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One-Carbon Metabolism and Alzheimer’s Disease: Focus on Epigenetics 
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Abstract: Alzheimer’s disease (AD) represents the most common form of dementia in the elderly, characterized by pro- 

gressive loss of memory and cognitive capacity severe enough to interfere with daily functioning and the quality of life.  

Rare, fully penetrant mutations in three genes (APP, PSEN1 and PSEN2) are responsible for familial forms of the disease.  

However, more than 90% of AD is sporadic, likely resulting from complex interactions between genetic and environ- 

mental factors. Increasing evidence supports a role for epigenetic modifications in AD pathogenesis. Folate metabolism,  

also known as one-carbon metabolism, is required for the production of S-adenosylmethionine (SAM), which is the major  

DNA methylating agent. AD individuals are characterized by decreased plasma folate values, as well as increased plasma  

homocysteine (Hcy) levels, and there is indication of impaired SAM levels in AD brains. Polymorphisms of genes partici- 

pating in one-carbon metabolism have been associated with AD risk and/or with increased Hcy levels in AD individuals.  

Studies in rodents suggest that early life exposure to neurotoxicants or dietary restriction of folate and other B vitamins re- 

sult in epigenetic modifications of AD related genes in the animal brains. Similarly, studies performed on human neuronal  

cell cultures revealed that folate and other B vitamins deprivation from the media resulted in epigenetic modification of  

the PSEN1 gene. There is also evidence of epigenetic modifications in the DNA extracted from blood and brains of AD  

subjects. Here I review one-carbon metabolism in AD, with emphasis on possible epigenetic consequences. 
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INTRODUCTION 

1. Alzheimer's Disease 

 Alzheimer's disease (AD) is a complex multi-factorial 
neurodegenerative disorder and represents the most common 
form of dementia in the elderly. In 2006, the worldwide 
prevalence of AD was 26.6 million. It has been estimated 
that following the global aging of the world’s population this 
number will quadruple by 2050, suggesting that 1 in 85 per-
sons worldwide will be living with the disease [1]. AD is the 
sixth leading cause of all deaths in the United States, and the 
fifth leading cause of death in Americans aged 65 years and 
older. It is estimated that 5.3 million Americans have AD, 
and that every 70 seconds someone in America develops 
AD; by 2050, this time is expected to decrease to every 33 
seconds [2]. No striking racial differences appear in AD 
prevalence or incidence and no geographic isolates of the 
disease are known [3]. 

 AD is clinically characterized by a progressive neurode-
generation in selected brain regions, including the temporal 
and parietal lobes and restricted regions within the frontal 
cortex and the cingulate gyrus, resulting in gross atrophy of 
the affected regions and leading to memory loss accompa-
nied by changes of behaviour and personality severe enough 
to affect work, lifelong hobbies or social life. Affected brain  
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regions are also characterized by the occurrence of extracel-
lular amyloid deposits or senile plaques (SP) and by the 
presence of neurofibrillary tangles (NFT) composed of in-
traneuronal aggregates of hyperphosphorylated tau protein 
[4]. The disease gets worse over time, and it is fatal. Unfor-
tunately, currently used treatments offer a small symptomatic 
benefit, but no treatments to delay or halt the progression of 
the disease are as yet available [5]. 

 One of the most important early discoveries in under-
standing the etiology of AD was that the primary component 
of the extracellular amyloid deposits in AD brains is an ap-
proximately 40-residue long peptide, known as amyloid  
(A ) peptide. It was subsequently established that A  is the 
product of the proteolytic processing of its precursor, the 
amyloid precursor protein (APP). APP can be processed by 

-secretase and -secretase (a protein complex composed by 
presenilins and other proteins) producing non-amyloidogenic 
peptides, or by -secretase ( -site APP cleaving enzyme 1, 
BACE1) and -secretase producing A  peptides. Therefore 
the balance between different secretase activities is very im-
portant in the maintenance of the physiological levels of 
non-amyloidogenic and amyloidogenic fragments. The two 
major forms of A  that are produced by APP processing un-
der normal conditions are 40 and 42 residues in length (A 40 
and A 42, respectively). A 42 is the major component of SP. 
In a normal individual the majority of A  produced is of the 
shorter variety, A 40; whereas mutations causing familial AD 
lead to increased A 42 production or increase the A 42/A 40 
ratio without increasing A 42 production [6,7].  

