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SUMMARY

Recent studies have demonstrated that protein translation can be regulated by spontaneous 

excitatory neurotransmission. However, the impact of spontaneous neurotransmitter release on 

gene transcription remains unclear. Here, we study the effects of the balance between inhibitory 

and excitatory spontaneous neurotransmission on brain-derived neurotrophic factor (BDNF) 

regulation and synaptic plasticity. Blockade of spontaneous inhibitory events leads to an increase 

in the transcription of Bdnf and Npas4 through altered synaptic calcium signaling, which can be 

blocked by antagonism of NMDA receptors (NMDARs) or L-type voltage-gated calcium channels 

(VGCCs). Transcription is bidirectionally altered by manipulating spontaneous inhibitory, but 

not excitatory, currents. Moreover, blocking spontaneous inhibitory events leads to multiplicative 

downscaling of excitatory synaptic strength in a manner that is dependent on both transcription 

and BDNF signaling. These results reveal a role for spontaneous inhibitory neurotransmission in 

BDNF signaling that sets excitatory synaptic strength at rest.
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Horvath et al. study spontaneous neurotransmission to demonstrate a primary role for inhibition in 

gene transcription and synaptic plasticity. Inhibitory current through GABAARs, but not excitatory 

current through AMPARs, bi-directionally regulates transcription of Bdnf and Npas4 at rest. 

Control over transcription of Bdnf enables mIPSC-driven regulation of excitatory synaptic weight.

Graphical abstract

INTRODUCTION

Brain-derived neurotrophic factor (BDNF) is a critical regulator of synaptic strength and 

plasticity and is implicated as a key molecule in the pathophysiology and treatment of 

neuropsychiatric disorders (Duman and Monteggia, 2006; Autry and Monteggia, 2012). 

Previous studies have demonstrated that application of exogenous BDNF can increase 

or decrease synaptic strength depending on the duration of application (Rutherford et 

al., 1998; Reimers et al., 2014; Corrêa et al., 2012). Similarly, increasing endogenous 

local translation and release of BDNF through blockade of spontaneous excitatory 

neurotransmission triggers synaptic scaling to augment synaptic strength (Nosyreva et al., 

2013; Autry et al., 2011). These findings suggest endogenous BDNF regulation is finely 

tuned by excitatory neurotransmission, such that even spontaneous neurotransmission—an 

action potential-independent, highly regulated form of neurotransmitter release (Kavalali, 

2015)—can regulate BDNF and alter synaptic strength. Given that BDNF is involved 

in neuropsychiatric disorders, which are characterized by both aberrant excitatory and 
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inhibitory neurotransmission (Rubenstein and Merzenich, 2003; Kalueff and Nutt, 2007; 

Duman et al., 2019; Dienel and Lewis, 2019; Marín, 2012), we hypothesized that BDNF 

may also be regulated by inhibition. Although studies to date have focused on excitation 

and the induction of BDNF expression following depolarization as an activity-induced gene, 

whether BDNF can be directly regulated by inhibition to alter synaptic strength is an open 

question (Tao et al., 1998; Flavell and Greenberg, 2008; Park and Poo, 2013). Here, we 

aimed to explore the effects of spontaneous inhibitory transmission on transcription and 

translation of BDNF, as well as on BDNF-mediated effects on synaptic physiology.

RESULTS

Spontaneous mIPSCs regulate transcription of Bdnf and Npas4

To test for a role of inhibitory neurotransmission in regulating BDNF, we measured Bdnf 
mRNA expression and its transcription factor Npas4 in hippocampal cultures following 

blockade of inhibition with picrotoxin (PTX), a use-dependent γ-aminobutyric acid A 

receptor (GABAAR) antagonist (Figure 1A). Blocking inhibitory input in the presence of 

neuronal activity led to an increase in Bdnf and Npas4 mRNA (Figures 1B and 1E), as 

expected due to increased excitatory network activity. Spontaneous neurotransmission may 

also elicit signaling to the nucleus, as suggested by earlier studies of the transcriptional 

response to inactivity (Li et al., 2020; Schaukowitch et al., 2017). Therefore, to circumvent 

confounding increases in network activity we used tetrodotoxin (TTX) to block action 

potential-mediated activity, leaving only spontaneous neurotransmission intact. Blocking 

inhibitory input in the absence of neuronal activity also led to an increase in Bdnf and 

Npas4 mRNA, albeit to a smaller degree (Figures 1C and 1F), suggesting that blocking only 

miniature inhibitory postsynaptic currents (mIPSCs) in the absence of activity is sufficient to 

increase transcription. This effect is specific because blocking mIPSCs did not significantly 

increase the expression of two other activity-induced genes—Cfos and Arc (Figures S1A 

and S1B). Blocking mIPSCs with bicuculline also increased Bdnf and Npas4 mRNA; the 

effect was not due to an off target effect of PTX (Figures 1C, 1D, 1F, and 1G).

The specificity of our qPCR data led us to examine whether mIPSCs regulate the same or 

a different gene set as inhibition in the presence of activity. To answer this question, we 

performed RNA sequencing (RNA-seq, SRA: PRJNA734956) on hippocampal neurons at 

baseline and following 6 h of PTX, TTX, or TTX/PTX treatment. As expected, blockade 

of GABAARs with PTX in the presence of activity led to increased expression of many 

activity-dependent genes (Figure 1H; Table S2). Surprisingly, blocking mIPSCs increased 

expression of ten genes, all of which were also upregulated by blocking inhibition in the 

presence of activity (Figures 1I and S1C; Table S3). These data reveal the precise targeting 

of specific genes by mIPSCs, because the identified genes do not simply represent the most 

induced genes from the activity-dependent set. Of note, Bdnf and its transcription factor 

Npas4 were included in the identified upregulated genes following mIPSC block, confirming 

them as key molecules regulated by inhibition.

In an effort to understand the upstream molecular regulators of Bdnf, we examined Bdnf 
and Npas4 mRNA levels following 30 min of mIPSC block. Bdnf levels are unaltered after 

30 min; however, in line with its role as a transcription factor for Bdnf and early response 
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gene, Npas4 mRNA levels trended toward an increase (Figures S1D and S1E). Because Bdnf 
and Npas4 are regulated by both mIPSCs and network activity, we tested the involvement 

of two classic intermediate molecules involved in activity-dependent transcription, ERK and 

CREB, in mIPSC signaling to the nucleus (Bito et al., 1996; Flavell and Greenberg, 2008; 

Tyssowski et al., 2018; Thomas and Huganir, 2004; Obrietan et al., 2002; Tao et al., 1998; 

Funahashi et al., 2019) (Figure S1F). Although blocking inhibitory input for 30 min in the 

presence of activity led to an increase in phosphorylation of ERK and CREB as expected, no 

such increase was seen upon 30 min of mIPSC blockade, indicating that mIPSCs may signal 

in a different manner than evoked activity (Figures S1G and S1H). However, we cannot 

exclude the possibility of subtle cell-type-specific or compartment-specific changes in ERK 

and CREB phosphorylation.

