represents the projected score matrix for the selected principal 
components (PCs), where each column denotes the score for each PC, 
and each row corresponds to a cell. Specifically, Xij denotes the score of 
cell i projected to the PC j, where i = 1,2…n and j = 1,2…p. Here, n is 
the number of cells and p is the number of selected PCs. YA is a binary 
vector, where YAi = 1 if cell i belongs to cell type A, and 0 otherwise. The 
elastic net-regularized logistic regression model is formulated as below: 

fA(X) = log
(

P(YAi = 1|Xi)

1 − P(YAi = 1|Xi)

)

= βA
0 + βA

1 Xi1 + βA
2 Xi2 +…+ βA

p Xip 

In this model, P(YAi = 1|Xi) is the probability that a given cell i be-
longs to cell type A, given its PC scores Xi. The model parameters βA

0 , βA
1 , 

…, βA
p are estimated through the objective function for logistic regression 

by the penalized negative binomial log-likelihood: 

min
(βA

0 ,β
A)∈Rp+1

−

[
1
N

∑N

i=1
YAi

(
βA

0 +XT
i βA) − log(1+ e(βA

0+XT
i βA))

]

+ λ
∑p

j=0
[
1
2
(1 − α)

(
βA

j

)2
+α|βA

j |]

where N is the total number of cells in the dataset. The balance between 
L1 and L2 penalties, denoted as α, is set to 0.5. The optimal regulari-
zation parameter λ is determined through cross-validation, employing 
the ’cv.glmnet’ function in the ’glmnet’ R package with default settings. 
This process involves computing a series of models across a predefined 
grid of λ values and selecting the λ that minimizes the cross-validated 

error.

4.4. Cell type-specific optimal thresholds

Instead of selecting one threshold for every cell type, VICTOR de-
termines the optimal threshold for each cell type to maximize the sum of 
sensitivity and specificity, following Youden’s J statistic [33]. 

ThrA = argmax
cutoff

(SenA,cutoff + SpeA,cutoff )

Here, ThrA represents the optimal threshold for cell type A, SenA,cutoff 

denotes the sensitivity for cell type A at the cutoff, and SpeA,cutoff signifies 
the specificity for cell type A at the cutoff.

4.5. Assessment the reliability of cell annotations

After training the model for each cell type, VICTOR employs the 
trained model to evaluate the reliability of cell annotations predicted by 
any methods. VICTOR takes the gene expression profile and the pre-
dicted cell type of the query cell as input. Initially, VICTOR projects the 
query cell, denoted as i’, to the selected PCs, obtaining the projected 
score Xí .

If cell i’ is assigned to cell type A, VICTOR utilizes the trained model 
specific to cell type A to assess the reliability of this annotation. 

fA(Xí ) = P
(
YAi = 1|Xí

)
=

1
1 − e− (βA

0+βA•Xí )

The reliability of the annotation of query cell i’ belonging to cell type 
A is determined by comparing its predicted probability fA(Xí ) against 
the optimal threshold ThrA:

{
reliableiffA(Xí ) ≥ ThrA

unreliableOtherwise

4.6. Single-cell datasets

4.6.1. PBMC scRNA-seq datasets
The PBMC dataset comes from a comprehensive study aimed at 

systematically benchmarking various single-cell RNA-sequencing plat-
forms [34]. We focused on seven platforms, including two 
low-throughput plate-based techniques (Smart-seq2 and CEL-Seq2) and 
five high-throughput methods (10x Chromium - v2, v3, Drop-seq, 
Seq-Well, and inDrops). Single-cell expression profiles were down-
loaded from GEO (GSE132044), and cell annotations were obtained 
from the Single Cell Portal.

4.6.2. Pancreas scRNA-seq datasets
The pancreas datasets were obtained from three studies generated by 

different platforms. These include Baron [35] (GSE84133) from the 
inDrop platform, Muraro [36] (GSE85241) from the CEL-seq platform, 
and Segerstolpe [37] (E-MTAB-5061) from the Smart-seq2 platform. 
Single-cell expression profiles and cell annotations were obtained from 
the scRNAseq package.

4.6.3. HCA HLCA core scRNA-seq datasets
The integrated Human Lung Cell Atlas (HLCA) is part of the Human 

Cell Atlas (HCA) initiative, representing the first large-scale, integrated 
single-cell reference atlas of the human lung [38]. The HLCA is divided 
into the HLCA core and the extended HLCA full. For this study, we used 
the HLCA core, which includes data from healthy lung tissue of 107 
individuals, sourced from 14 different datasets, totaling 584,944 cells. 
This core dataset features manual cell type annotations based on 
consensus across six independent experts, as well as demographic, bio-
logical, and technical metadata.

4.6.4. PBMC multi-omics datasets
The PBMC multi-omics dataset is publicly available from 10x 
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Genomics, featuring approximately 12,000 human PBMCs that were 
granulocyte-depleted and sorted. In this dataset, both scRNA-seq and 
scATAC-seq profiles were simultaneously collected from the same cells, 
enabling comprehensive multi-omics analysis of gene expression and 
chromatin accessibility within individual cells.

4.7. Performance evaluation

4.7.1. Evaluation metric
We utilizes the accuracy to evaluate the performance of diagnosing 

cell type annotations.
Accuracy = TP+TN

TP+TN+FP+FN
Where true positives (TP) denote correct annotations that are further 

diagnosed as reliable, true negatives (TN) represent incorrect annota-
tions that are further diagnosed as unreliable, false positives (FP) in-
dicates incorrect annotations that are mistakenly diagnosed as reliable, 
and false negatives represents correct annotations that are erroneously 
diagnosed as unreliable.

4.8. Methods comparison

We compared VICTOR with seven commonly-used cell annotation 
methods: singleR[18], scPred[24], scmap[13], SCINA[14], CHETAH 
[15], scClassify [16], and Seurat [17]. These methods not only predict 
cell identities, but also determine the reliability of their predictions. 
singleR evaluates the prediction reliability using a diagnostic metric, 
designating the annotation as unreliable and the corresponding cell as 
"unknown" when the difference between its score for the assigned label 
and the median score across all labels is below a certain threshold. In 
contrast, scmap, SCINA, scPred, CHETAH, scClassify, and Seurat directly 
label annotations with predictive scores or probabilities below a certain 
threshold as “unreliable” and designate corresponding cells as 
"unknown.".
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