 Rare mutations in APP, presenilin-1 (PSEN1) and prese-
nilin-2 (PSEN2) genes cause early-onset (< 65 years) famil-
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ial forms of the disease accounting for less than 1% of the 
total AD cases [8]. As described above, AD causative muta-
tions lead to altered APP production and/or processing and 
the disease is transmitted in families following a Mendelian 
inheritance pattern [6,7]. Importantly, 50% or more of early-
onset AD cases are not explained by the known APP, PSEN1 
and PSEN2 mutations, suggesting the existence of yet un-
known genetic factors [8]. Furthermore, the existence of late-
onset AD families (> 65 years) with an apparent autosomal 
dominant pattern of transmission suggests the presence of 
other Mendelian mutations with less aggressive phenotypes 
[8]. However, the vast majority of AD cases (90-95%) are 
sporadic; they are diagnosed in people over 65 years of age, 
and are referred as late-onset sporadic forms, likely resulting 
from the interaction between genetic, epigenetic, environ-
mental and stochastic factors [9]. Several hundreds of genes 
have been investigated in genetic association studies as pos-
sible AD susceptibility or modifier genes, and more-recent 
genome-wide association studies are revealing novel poly-
morphisms that could account for increased AD risk; how-
ever, only the apolipoprotein E (APOE) 4 allele is a vali-
dated AD risk factor [9]. In parallel several environmental 
agents, including metals, pesticides, dietary factors and brain 
injuries, have been suggested as possible AD environmental 
risk factors [9,10]. However, despite active research in the 
field the etiology of sporadic AD cases is still uncertain.  

 Folate metabolism, also known as one-carbon metabo-
lism, is required for the production of S-adenosylmethionine 
(SAM), which is the major DNA methylating agent [11,12]. 
AD individuals are characterized by decreased plasma folate 

values, as well as increased plasma homocysteine (Hcy) lev-
els, and there is indication of impaired SAM levels in AD 
brains [13,14]. In this review article I discuss one-carbon 
metabolism in AD individuals, with emphasis on possible 
epigenetic modifications of the promoters of AD-related 
genes. 

2. One-Carbon Metabolism: An Overview 

 Folates are essential nutrients required for one-carbon 
biosynthetic and epigenetic processes. They are derived en-
tirely from dietary sources, mainly from the consumption of 
green vegetables, fruits, cereals, and meat. Folic acid is the 
synthetic form added to foods and found in dietary supple-
ments. After intestinal absorption, folate metabolism requires 
reduction and methylation into the liver to form 5-
methyltetrahydrofolate (5-MTHF), release into the blood and 
cellular uptake; then it can be used for the synthesis of DNA 
and RNA precursors or for the conversion of homocysteine 
(Hcy) to methionine, which is then used to form SAM. Folic 
acid is converted to a natural biological form of the vitamin 
as it passes through the intestinal wall, with enzymatic re-
duction and methylation resulting in the circulating form of 
the vitamin, 5-MTHF [12]. 

 Folate do not cross biological membranes by diffusion 
alone, but requires several transport systems to enter the 
cells, the best characterized being the reduced folate carrier 
(RFC1). Methylenetetrahydrofolate reductase (MTHFR) is 
the first enzyme in the DNA methylation pathway since it 
reduces 5,10-methylentetrahydrofolate (5,10-MTHF) to 5-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. (1). Overview of the folate metabolic pathway: 

Metabolites: Cys = cysteine; dTMP = deoxythymidine monophosphate; dUMP = deoxyuridine monophosphate; DHF = dihydrofolate; 10-

formyl-THF = 10-formyl-tetrahydrofolate; GSH = glutathione; Hcy = homocysteine; Met = methionine; 5-MTHF = 5-

methyltetrahydrofolate; 5,10-MTHF = 5,10-methylentetrahydrofolate; SAH = S-adenosylhomocysteine; SAM = S-adenosylmethionine; THF 

= tetrahydrofolate. 

Enzymes: CBS = cystathionine -synthase; DNMTs = DNA methyltransferases; MAT = methionine adenosyltransferase; MTHFR = methyl-

enetetrahydrofolate reductase; MTR = methionine synthase; MTRR = methionine synthase reductase; RFC1 = reduced folate carrier. 