Neurons sense altered inhibitory current at rest

Blocking inhibitory input in the presence of activity leads to disinhibition of excitation that 

is understood to be the direct cause of increased transcription of activity-induced genes such 

as Bdnf and Npas4. Therefore, we examined whether an increase in excitatory signaling 

following mIPSC blockade was responsible for increased Bdnf and Npas4 expression. We 

utilized whole-cell patch current clamp to simultaneously measure spontaneous depolarizing 

and hyperpolarizing membrane potential changes in the presence of TTX (Figures 2A and 

S2A) and then examined the effect of blocking miniature inhibitory postsynaptic potentials 

(mIPSPs). Blockade of mIPSPs for 8 min had no effect on membrane input resistance 

as measured at the soma (Figures 2B and 2C) and led to a modest, but significant, 

hyperpolarization in membrane potential (Figure 2D). Moreover, miniature excitatory 

postsynaptic potentials (mEPSPs) were unaffected by blockade of mIPSPs (Figures S2A–

S2D). Together, these data suggest that blocking inhibitory spontaneous input in the absence 

of activity does not push the neuron toward an excited state.

This result led us to consider two distinct possibilities. Neurons may either adjust 

transcription according to the excitation/inhibition (E/I) current balance or to levels of 

inhibition alone at rest. If the former is true, we would expect an increase in Bdnf and Npas4 
expression following increased excitation at rest. To test this premise, we utilized CX614, 

a positive allosteric modulator of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 

receptors (AMPARs) (Figures 2E–2J) (Arai et al., 2000). Importantly, CX614 does not affect 

mIPSCs (Figures S2E–S2I). Although blockade of mIPSCs once again increased Bdnf and 

Npas4 mRNA, increasing excitatory signaling at rest with CX614 had no effect after either 6 

h (Figures 2K and 2L) or 30 min (Figures S1D–S1E), ruling out a role for AMPAR current 

in late and early stages of transcription. Furthermore, reducing excitatory signaling by 

blocking AMPARs with CNQX also had no effect (Figures 2M and 2N). We then tested the 

second possibility by using the well-characterized GABAAR agonist muscimol to increase 

inhibition at rest. Increased GABAAR current at rest decreased Bdnf and Npas4 expression 

(Figures 2O and 2P). We therefore hypothesize that neurons sense inhibition at rest and 

adjust Bdnf and Npas4 levels accordingly, rather than sensing direct summation of excitatory 

and inhibitory currents.
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Blocking mIPSCs increases calcium signaling at synapses and soma

The effects of fine-tuning mIPSCs on Bdnf and Npas4 transcription suggest a signaling 

mechanism originating from the synapse. Evoked dendritic inhibition is known to affect 

local calcium signaling at excitatory synapses, and calcium signaling is strongly linked to 

transcription of activity-induced genes, including Bdnf and Npas4 (Bengtson et al., 2013; 

Chiu et al., 2013; Cichon and Gan, 2015; Hayama et al., 2013; Kanemoto et al., 2011, 

Müllner et al., 2015; Bading, 2013; Flavell and Greenberg, 2008; Lin et al., 2008; Tao 

et al., 1998; Brigidi et al., 2019); therefore, we tested if mIPSCs affect calcium signaling 

at excitatory synapses. In these experiments, we expressed a PSD95-tagged version of 

GCaMP6s using lentivirus (Reese and Kavalali, 2015, 2016) in neurons to target it to 

excitatory postsynaptic densities (Figure 3A). Surprisingly, blocking mIPSCs increased both 

the frequency and area of spontaneous calcium transients (SCTs) detected at excitatory 

synapses (Figures 3B–3D). This increase could be prevented by blocking a major source 

of calcium influx at excitatory synapses, N-methyl-D-aspartate receptors (NMDARs), with 

AP5 (Figures 3B–3D). To determine if the synaptic increase in SCTs also translated to a 

somatic increase in SCTs, we expressed a soluble version of GCaMP6s using lentivirus 

(Figure 3E). As observed at synapses, blocking mIPSCs increased both the frequency 

and area of SCTs at the soma (Figures 3F–3H). Notably, this was also blocked by AP5, 

suggesting that increased calcium signaling is integrated across the dendrites into a somatic 

response. This notion was corroborated by the observation that increases in SCTs at 

synapses precede those in the soma (Figure 3I). L-type voltage-gated calcium channels 

(VGCCs) may mediate the integration of transcription-inducing calcium signals across the 

dendrites and soma (Wild et al., 2019). Although previously published data demonstrate that 

L-type VGCCs have no impact on synaptic SCTs (Reese and Kavalali, 2015), we found that 

the L-type VGCC antagonist, nimodipine, blocked the increase in SCTs at the soma (TTX, 

0.1651 ± 0.031 events/min; TTX/PTX/nimodipine, 0.1727 ± 0.034 events/min; paired t test 

t(29) = 0.1575, p = 0.8760, n = 30). These data are consistent with a previous report that 

calcium signaling from evoked synaptic input is carried by NMDARs and L-type VGCCs 

(Bengtson et al., 2013) and suggest that NMDARs and L-type VGCCs work together to 

integrate synaptic and somatic calcium signaling following mIPSC block. The link between 

mIPSC blockade and increased calcium signaling at cell bodies is neuron-specific, as the 

addition of PTX did not alter SCTs detected in astrocytes (Figures S3A and S3B).

To understand whether increases in calcium signaling are related to increases in gene 

transcription following mIPSC blockade, we examined the transcriptional effects of blocking 

synaptic sources of calcium in addition to mIPSCs. In agreement with our previous findings, 

a 6-h blockade of mIPSCs led to an increase in Bdnf and Npas4 expression. Blockade of 

AMPARs with CNQX was unable to prevent this increase in transcription, supporting the 

premise that excitatory current through AMPARs does not impact gene transcription at rest. 

However, blocking NMDARs with AP5 or L-type VGCCs with nimodipine abolished this 

increase in gene transcription (Figures 3J, 3K, and S3K–S3N). Importantly, both NMDARs 

and L-type VGCCs have been previously shown to regulate Npas4 expression (Brigidi et 

al., 2019; Lin et al., 2008). Participation of L-type VGCCs is specific, because the potent 

and selective T-type VGCC antagonist, TTA-A2, did not impact Bdnf or Npas4 mRNA 

(Figures S3G–S3J). We next examined the endoplasmic reticulum as a non-synaptic source 
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of calcium and found that blockade of cytoplasmic calcium influx with ryanodine did not 

impact Bdnf or Npas4 mRNA (Figures S3C–S3F). Accordingly, ryanodine was unable to 

block an increase in SCTs at the soma following mIPSC block (TTX/ryanodine, 0.0090 ± 

0.0090 events/min; TTX/PTX/ryanodine, 0.0590 ± 0.016 events/min; paired t test t(21) = 

2.809, p = 0.0105, n = 22). Taken together, these data suggest that spontaneous GABAergic 

neurotransmission can be sensed indirectly via NMDAR and L-type VGCC function at 

excitatory synapses and the soma, and the resulting calcium signaling plays a key role in 

regulating the transcript levels of Bdnf and Npas4.

mIPSC blockade induces synaptic downscaling in a BDNF-dependent manner

BDNF and NPAS4 have known roles in synapse remodeling (Zagrebelsky and Korte, 2014; 

Fu et al., 2020; Park and Poo, 2013; Kowiański et al., 2018). Therefore, we investigated 

whether mIPSCs, through their ability to measurably alter transcription of these target genes, 

impact synaptic strength. We measured miniature excitatory postsynaptic currents (mEPSCs) 

in pyramidal neurons from hippocampal cultures after an initial 6-h blockade of mIPSCs 

followed by 18 h of recovery in previously collected conditioned media (24 h total) (Figure 

4A). Consistent with a role for mIPSCs in impacting synaptic strength, we found that 

blocking mIPSCs did not alter mEPSC frequency, but led to multiplicative downscaling 

of mEPSC amplitudes (Figures 4B–4D). This downscaling was abolished when cells were 

incubated with the transcriptional blocker actinomycin D (ActD) during mIPSC blockade, 

indicating that transcription is necessary for this effect. ActD application alone at rest had 

minimal impact on synaptic strength (Figure S4).

As a transcription factor, NPAS4 mediates its effects on synapses through downstream 

effector molecules, such as BDNF (Lin et al., 2008). BDNF has a well-known role in 

regulating synaptic strength, leading to increases in strength over short signaling timescales 

and decreases in strength over long timescales (Rutherford et al., 1998; Autry et al., 2011; 

Gideons et al., 2017; Reimers et al., 2014; Corrêa et al., 2012). Therefore, we examined 

BDNF as an effector molecule for the transcription-dependent downscaling seen following 

blockade of mIPSCs. An initial 6-h blockade of mIPSCs followed by 18 h of recovery 

resulted in an increase in BDNF protein (Figures 4E and 4F). Moreover, ActD treatment 

during mIPSC blockade abolished the increase in BDNF protein (Figure 4F), indicating 

increased BDNF protein is due to translation of newly transcribed Bdnf rather than increased 

local translation (Autry et al., 2011; Sutton et al., 2004, 2006). We also observed that 

blocking action potentials for the entire duration of the experiment with TTX did not prevent 

the increase in BDNF protein (Figure 4G), showing that BDNF expression is altered by 

subthreshold activity-independent signaling. Because mIPSC block leads to a decrease in 

synaptic strength, and BDNF—which can alter synaptic strength—is increased following 

mIPSC block, we tested the involvement of BDNF in mIPSC-induced downscaling. In 

these experiments, we utilized tropomyosin receptor kinase B (TrkB)-immunoglobulin G 

(IgG) fusion proteins as BDNF scavengers (Nelson et al., 2008). mEPSC frequency was not 

altered by the inclusion of IgG control protein or TrkB-IgG BDNF-scavenging protein in 

the replacement conditioned media (Figures 4H and 4I). However, although inclusion of IgG 

control protein did not affect downscaling following mIPSC block, scavenging BDNF with 

the TrkB-IgG protein prevented downscaling (Figures 4H and 4J). Collectively, these data 
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demonstrate that mIPSCs can regulate synaptic strength by altering transcription of Bdnf, 
which is then translated and feeds back onto downregulation of excitatory synaptic function.

DISCUSSION

Previous studies imply an independent function for spontaneous inhibitory signaling 

through partial segregation of evoked and spontaneous neurotransmission at both pre- 

and postsynaptic inhibitory specializations (Chung et al., 2010; Horvath et al., 2020). In 

this study, we identified a role for spontaneous miniature inhibitory neurotransmission in 

regulating BDNF and excitatory synaptic weights at rest. Importantly, this mechanism is 

such that it could maintain E/I balance, with a decrease in spontaneous inhibitory events 

leading to a decrease in excitatory synaptic strength.

We found that the expression of Bdnf and Npas4, which are typically thought of as activity 

sensors, is modified in meaningful ways by subthreshold (below action potential threshold) 

signaling. This is demonstrated by increases in both Bdnf and Npas4 mRNA and BDNF 

protein in experiments conducted entirely in TTX. These data are also in line with a 

previous study demonstrating a specific role for synaptic signaling in the regulation of 

Npas4 (Brigidi et al., 2019). BDNF signaling induced by mIPSC blockade—dependent on 

de novo BDNF transcription—led to downscaling of excitatory synapses, in agreement with 

previous data that blockade of subthreshold NMDAR currents can alter BDNF translation­

mediated signaling and synaptic strength (Nosyreva et al., 2013). Specifically, decreased 

subthreshold NMDAR-mediated calcium signaling leads to synaptic upscaling via a short­

term increase in BDNF signaling (Nosyreva et al., 2013; Reese and Kavalali, 2015), and 

increased subthreshold NDMAR-mediated calcium signaling leads to synaptic downscaling 

via a long-term increase in BDNF signaling (this paper). These data suggest that BDNF not 

only alters synapse function as an activity sensor per se but also more broadly tunes synapse 

strength in response to synaptic perturbations.