Cofactors: B6 = vitamin B6; B12 = vitamin B12. 
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MTHF. Subsequently, methionine synthase (MTR) transfers 
a methyl group from 5-MTHF to Hcy forming methionine 
and tetrahydrofolate (THF). Methionine is then converted to 
SAM in a reaction catalyzed by methionine adenosyltrans-
ferase (MAT). Most of the SAM generated is used in trans-
methylation reactions, whereby SAM is converted to S-
adenosylhomocysteine (SAH) by transferring the methyl 
group to diverse biological acceptors, including proteins and 
DNA. Vitamin B12 (or cobalamin) is a cofactor of MTR, 
and methionine synthase reductase (MTRR) is required for 
the maintenance of MTR in its active state. If not converted 
into methionine, Hcy can be condensed with serine to form 
cystathionine in a reaction catalyzed by cystathionine -
synthase (CBS), which requires vitamin B6 as a cofactor. 
Cystathionine can be then utilized to form the antioxidant 
compound glutathione (GSH). Another important function of 
folates is in the de novo synthesis of DNA and RNA precur-
sors, required during nucleic acid synthesis and for DNA 
repair processes. Therefore, depending on cellular demands 
5,10-MTHF can be used for the synthesis of SAM or for the 
synthesis of nucleic acid precursors, and the folate metabolic 
pathway is tightly regulated by intracellular levels of me-

tabolites and cofactors [11,12]. A diagram illustrating folate 
metabolism is shown in Fig. (1). 

ONE-CARBON METABOLISM IN ALZHEIMER’S 
DISEASE 

1. Homocysteine, Folate and other B Vitamins 

 Several investigators have measured plasma values of 
folate, Hcy, vitamin B12 and vitamin B6 in AD subjects and 
healthy matched controls [15-36]. Most of these studies are 
shown (Table 1). Overall, the majority of the studies agree 
that plasma Hcy values are increased in AD subjects 
[15,16,18,19,21-24,26-34,36]; there is also indication that 
folate values are reduced in the plasma of AD individuals 
respect to controls, and the difference reached significance in 
several studies [16,19,21-23,26,33-36]. Less data have been 
obtained on vitamins B6 and B12, and results are still incon-
clusive [15,16,18,19,21-23,25-27,29,33]. However, some 
authors observed significantly decreased levels of vitamin 
B12 in plasma of AD subjects respect to controls 
[19,22,26,33]. There is also some indication that Hcy levels 
are increased in the cerebrospinal fluid (CSF) of AD pa-

Table 1. Plasma Folate, Homocysteine (Hcy), Vitamin B12 and Vitamin B6 Levels in AD Patients and Controls 

AD Cases/Controls Total HCY Folate Vitamin B12 Vitamin B6 Refs. 

49/52  in AD  No difference No difference -- [15] 

108/164  in AD   in AD No difference -- [16] 

17/14 No difference -- -- -- [17] 

19/19  in AD  No difference No difference -- [18] 

74/74  in AD  in AD  in AD -- [19] 

277/137 No difference -- -- -- [20] 

71/83  in AD  in AD No difference No difference [21] 

27/25  in AD  in AD  in AD -- [22] 

50/57  in AD  in AD No difference --  [23] 

25/25  in AD  -- -- -- [24] 

55/74 No difference No difference No difference --  [25] 

22/24  in AD  in AD  in AD No difference [26] 

75/155  in AD  No difference No difference --  [27] 

11/207  in AD  -- -- -- [28] 

21/23  in AD  No difference No difference --  [29]  

105/102  in AD -- -- -- [30] 

42/50  in AD -- -- -- [31] 

71/44  in AD -- -- -- [32] 

51/40  in AD   in AD  in AD -- [33] 

29/23  in AD   in AD -- -- [34] 

30/30 --  in AD -- -- [35] 

106/104  in AD  in AD -- -- [36] 
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tients, respect to controls [22,37,38]. Particularly, Selley and 
co-workers measured the concentrations of Hcy, vitamin 
B12 and folate in the CSF of 8 patients with AD and 6 con-
trol subjects. The concentrations of Hcy resulted signifi-
cantly higher in the CSF of AD patients than in controls. 
There was also a significant positive correlation between the 
plasma concentration of Hcy and the CSF concentrations of 
Hcy [22]. Similarly, Hasegawa and co-workers observed 
significantly increased CSF concentrations of Hcy in AD 
patients respect to controls [37]. Isobe and co-workers meas-
ured total Hcy levels in the CSF of 17 AD patients, 16 indi-
viduals with Parkinson’s disease (PD), and 16 control sub-
jects, observing that respect to controls both AD and PD 
subjects had an average of 31% increased Hcy levels [38]. 
However, others measured CSF total Hcy levels in 22 nor-
mal elderly subjects and 38 AD patients, observing no dif-
ference between the two groups [39]. 