We propose one mechanism whereby mIPSCs regulate transcription is through calcium 

signaling at excitatory synapses. Similarly to excitation, inhibitory inputs affect dendritic 

calcium signaling and long-term synaptic plasticity (Chen et al., 2015; Chiu et al., 2013; 

Cichon and Gan, 2015; Hayama et al., 2013; Kanemoto et al., 2011; Müllner et al., 2015; 

Steele and Mauk, 1999). Our work indicates that calcium signaling at excitatory synapses 

can be altered by mIPSCs even in the absence of somatic spiking. This observation is 

consistent with the earlier demonstration that inhibition can regulate branch-specific long­

term potentiation (LTP), indicating its ability to exert very local effects (Cichon and Gan, 

2015; Chen et al., 2015). Changes in local calcium signaling can then be integrated at the 

soma in order to affect transcription. The length and pattern of calcium signaling alters 

both the activation of downstream effector molecules and the specific set of activity-induced 

genes that are transcribed (Tyssowski et al., 2018; Wu et al., 2001; Dolmetsch et al., 1998; 

Worley et al., 1993). Furthermore, some genes are broadly tuned to respond to a variety 

of stimuli (Joo et al., 2016). Thus, the specific set of genes transcribed depends heavily on 

the stimulus and the molecular events that follow. Here, we offer a proof of concept by 

demonstrating a clear effect of mIPSCs on the transcription of Bdnf and its transcription 

factor Npas4. Our experiments suggest a clear functional role for BDNF in regulation of 
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synaptic strength under these resting conditions, although it must be noted that other genes 

are also impacted by mIPSC signaling (Figures 1H and 1I). Validating these gene changes 

and determining the full contributions of this gene set to neuronal functioning will be the 

focus of future work.

One benefit of examining mIPSCs is that this allowed us to look specifically at the synaptic 

contribution of inhibition to transcription without confounding increases in network activity 

or artificial stimulation. Importantly, transcription of Bdnf and Npas4 was bidirectionally 

modified by inhibitory events, but unaltered by manipulations of quantal AMPAR-mediated 

events, the main carrier of excitatory currents at rest. This indicates that in addition to 

shaping fast excitatory currents and somatic spiking (Bloss et al., 2016; Iascone et al., 2020), 

inhibition also has a role in shaping the slower and longer lasting molecular signaling of 

a neuron. Thus, brain regions that are primarily composed of inhibitory interneurons (i.e., 

striatum and medial amygdala) may not only represent passive relay centers functioning as 

fast off- or on-switches, but may transform information processing by affecting molecular 

signaling and synaptic plasticity in downstream neurons. In agreement with this broader 

role for inhibition, it has recently been shown that complex behaviors, such as parenting 

and feeding, are controlled by subsets of inhibitory neurons (Wu et al., 2014; Aponte et 

al., 2011; Vong et al., 2011). Delineating the extent of evoked and spontaneous miniature 

inhibitory neurotransmission’s role in molecular signaling will be necessary to gain a full 

picture of inhibition’s role in the brain.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should 

be directed to and will be fulfilled by the Lead Contact, Lisa M. Monteggia 

(Lisa.Monteggia@vanderbilt.edu).

Materials availability—This study did not generate new unique reagents.

Data and code availability

• Bulk RNA-sequencing data have been deposited at NCBI’s Sequence Read 

Archive (SRA) and are publicly available as of the date of publication. Accession 

numbers are listed in the Key Resources Table. All data reported in this paper 

will be shared by the lead contact upon request.

• This paper does not report original code.

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals—Sprague-Dawley rat pups (postnatal day 1-3, Charles River, strain code: 400) 

of both sexes were used for all experiments. PN1-3 littermates were used to prepare 

primary, mixed-sex, dissociated, neuronal cultures. Pregnant Sprague-Dawley dams were 
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housed individually. The rats were kept in a 12hrs:12hrs dark:light cycle. Animal procedures 

conformed to the Guide for the Care and Use of Laboratory Animals and were approved by 

the Institutional Animal Care and Use Committees at UT Southwestern Medical Center and 

Vanderbilt University. Health status of live animals was periodically checked and confirmed 

by the veterinary staff of the animal facilities at UT Southwestern Medical Center and 

Vanderbilt University.

Primary Dissociated Hippocampal Culture—Dissociated hippocampal cultures were 

prepared as previous described (Kavalali et al., 1999). Sex was not determined before 

culturing, and all cultures consisted of neurons from mixed sexes. Whole hippocampi 

were dissected from PN1-3 rats, trypsinized (~4 mg/mL, Sigma), treated with DNase I, 

mechanically dissociated, and plated on matrigel (BD Biosciences) coated plastic or glass 

coverslips. Neurons were plated in MEM (no phenol red) containing 27.8 mM of Glucose, 

2.4 mM of NaHCO3, 1.3 μM of Transferrin (Calbiochem), 2 mM of L-Glutamine, 4.4 μM 

of insulin, and 10% FBS. On DIV1, FBS concentration was reduced to 5%, L-Glutamine 

concentration was reduced to 500 μM, and 1x B-27 supplement (GIBCO) and 4μM of 

cytosine arabinoside (ARAC; Sigma) were added. On DIV4 the concentration of ARAC 

was reduced to 2μM. For imaging experiments, cells were also infected on DIV4 with 

100 μL of lentivirus carrying either a GCaMP6s or GCaMP6s-PSD95 expression plasmid. 

Cells were maintained at 37°C in a 5% CO2 atmosphere without disruption following DIV4 

until experiments were performed (DIV14-21). Sample size was not predetermined using 

statistical methods prior to experimentation. Sample sizes were based on previous studies in 

the field of molecular & cellular neuroscience.

Cell lines—Human embryonic kidney-293 (HEK293-T) cells (authenticated by ATCC) 

were used to produce lentiviral particles to infect primary neuronal cultures. HEK293 

cultures were maintained in Dulbecco’s Modified Eagle Medium supplemented with 10% 

FBS, penicillin, and streptavidin at 37°C in a 5% CO2 atmosphere. Cells were split and 

passaged when they reached 80% confluency. Cultures with more than 30 passages were not 

used.

METHOD DETAILS

Cloning and Lentivirus production—GCaMP6s was subcloned into FUGW and 

FUGW-GCaMP6f-PSD95 (replacing GFP and GCaMP6f, respectively) using classic 

molecular biology techniques (Chen et al., 2013; Lois et al., 2002; Reese and Kavalali, 

2016). HEK293-T cells were transfected with FuGENE6, necessary viral coat and packaging 

protein constructs (pCMV-VSV-G, pMDLg-pRRE, pRSV-Rev), and either a GCaMP6sor 

GCaMP6s-PSD95 expression plasmid (Dull et al., 1998; Stewart et al., 2003). 12-18 hr 

after transfection, HEK293-T cell media was replaced with MEM (no phenol red) media 

containing 5% FBS, 500 μM L-glutamine and 1x B-27 supplement (GIBCO). On DIV3 

virus was harvested from the HEK293-T cell media and added directly to neuronal media at 

DIV4.

Electrophysiology—Electrophysiology was performed on cells from DIV15-21 at room 

temperature using a CV 203BU headstage (Axon Instruments), Axopatch 200B amplifier, 
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Digidata 1322A digitizer and Clampex 10 software (Molecular Devices). Extracellular 

Tyrode solution, adjusted to pH 7.4 and 319 mOsm, contained: 150 mM of NaCl, 4 mM 

of KCl, 1.25 mM of MgCl2·6H2O, 10 mM of glucose, 10 mM of HEPES, 2 mM of Ca2+, 

and 1 μM of tetrodotoxin (TTX). For whole cell patch voltage clamp recordings, 50 μM of 

D-AP5 and 50 μM of picrotoxin (PTX) was added to the extracellular solution to isolate α­

amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) driven miniature excitatory 

postsynaptic currents (mEPSCs) and 50μM of D-AP5, and 10μM of NBQX was added to 

isolate miniature inhibitory postsynaptic currents (mIPSCs). Intracellular pipette solution 

for voltage clamp recordings, adjusted to pH 7.3 and 304 mOsm, contained: 115 mM of Cs­

methanesulphonate, 10 mM of CsCl, 5 mM of NaCl, 10 mM of HEPES, 20 mM of TEA.Cl 

hydrate, 4 mM of MgATP, 0.3 mM of GTP, 0.6 mM of EGTA, and 10 mM of QX314. 

For whole cell patch current clamp recordings 50 μM of PTX was added to extracellular 

solution where indicated. Intracellular pipette solution for current clamp recordings, adjusted 

to pH 7.3 and 304 mOsm, contained: 138 mM of Kgluconate, 2 mM of NaCl, 2 mM of 

NaCl, 0.3 mM of Tris-GTP, 4 mM of Mg2ATP, 14 mM of (di)Trisphosphocreatine, and 10 

mM of HEPES. For synaptic scaling experiments, 6 hr after initial drug treatment with 1 

μM of TTX, 50 μM of PTX, and/or 2.5 μM of ActD, drug-treated media was replaced with 

conditioned media (collected before drug treatment) and returned to the incubator for 18 hr. 

In BDNF-scavenging experiments, conditioned replacement media was treated with either 

12.5μg/mL IgG control, or 12.5μg/mL TrkB-IgG. mEPSCs were then recorded as described, 

24 hr after the start of the experiment. To calculate membrane input resistance, current steps 

of 20 pA were given and the resulting potential was plotted against the current injection 

and fitted with a line. Input resistance was calculated from the slope of this line. Series 

resistance was monitored before and after all recordings to ensure stable patches. Series 

resistance compensation was not employed in these recordings. In cases where multiple files 

were recorded from the same patch, series resistance was monitored in between each file. 

Liquid junction potential was not corrected for in these recordings. Spontaneous excitatory 

and inhibitory currents and potentials were analyzed using MiniAnalysis software with the 

analyzer blind to experimental condition. Recordings were made from cells across multiple 

coverslips from at least two independent cultures with every condition represented in each 

culture for each experiment to ensure adequate biological and technical replication.

Drug treatment and RNA collection—Dissociated hippocampal cultures (DIV14) were 

treated as indicated in figures for 6 hr or 30 min. The following drugs were used at the 

indicated concentrations: TTX (1 μM), PTX (50 μM), Bicuculline (20 μM), CX614 (20 

μM), CNQX (10 μM), AP5 (50 μM), Muscimol (5 μM), Nimodipine (5 μM), Ryanodine 

(33 μM), TTA-A2 (10 μM). All drugs and vehicle controls were added directly to cell 

media. Following drug treatment, media was aspirated, cells were lysed, and RNA was 

collected using the PureLink® RNA mini kit with supplementary DNase treatment (Thermo 

Fisher Scientific) according to manufacturer instructions. RNA was eluted with 40 μL of 

nuclease-free H2O. RNA was collected from individual wells from at least three independent 

cultures with every condition represented in each culture for each experiment to ensure 

adequate biological and technical replication.
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cDNA preparation and qPCR—400 ng of RNA was converted to cDNA using 

the SuperScript® III Reverse Transcriptase kit (Thermo Fisher Scientific) according to 

manufacturer specifications. Briefly, RNA was mixed with 1x random primer and 10mM 

dNTPs then incubated at 65°C for 5 minutes. 5x First Strand Buffer, 100mM DTT and 

RNase out were then added and the reaction mixture was incubated at 25°C for 5 minutes. 

Finally, the reverse transcriptase (SSIII) was added and the reaction was incubated at 50°C 

for 1 hr followed by 70°C for 15 minutes.

cDNA was then used for qPCR according to the following mixture: 10 μL of Power SYBR® 

Green PCR Master Mix (Thermo Fisher Scientific), 7 μL of nuclease-free H2O,1 μL of 

forward primer (10μM), 1 μL of reverse primer (10μM), and 1μL of cDNA. Forward and 

reverse primer sequences for each gene assayed are listed in the Key Resources Table. 

The qPCR reaction was performed in triplicate for each sample according to the following 

temperature profile: (1) 95°C for 10 minutes, (2) 95°C for 30 s, (3) 60°C for 20 s, (4) 70°C 

for 30 s, steps 2-4 were repeated for 40 cycles. All Ct values were normalized to Gapdh and 

analyzed using the standard curve method.

Western Blotting—On DIV14, cells were treated as indicated in figures. The following 

drugs were used at the indicated concentrations: TTX (1 μM), PTX (50 μM), and ActD 

(2.5 μM). All drugs and vehicle controls were added directly to cell media. For 24 

hr experiments, 6 hr after initial drug treatment, drug-treated media was replaced with 

conditioned media (collected before drug treatment) and returned to the incubator for 18 

hr. 24 hr after initial drug treatment, cells were collected in 75μL PBS and 75μL Laemmli 

sample buffer (BioRad) containing protease and phosphatase inhibitors (Roche). 30μL of 

cell lysate was run on an SDS/PAGE gel and then transferred to a nitrocellulose membrane 

using the Trans-Blot Turbo transfer system (BioRad). Following 30 min in blocking 

solution, primary antibodies were used at the following concentrations: GAPDH 1:50,000; 

BDNF 1:1,500; ERK 1:2,000; pERK 1:2,000; CREB 1:2,000; pCREB 1:5,000. After 

incubation in primary antibodies at 4°C overnight, membranes were incubated in secondary 

antibodies at the following concentrations: GAPDH 1:10,000 (anti-rabbit); BDNF, ERK, 

pERK, CREB, and pCREB 1:5,000 (anti-rabbit). Protein bands were detected using ECL 

and exposure to film. Quantification was performed using ImageJ to detect protein band 

intensities. Values were normalized to GAPDH before comparison. Protein/cell lysate was 

collected from individual wells from at least two independent cultures with every condition 

represented in each culture for each experiment to ensure adequate biological and technical 

replication.