2. S-Adenosylmethionine, S-Adenosylhomocysteine and 

Methionine Adenosyltransferase 

 Several studies have been performed to measure SAM  
and SAH levels, as well as MAT activity, in plasma, CSF  
and brain regions of AD subjects (Table 2). In 1990 Bot- 
tiglieri and co-workers observed a significant 41% reduction  
in SAM levels in the CSF of 9 AD subjects respect to the  
levels observed in 13 control individuals. Moreover, oral  
SAM treatment (1200 mgs daily) for 4 to 8 months was as- 
sociated with a significant increase in CSF SAM in AD pa- 
tients [40]. Subsequently, Morrison and co-workers meas- 
ured SAM and SAH levels in autopsied brains of 11 AD  
subjects and 14 controls. All the experiments were per- 
formed over a 15-hour post-mortem interval in tissues ob- 
tained from frontal cortex, occipital cortex, temporal cortex  
and hippocampus. As compared with the controls, mean  
SAM and SAH levels were significantly reduced in all the  
areas of AD brains examined (from -56 to -85%). The  
authors also measured the activity of methionine adenosyl- 
transferase in a subgroup of 5 AD brains and 5 control  
brains, observing normal MAT activity in AD temporal and  
occipital cortices [14]. By contrast, others observed a de- 

creased MAT activity in erytrocytes of 9 AD patients respect  
to 10 controls; the decreased MAT activity in AD patients  
also correlated with increased serum Hcy levels. Treatment  
of AD subjects for 6 months with vitamin B12 (1mg x 7days  
+ 1mg/week), SAM (200 mg twice daily) and folate (2.5 mg  
every two days) caused a significant decrease in Hcy levels  
that was paralleled by a significant increase in MAT activity  
[41]. Alterations of MAT activity have been also found in  
erytrocytes of vitamin B12-deficient AD patients, and in the  
brain of AD subjects [42]. Subsequent studies in SH-SY5Y  
neuroblastoma cells have demonstrated that the MAT cata- 
lytic activity was inversely correlated to methionine concen- 
trations [43]. A subsequent study performed on 30 AD pa- 
tients and 28 controls failed to find statistical differences in  
SAM, SAH and 5-MTHF levels and in SAM/SAH ratio in  
the CSF of AD patients and age-matched controls [44]. On  
the contrary, a significant increase in the plasma concentra- 
tions of SAH, Hcy and SAM was observed in AD patients  
[45]. SAH binds to the catalytic region of methyltransferases  
with higher affinity than SAM and is a potent inhibitor of  
cellular methylation. SAH is hydrolyzed to Hcy and adeno- 
sine by the enzyme SAH hydrolase [46]. Hcy is an inhibitor  
of SAH hydrolase and increased Hcy concentrations result in  
parallel increases in intracellular SAH and inhibition of  
methyltransferases [47-49]. It was observed that increased  
Hcy concentrations are associated with decreased concentra- 
tions of adenosine in the plasma of AD individuals, likely  
due to the inhibition of SAH hydrolase and increased pro- 
duction of SAH [50]. It has been also reported that increased  
SAH concentrations in the brains of AD patients inhibit  
methyltransferases and that this was related to cognitive im- 
pairment [51].  

3. Polymorphisms in Folate/Homocysteine Metabolizing 
Genes and Risk of Alzheimer’s Disease 

 Polymorphisms of genes participating in one-carbon me-
tabolism have been largely investigated as candidate AD risk 
factors (Table 3). Methylenetetrahydrofolate reductase is the 
flavoprotein that catalyzes the conversion of 5,10-
methylentetrahydrofolate (5,10-MTHF) to 5-methylTHF 

Table 2. S-Adenosylmethionine (SAM), S-Adenosylhomocysteine (SAH) and Methionine Adenosyltransferase (MAT) Activity in 

AD Patients and Controls 

AD Cases/Controls Observation Refs. 