Live cell Calcium imaging—Cultured hippocampal neurons were infected on DIV4 with 

lentivirus containing either GCaMP6s or GCaMP6s-PSD95 and then imaged on DIV18-20. 

Tyrode’s buffer adjusted to pH 7.4 and 319 mOsm, containing 150 mM of NaCl, 4 mM 

of KCl, 10 mM of glucose, 10 mM of HEPES, 2 mM of Ca2+ and 1.25 mM of Mg2+ 

with 1 μM of TTX and, when appropriate, 50 μM of PTX, 50 μM of D-AP5, 33 μM 

of Ryanodine, and/or 5 μM of Nimodipine was used. Experiments were performed with 

constant perfusion and at room temperature using a Nikon Eclipse TE2000-U microscope 

(Nikon) equipped with a Lambda-DG4 illumination system (Sutter instruments), a FITC 

Horvath et al. Page 11

Cell Rep. Author manuscript; available in PMC 2021 August 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



emission filter and a 60x (1.4 NA) objective. Images were acquired at 7 Hz using an 

Andor iXon+ back-illuminated EMCCD camera (Model no. DU-897E-CSO-#BV). Maximal 

fluorescence signal was obtained by perfusion of 90 mM of KCl at the end of each 

experiment and this was used to draw the regions of interest (ROI) around postsynaptic 

spines, dendrites and cell bodies. Spontaneous calcium transients (SCTs) were measured 

from ROIs for 5min before and for 10 min immediately after addition of drugs. Images 

and fluorescence values were analyzed using Fiji (Schindelin et al., 2012) and MATLAB. 

Images were collected from individual coverslips from at least two independent cultures 

with every condition represented in each culture for each experiment to ensure adequate 

biological and technical replication.

RNA-sequencing and analysis—Dissociated hippocampal cultures were treated with 

DMSO vehicle, 50 μM PTX and/or 1 μM TTX for 6 hr to create basal, PTX, TTX, 

and TTX/PTX groups. Following drug incubation, total RNA was collected from 2 wells 

per condition in two independent cultures for a total of 4 samples per group to ensure 

adequate biological and technical replication. RNA was collected via the RNeasy Plus Mini 

Kit (QIAGEN) according to manufacturer instructions. A Quality Control assessment was 

completed for the total RNA utilizing a Qubit RNA assay to quantify each sample and 

the Caliper GX to evaluate integrity. All samples had an RNA integrity number (RIN) 

above 8.6. RNASeq libraries were prepared using 300 ng of RNA and the NEBNext 

Ultra II Directional RNA Library Prep kit (NEB, Cat: E7760L). Fragmentation, cDNA 

synthesis, end repair/dA-tailing, adaptor ligation and PCR enrichment were performed per 

manufacturer’s instructions. Individual libraries were assessed for quality using the Agilent 

2100 Bioanalyzer and quantified with a Qubit Fluorometer. The adaptor ligated material 

was evaluated using qPCR prior to normalization and pooling for sequencing. The libraries 

were sequenced using the NovaSeq 6000 with 150 bp paired end reads. RTA (version 2.4.11; 

Illumina) was used for base calling and data QC was completed using MultiQC v1.7 by the 

Vanderbilt Technologies for Advanced Genomics (VANTAGE) core (Vanderbilt University, 

Nashville, TN). For sequencing analysis, adapters were trimmed by Cutadapt (v2.10). After 

trimming, reads were mapped to the rat genome Rnor 6.0 using STAR (v2.7.8a) and 

quantified by feature Counts (v2.0.2). DESeq2 (v.1.30.1) was used to detect differential 

expression between two groups. Fold change of at least 1.5 in either direction compared to 

control was used as the cut-off. Adjusted p values less than 0.05 were considered statistically 

significant.

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical analyses were performed using GraphPad Prism 8 software. Details on 

statistical tests performed and n for each experiment are listed in Table S1. For RNA 

and protein experiments n is one individual well of neurons from a cultured set. For 

electrophysiology experiments n is one patched cell. For imaging experiments frequency 

n is each individual ROI corresponding to either a single synapse or cell body and area n is 

each individual event across ROIs in all samples. Sample size was not predetermined using 

statistical methods prior to experimentation. Sample sizes were based on previous studies 

in the field of molecular & cellular neuroscience. Outliers were identified with the Robust 

regression and Outlier removal (ROUT) method. Statistical significance was defined as p 
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< 0.05 with further details listed in Table S1 for main figures and in figure legends for 

supplemental figures.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Transcription can be directly driven by inhibitory signaling

• At rest, neurons sense inhibition, not summation of excitatory/inhibitory 

current

• mIPSCs regulate calcium signaling at excitatory synapses and somas

• Blocking mIPSCs downscales excitatory synapses via Bdnf transcription and 

signaling
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Figure 1. mIPSC block increases Bdnf and Npas4 mRNA
(A) Experimental schematic (B–I). RNA was collected from cultured hippocampal neurons 

6 h after drug treatment.

(B and E) Blocking inhibition with 50 μM PTX increases Bdnf (B, n = 3) and Npas4 (E, n = 

7) mRNA.

(C and F) Blocking mIPSCs with 1 μM TTX and 50 μM PTX increases Bdnf (C) and Npas4 
(F) mRNA (n = 8).
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(D and G) Blocking mIPSCs with 1 μM TTX and 20 μM bicuculline increases Bdnf (D) and 

Npas4 (G) mRNA (TTX, n = 12; TTX/bicuculline, n = 11).