9/13  SAM levels in AD CSF [40] 

11/14  SAM levels in AD brains 

 SAH levels in AD brains 

[14] 

5/5 normal MAT activity in AD brains [14] 

9/10  MAT activity in AD erythrocytes [41] 

30/28 No difference in CSF SAM levels between AD cases and controls 

No difference in CSF SAH levels between AD cases and controls 

[44] 

26/29  plasma SAH levels in AD patients 

 plasma SAM levels in AD patients 

[45] 

25/25  adenosine levels in the plasma of AD patients [50] 

34/43  SAH levels in the prefrontal cortex of AD patients 

 SAH IN AD brain inhibits methyltransferases 

[51] 
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(Fig. 1). The MTHFR gene has been largely studied in AD 
association studies. Particularly, two common MTHFR po-
lymorphisms, namely 677C>T (Ala222Val) and 1298A>C 
(Glu429Ala), are known to reduce MTHFR activity [52]. 
Numerous studies have shown that the MTHFR 677T allele 
is associated with increased total plasma Hcy levels (tHcy) 
and decreased serum folate levels, mainly in 677TT homo-
zygous subjects [53-55]. Several authors investigated the 
MTHFR 677C>T polymorphism as a candidate AD risk fac-
tor, but results are still conflicting including either positive 
and negative associations [19,30,31,36,56-65]. Some authors 
observed that MTHFR 677TT homozygous AD subjects had 
higher plasma tHcy values and/or decreased folate values 
compared to carriers of the MTHFR 677CT or 677CC geno-
types [19,30,59,61,64]. Others observed interaction between 
the MTHFR 677T allele and the APOE genotype in modify-
ing AD risk [36,61,62,65]. The MTHFR 1298A>C polymor-
phism has been studied less extensively than the 677C>T in 
AD association studies, and results are still conflicting 
[31,58,61,66,67]. MTHFR 677C>T and 1298A>C polymor-
phisms are in strong linkage disequilibrium (LD), particu-
larly the 677T allele has been nearly always observed in cis 
with the 1298C allele. A study suggested that the 677T vari-
ant arose later than the 1298C variant on a chromosome har-
bouring 1298A [68]. LD is not complete; however frequen-

cies below 0.005 have generally been reported for the rare 
677T–1298C haplotype [69]. A biological explanation for 
the LD existing between the two different MTHFR polymor-
phisms has been recently suggested [70]. MTHFR works as a 
dimer and monomers associate head to tail, but the stability 
of the dimer depends on what aminoacid is present at posi-
tion 222 and what at position 429, resulting from the 
MTHFR 677/1298 genotype. Based on this model it was 
proposed that the combined presence of both polymorphisms 
in homozygosis would impair significantly the stability and 
the activity of the dimer protein [70]. Wakutani and co-
workers [71] investigated MTHFR haplotypes generated by 
the combinations of three polymorphisms, 677C>T 
(Ala222Val), 1298A>C (Glu429Ala), and 1793A>G 
(Arg594Gln), in AD subjects and controls, suggesting that 
the haplotype 677C/1298C/1793G could be protective 
against the development of AD [71]. Polymorphisms in the 
regulatory region of the MTHFR gene (-713G>A and -
393C>A, upstream of the start codon) were not associated 
with AD risk [72]. 

 The first report of a RFC1 gene polymorphism was in 
2000 by Chango and co-workers [73] who described a high 
frequency 80G>A single nucleotide polymorphism resulting 
in replacement of an arginine by histidine (Arg27His). 
Authors found a moderate, but significant, increase in tHcy 

Table 3. Polymorphisms in Folate/Homocysteine Metabolizing Genes and AD Risk 

AD Cases/Controls or 

(Range)
1
 

Gene
2
 Polymorphism Observation Refs. 

(50-400) MTHFR 677C>T 

(Ala222Val) 

Conflicting results in genetic 

association studies  

[19,30,31,36,56-65] 

(50-400) MTHFR 677C>T 

(Ala222Val) 

associated with plasma Hcy 

and/or folate values in AD 

patients 

[19,30,59,61,64] 

(50-400) MTHFR 677C>T 

(Ala222Val) 

associated with AD risk in 

combination with the APOE 

genotype 

[36,61,62,65] 

(50-300) MTHFR 

 

1298A>C 

(Glu429Ala) 

Conflicting results in genetic 

association studies  

[31,58,61,66,67] 

129/178 MTHFR 677C/1298C/1793G  

(haplotype) 

Associated with AD risk [71] 

223/323 MTHFR -713G>A 

(promoter region) 

Not associated with AD risk [72] 

223/323 MTHFR -393C>A 

(promoter region) 

Not associated with AD risk [72] 

386/375 RFC1 80G>A 

(Arg27His) 

Associated with AD risk [36] 

(150-350) MTR 2756A>G 

(Asp 919Gly) 

Possible association with 

AD risk 

[99-101] 

(70-200) TC 776C>G 

(Pro259Arg) 

Conflicting results in genetic 

association studies 

[61,100,110] 

(100-200) CBS 844INS68 

(insertion) 

Conflicting results in genetic 

association studies 

[30,119] 

1When only 1 reference is quoted the exact number of AD cases/controls is shown. When more than 1 reference is quoted the range of samples in case-control studies is given into 
brackets (min-max). 
2CBS, cystathionine beta-synthase; MTHFR, methylenetetrahydrofolate reductase; MTR, methionine synthase; RFC1, reduced folate carrier; TC, transcobalamin. 
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levels in doubly homozygous RFC1 80GG/ MTHFR 677TT 
subjects as compared to RFC1 80GG/ MTHFR 677CC or CT 
subjects. In addition, individuals who were RFC1 80AA/ 
MTHFR 677CT had higher plasma folate levels than those 
who were RFC1 80GG/ MTHFR 677CT [73]. Further studies 
provided conflicting results, therefore the effect of the RFC1 
80G>A polymorphism on plasma folate and Hcy levels is 
still debated [74-77]. Bi and co-workers have recently inves-
tigated RFC1 80G>A and MTHFR 677C>T polymorphisms 
in a large cohort of AD patients and controls. Significant 
associations of the RFC1 80G allele and GG genotype with 
AD risk was found. However, no interaction between the 
two studied polymorphisms was found, nor the RFC1 80G 
variant was associated with plasma folate and Hcy levels 
[36]. Women who had a Down syndrome (DS) child at a 
young age have a five-fold increased risk to develop AD 
later in life, respect to control women [78,79]. We recently 
observed that the RFC1 80GG/ MTHFR 677TT genotype is 
more frequent in young mothers of DS children than in con-
trol women, while the RFC1 80 (AA or GA)/ MTHFR 
1298AA genotype is more frequent in control mothers [80]. 
Moreover, we observed that young mothers of DS individu-
als have an increased frequency of micronuclei (mainly 
originating from chromosome malsegregation events, includ-
ing malsegregation of chromosome 21) in peripheral blood 
cells respect to control mothers and that MTHFR 677TT sub-
jects had the highest levels of chromosome damage [81-83]. 
Similarly, an increased frequency of micronuclei and/or a 
preferential occurrence of chromosome 21 malsegregation 
has been observed in blood cells, buccal mucosa cells, fibro-
blasts and neurons of AD patients [84-87]. Several in vitro 
studies have shown that folate depletion and increased Hcy 
concentrations induce an increased frequency of micronuclei 
[88-90], and a recent study performed on 164 healthy indi-
viduals of different age showed the lowest percentage of 
micronuclei in blood cells of RFC1 80GG individuals [91]. 

 A common MTR 2756A>G (Asp919Gly) polymorphism 
is known, and there is indication from large scale population 
studies that it can have an effect on Hcy levels [92]. How-
ever, results are still conflicting and the contribution of the 
MTR 2756A>G polymorphism to Hcy concentrations has not 
been fully clarified. Some studies reported increased Hcy 
levels in the presence of the wild type (MTR 2756A) allele 
[93,94], whereas others observed increased Hcy levels in the 
presence of the mutant (MTR 2756G) allele [95,96]. There is 
also indication that the heterozygous genotype MTR 2756AG 
is associated with increased Hcy concentrations in DS indi-
viduals [97]. These apparent discrepancies might be ex-
plained by recent evidence suggesting that the interaction 
between different polymorphisms may totally modify their 
individual effect, and that the same genotype combinations 
could have different effects on maternal Hcy levels in differ-
ent individuals, depending on interactions with nutritional 
and lyfestile factors [98]. In 2003 Beyer and co-workers ob-
served association between the MTR 2756AA genotype and 
increased AD risk [99]. Subsequently, Bosco and co-workers 
observed association of the MTR 2756AA genotype with 
dementia severity of sporadic AD [100]. More recently Zhao 
and co-workers did not reveal significant association be-
tween the MTR 2756A>G polymorphism and AD. However 
authors observed a trend between the MTR A allele and in-
creased AD risk (P=0.09), therefore a weak effect of the A 

allele on developing AD could not be completely excluded 
[101]. 