(H) Blocking inhibition with 50 μM PTX leads to differential expression of many genes 

(DEGs) compared to baseline, including Bdnf and Npas4.
(I) Blocking mIPSCs with 1 μM TTX and 50 μM PTX increases expression of a small 

subset of genes compared to 1 μM TTX-treated cells, including Bdnf and Npas4. RNA-seq 

experiments had 4 biological replicates. Bar graphs are mean + SEM. Open circles next to 

bars = biological replicates. Volcano plots show DEGs with increased (red) or decreased 

(blue) expression. n.s., non-significant, *p < 0.05, **p < 0.01, ***p< 0.001.

See also Figure S1 and Tables S1, S2, and S3.
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Figure 2. Neurons adjust transcription at rest by sensing inhibitory input not E/I ratio
(A) Experimental schematic (B–D). Pyramidal neurons were whole-cell patched in current 

(B–D) or voltage clamp (E–J). Current clamp measurements were taken in 1 μM TTX from 

same cell before and after 5 min incubation with 50 μM PTX. Voltage clamp measurements 

were taken from different cells with 20 μM CX614 or DMSO in extracellular bath.

(B) Representative traces (C and D).

(C) Membrane resistance is unaltered following mIPSP block with 1 μM TTX and 50 μM 

PTX (n = 10).

(D) Membrane potential is mildly decreased following mIPSP block with 1 μM TTX and 50 

μM PTX (n = 9).

(E) Scaled average mEPSC event in presence or absence of 20 μM CX614.

(F) Representative traces (G–J).
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(G–J) 20 μM CX614 increases the area (G) and decay time (H), but does not the affect 

frequency (I) or amplitude (J) of mEPSCs (DMSO, n = 5; CX614, n = 3).

(K–P) RNA was collected from cultured hippocampal neurons 6 h after drug treatment.

(K and L) Blocking mIPSCs with 1 μM TTX and 50 μM PTX increases Bdnf (K) and Npas4 
(L) mRNA, but increasing mEPSC charge transferred with 20 μM CX614 does not (TTX, n 

= 10; TTX/PTX, n = 10; TTX/CX614, n = 11).

(M and N) Blocking mEPSCs with 10 μM CNQX does not alter Bdnf (M) or Npas4 (N) 

mRNA (TTX, n = 10; TTX/CNQX, n = 8).

(O and P) Activating GABAARs at rest with 5 μM muscimol decreases Bdnf (O) and Npas4 
(P) mRNA (TTX, n = 11; TTX/muscimol, n = 12). Large circles in (C) and (D) are mean 

± SEM. Bar graphs are mean + SEM. Open circles next to bars = biological replicates. n.s., 

non-significant, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

See also Figure S2 and Table S1.
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Figure 3. mIPSC block increases calcium signaling at excitatory synapses, leading to increases in 
Bdnf and Npas4 mRNA
(A) Schematic and example image of PSD95-tagged GCaMP6s fluorescence.

(B) Representative traces (C and D). SCTs measured at synapses from same region of 

interest (ROI) 5 min before and 10 min after drug addition.

(C and D) Blocking mIPSCs with 1 μM TTX and 50 μM PTX increases the frequency (C, 

TTX, n = 8,050; TTX/PTX, n = 5,019; TTX/PTX/APV, n = 3,031; n is ROI) and area (D, 

TTX, n = 9,067; TTX/PTX n = 14,618, TTX/PTX/APV n = 3,046, n is events) of SCTs at 

excitatory synapses, but 50 μM AP5 abolishes this increase.
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(E) Schematic and example image of soluble GCaMP6s fluorescence at soma.

(F) Representative traces (G–H). SCTs measured at somas from same ROI 5 min before and 

10 min after drug addition.

(G and H) Blocking mIPSCs with 1 μM TTX and 50 μM PTX increases the frequency (G, 

TTX, n = 24; TTX/PTX, n = 24; TTX/PTX/APV, n = 33; n is ROI) and area (H, TTX, n = 

4; TTX/PTX, n = 59; TTX/PTX/APV, n = 20, n is events) of SCTs at somas, but 50 μM AP5 

abolishes this increase.

(I) SCTs increase at excitatory synapses before soma following mIPSCs block (PSD-95, n = 

4,814; soma, n = 60; n is ROI).

(J and K) RNA was collected from cultured hippocampal neurons 6 h after drug treatment. 

Blocking AMPARs at rest with 10μM CNQX does not alter increased transcription of Bdnf 
(J, TTX, n = 27; TTX/PTX, n = 26; TTX/PTX/CNQX, n = 8; TTX/PTX/APV, n = 8; 

TTX/PTX/nimodipine, n = 9) and Npas4 (K, TTX, n = 26; TTX/PTX, n = 26; TTX/PTX/

CNQX, n = 8; TTX/PTX/APV, n = 8; TTX/PTX/nimodipine, n = 9). Blocking either 

NMDARs or L-type VGCCs at rest with 50 μM AP5 or 5 μM nimodipine, respectively, 

blocks increased transcription of Bdnf (J) and Npas4 (K). Bar graphs are mean + SEM. 

Open circles next to bars = biological replicates. Experimental replicates unresolvable for 

imaging data. n.s., non-significant, *p < 0.05, ****p < 0.0001.

See also Figure S3 and Table S1.
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Figure 4. mIPSC block increases translation of newly transcribed Bdnf mRNA and leads to 
downscaling of mEPSC amplitudes
(A) Experimental schematic (B–D and H–J). mEPSCs recorded from cultured hippocampal 

neurons 24 h after initial 6 h drug treatment followed by a replacement of media with 

conditioned media for 18 h. ActD experiments: cells treated with ActD during initial 6 h 

drug treatment. TrkB-IgG experiments: cells treated with TrkB-IgG BDNF scavenger during 

18 h incubation.

(B) Representative traces (C and D).
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(C) mEPSC frequency is unaffected by drug treatment with 1 μM TTX, 50 μM PTX, and/or 

2.5 μM ActD (TTX, n = 19; TTX/PTX, n = 18; TTX/ActD, n = 16; TTX/PTX/ActD, n = 

18).

(D) Rank order plot of mEPSC event amplitudes. Initial blockade of mIPSCs downscales 

mEPSC amplitudes (basal, linear fit: y = 0.8344x + 0.8319, R2 = 0.9981). Downscaling is 

abolished with 2.5 μM ActD treatment (ActD, linear fit: y = 1.031x + 1.284, R2 = 0.9870).

(E) Experimental schematic (F and G). Protein was collected from cultured hippocampal 

neurons 24 h after initial 6 h drug treatment followed by a replacement of media with 

conditioned media for 18 h.