 Vitamin B12, in the form of methylcobalamin, serves as 
a coenzyme for MTR during the remethylation of Hcy to 
methionine (Fig. 1). In circulation, vitamin B12 is bound to 
two plasma proteins: transcobalamin or haptocorrin. 
Transcobalamin (TC) is the transport protein required for 
cellular uptake of vitamin B12. Specific membrane receptors 
recognize the trancobalamin-vitamin B12 complex, whereas 
free vitamin B12 or haptocorrin-bound vitamin B12 is not 
taken up by the cell [102,103]. Several studies have related 
holo-transcobalamin (holo-TC) levels to AD risk [104-106]. 
A common TC 776C>G polymorphism results in the re-
placement of proline with arginine (Pro259Arg) and nega-
tively affects vitamin B12 metabolism, thus increasing 
plasma Hcy levels [107]. Conflicting results have been ob-
tained when investigating the TC 776C>G polymorphism as 
a candidate AD risk factor. Zetterberg and co-workers re-
ported that this polymorphism influences holo-TC concentra-
tion in the CSF from AD patients [108], and suggested that it 
could be a modifiable AD genetic risk factor [109]. McCad-
don and co-workers observed that serum holo-TC levels 
were significantly higher in TC 776CC individuals and that 
proportionately fewer TC 776CC homozygotes appear to 
develop AD at any given age [110]. Others failed to find 
association between the TC 677C>G polymorphism and spo-
radic AD risk [61,100]. 

 Human cystathionine -synthase (CBS) is a hemoprotein 
which catalyzes the condensation of Hcy and serine to form 
cystathionine, which is then used to form GSH (Fig. 1). In-
sufficiency in CBS activity may lead to hyperhomocys-
teinemia and a gross deficiency in CBS activity is associated 
with homocystinuria, an inborn recessive metabolic disorder 
[111,112]. The CBS gene is known to have a large number of 
mutations, including missense and nonsense ones, as well as 
some insertion, deletion and splice site variants, some of 
which are polymorphic in nature [111]. The identification of 
an 844ins68 insertion in the CBS gene was first reported in a 
patient affected by homocysteinuria due to CBS deficiency 
[113]. Subsequent studies have revealed that this insertion is 
not a disease causing mutation but rather a common poly-
morphism whose frequency is largely different among hu-
man populations, with the variant allele being prevalent in 
African, European and North American populations [114-
116]. Several studies report that the CBS 844ins68 polymor-
phism alone has not a relevant effect on tHcy concentrations 
[117,118]. Beyer and co-workers genotyped 206 AD patients 
and 186 age-matched controls, observing that the 844ins68 
mutation was associated with AD risk in subjects aged 75 
years or more at onset [119]. By contrast, Zhang and co-
workers observed no difference in the distribution of the 
CBS 844ins68 allele between 105 AD patients and 102 
matched controls [30]. Moreover, no association between the 
polymorphism and plasma Hcy levels was observed [30]. 
Therefore, the contribution of this polymorphism to AD risk 
is still controversial. 

4. Linking One-Carbon Metabolism to Epigenetics 

 Prospective cohort studies showed that there is substan-

tial evidence to suggest that increased serum Hcy levels pre-
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dispose to AD [120-122]. There is also indication from pro-

spective cohort studies suggesting that higher folate intake is 

related to lower AD risk in the elderly [122,123]. On the 

contrary, significant associations between increased risk of 

AD and blood levels of vitamin B12 and vitamin B6 were 

not found [122,124]. Several hypotheses have been formu-

lated to explain the increased AD risk associated with high 

serum Hcy levels and low serum folate. For istance, folate 

deficiency fosters a decline in SAM, decreasing DNA meth-

ylation during aging and AD [14,120]. Folate deficiency and 

resultant SAM depletion lead to increased levels of Hcy, 

which in turn potentiate A  peptide toxicity [125]. Hcy is a 

critical branch point metabolite that can influence cellular 

levels of SAM and SAH, which regulate the activity of 

methyltransferases during DNA methylation and posttransla-

tional modification of proteins [126]. Studies in rodents 

showed that Hcy accumulation reduces cellular levels of 

SAM, stimulates glutamate excitotoxicity and increases oxi-

dative damage [127]. Hcy has been also associated to vascu-

lar disease in AD, with attention focused on vascular 

changes related to AD as a consequence of A  peptide toxic-

ity and its deposition [128]. Several studies suggest a corre-

lation between plasma Hcy concentrations and plasma A  

levels [129,130]. Moreover, there is indication that elevated 

Hcy causes tau hyperphosphorilation, NFT formation and SP 

formation via inhibition of methyltransferases and reduced 

methylation of protein phosphatase 2A [131,132]. However, 

one of the most exciting hypothesis linking one-carbon me-

tabolism to AD risk suggests that impaired folate/Hcy me-

tabolism and subsequent reduction of SAM levels might re-

sult in epigenetic modifications of the promoters of AD-

related genes leading to increased A  peptide production 

[133,134]. One of the most studied epigenetic modifications 

is the change of methylation patterns of CpG rich regions in 

the promoters of specific genes, resulting in gene silencing 

(hypermethylation) or overexpression (hypomethylation). In 

the next section I will discuss evidence from cell cultures, 

animal models and humans, linking one-carbon metabolism 
to epigenetic modifications of AD-related genes (Table 4). 