(F) Top: representative western blot. Bottom: BDNF is increased following initial block of 

mIPSCs with 1 μM TTX and 50 μM PTX. Increase is abolished with 2.5 μM ActD treatment 

(TTX, n = 8; TTX/PTX, n = 7; TTX/PTX/ActD, n = 8).

(G) Top: representative western blot. Bottom: BDNF is increased following initial block of 

mIPSCs with 1 μM TTX and 50 μM PTX if activity is blocked for experiment duration with 

1 μM TTX (n = 6).

(H) Representative traces (I and J).

(I) mEPSC frequency is unaffected by treatment with 1 μM TTX, 50 μM PTX, 12.5 μg/mL 

IgG control, and/or 12.5 μg/mL TrkB-IgG (TTX/IgG, n = 12; TTX/PTX/IgG, n = 12; TTX/

TrkB-IgG, n = 12; TTX/PTX/TrkB-IgG, n = 13).

(J) Rank order plot of mEPSC event amplitudes. Downscaling is abolished when BDNF is 

scavenged (IgG, linear fit: y = 0.8159x + 0.8695, R2 = 0.9963; TrkB-IgG, linear fit: y = 

0.9783x + 0.5251, R2 = 0.9934). Bar graphs are mean + SEM. Open circles next to bars = 

biological replicates. Solid black line in (D) and (J) is unity line. n.s., non-significant, *p < 

0.05, **p < 0.01.

See also Figure S4 and Table S1.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-GAPDH (Rabbit monoclonal) Cell Signaling Catalog # 14C10; RRID:AB_561053

Anti-BDNF (Rabbit monoclonal) AbCam Catalog # 108319; RRID: AB_10862052

Anti-ERK (Rabbit monoclonal) Cell Signaling Catalog # 4695S; RRID: AB_390779

Anti-pERK (Rabbit monoclonal) Cell Signaling Catalog # 4370S; RRID: AB_2315112

Anti-CREB (Rabbit monoclonal) Cell Signaling Catalog # 9197S; RRID: AB_331277

Anti-pCREB (Rabbit polyclonal) Millipore Catalog # 06-519; RRID: AB_310153

Chemicals, peptides, and recombinant proteins

Picrotoxin Sigma Aldrich Catalog #P1675

Bicuculline Sigma Aldrich Catalog# 14340

D(−)-2-Amino-5-phosphonopentanoic acid (AP5) AbCam Catalog # A8054

Tetrodotoxin Enzo Life Sciences Catalog # BML-NA120-0001

CX614 Tocris Catalog # 5149

Nimodipine Tocris Catalog # 0600

Ryanodine Tocris Catalog # 1329

Muscimol Tocris Catalog # 0289

Actinomycin D Sigma Aldrich Catalog # A1410

TTA-A2 AbCam Catalog # ab145559

Recombinant Human IgG1 Fc, CF R&D Systems Catalog # 110HG100

Recombinant Human TrkB Fc Chimera Protein, CF (BDNF 
scavenger)

R&D Systems Catalog # 688-TK-100

1,2,3,4-Tetrahydro-6-nitro-2,3-dioxo-benzo[f] 
quinoxaline-7-sulfonamide disodium salt hydrate (NBQX)

AbCam Catalog # ab120046

QX314 EMD-Millipore Catalog # E2692

DNase I Sigma Aldrich Catalog # D5025

Transferrin Calbiochem Catalog # 616420

Cytosine Arabinoside (ARAC) Sigma Aldrich Catalog # C6645

B-27 supplement GIBCO Catalog # 17504-010

FuGENE6 Promega Catalog # E2692

Matrigel Corning Catalog # 354230

Critical commercial assays

PureLink® RNA mini kit Thermo Fisher Scientific Catalog # 12183018A

PureLink® DNase set Thermo Fisher Scientific Catalog # 12185010

SuperScript® III Reverse Transcriptase kit Thermo Fisher Scientific Catalog # 18080085

PowerUp® SYBR® Green PCR Master Mix Thermo Fisher Scientific Catalog # A25777

Deposited data

Raw and processed sequencing data This paper SRA: PRJNA734956

Experimental models: organisms/strains
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REAGENT or RESOURCE SOURCE IDENTIFIER

Sprague-Dawley rat pups (P1–P3) Charles River Strain code: 400

Oligonucleotides

Primer: Gapdh Forward: AGGT CGGTGTGAACGGATTTG This paper N/A

Primer: Gapdh Reverse: TGTAGA 
CCATGTAGTTGAGGTCA

This paper N/A

Primer: Npas4 Forward: TATGGACTGCTACACCCCGA This paper N/A

Primer: Npas4 Reverse: TAGCACAGCTGGGGTTCCTA This paper N/A

Primer: Bdnf Forward: AGACATGTTTGCGGCATCCAG This paper N/A

Primer: Bdnf Reverse: 
CCATAAGGACGCGGACTTGTACA

This paper N/A

Primer: Cfos Forward: CAGAGCGGGAATGGTGAAGA This paper N/A

Primer: Cfos Reverse: TCGGTGGGCTGCCAAAATAA This paper N/A

Primer: Arc Forward: AGTAGGCACCAAACCCAAGG This paper N/A

Primer: Arc Reverse: AGCTATGCTGCCCAAGACTG This paper N/A

Recombinant DNA

Plasmid: pRSV-REV (lentiviral packaging) Dull et al., 1998 Addgene # 12253

Plasmid: pCMV-VSV-G (lentiviral packaging) Stewart et al., 2003 Addgene # 8454

Plasmid: pMDLg/pRRE (lentiviral packaging) Dull et al., 1998 Addgene # 12251

Plasmid: FUGW Lois et al., 2002 Addgene # 14883

Plasmid: pGP-CMV-GCaMP6s Chen et al., 2013 Addgene # 40753

Plasmid: FUGW-GCaMP6s This paper N/A

Plasmid: FUGW-GCaMP6f-PSD95 Reese and Kavalali, 2016 N/A

Plasmid: FUGW-GCaMP6s-PSD95 This paper N/A

Software and algorithms

MiniAnalysis Synaptosoft http://www.synaptosoft.com/MiniAnalysis

Clampfit Molecular Devices https://www.moleculardevices.com

Axopatch Molecular Devices https://www.moleculardevices.com

Prism 8 Graphpad https://www.graphpad.com:443/

Fiji Schindelin et al., 2012 N/A

MATLAB. (2018). 9.7.0.1190202 (R2019b). Natick, Massachusetts: The 
MathWorks Inc.

https://www.mathworks.com/products/
matlab.html?s_tid=hp_products_matlab
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