EPIGENETIC MODIFICATIONS OF AD-RELATED 
GENES 

1. Cell Cultures 

 Several studies performed on neuroblastoma cells sug-
gest that the manipulation of environmental factors can epi-

genetically modify the expression of AD-related genes and 

proteins. Particularly, the levels of methylation of CpG is-
lands in the promoters of the APP and the PSEN1 (Presenilin 

1, the core of the -secretase activity that cleaves APP) genes 

were analyzed on human neuroblastoma SK-N-SH or SK-N-
BE cell lines, and it was observed that under conditions of 

folate and vitamin B12 deprivation from the media, the 

status of methylation of the promoter of the PSEN1 gene 
underwent a variation, with a subsequent deregulation of the 

production of presenilin1, BACE1 and APP proteins [134]. 

Both -secretase and -secretase are required during the 
amyloidogenic cleavage of APP leading to the formation of 

A  peptides. Therefore, this study confirmed that some of 

the genes responsible for the production of A  peptides in 
AD can be regulated through an epigenetic mechanism de-

pending on the cellular availability of folate and B12 vita-

mins, and involving the production of SAM and the status of 
methylation of CpG islands in the DNA [134]. Moreover, 

SAM administration in human neuroblastoma SK-N-SH cell 

cultures resulted in downregulation of PSEN1 gene expres-

Table 4. Epigenetic Modifications of AD-Related Genes
1
 

Experimental Model Observation Refs. 

Human Neuroblastoma  

SK-N-SH OR SK-N-BE CELLS 

Folate and vitamin B12 deprivation induced epigenetic modifications in the pro-

moter of PSEN1, resulting in upregulation of gene expression 

[134] 

Human neuroblastoma  

SK-N-BE CELLS 

SAM administration to the media resulted in downregulation of PSEN1 expression [133] 

BV-2 mouse microglial cells SAH administration increased the production of A  peptide likely through induc-

tion of hypomethylation of APP and PSEN1 gene promoters 

[137] 

Murine cerebral endothelial cells A  reduces global DNA methylation whilst increasing DNA methylation of the 

gene encoding neprilysin 

[138] 

Rodents B vitamin deprivation induced hypomethylation in the promoter of PSEN1, result-

ing in upregulation of gene expression 

[140] 

Rodents and monkeys Early life exposure to PB resulted in inhibition of DNA-methyltransferase, hy-

pomethylation of the promoter of APP and delayed upregulation of gene expression 

later in life 

[144-146] 

Post-mortem human brains AD brains showed unusual methylation patters, particularly concerning PSEN1, 

APOE, MTHFR and DNMT1 genes 

[147] 

Post-mortem human brains AD brains showed a marked reduction of DNA methylation, but no specific gene 

was analysed in detail 

[152,153] 

1APP, amyloid precursor protein; APOE, apolipoprotein E; DNMT1, DNA methyltransferase 1; MTHFR, methylenetetrahydrofolate reductase; PSEN1, presenilin 1. 
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sion and A  peptide production [133]. To investigate 

whether SAM administration globally influenced gene ex-

pression in the brain, Cavallaro and co-workers analysed 588 
genes of the central nervous system in SK-N-BE neuroblas-

toma cells, observing that only 7 genes were modulated by 

SAM treatment (and therefore by DNA methylation); 3 were 
up-regulated and 4 down-regulated [135]. The effects of B 

vitamin deprivation (folate, vitamin B12 and vitamin B6 

deprivation) and SAM addition have been tested using hu-
man SK-N-BE neuroblastoma and A172 glioblastoma cell 

lines. The results indicated that Hcy accumulation induced 

through vitamin B deprivation could impair the "methylation 
potential" with consequent presenilin 1, BACE1 and A  

upregulation. However, Hcy alterations had an effect on neu-

roblastoma but not on glioblastoma cells [136]. Lin and co-
workers examined the hypothesis that SAH may increase the 

formation of the A  peptide in BV-2 mouse microglial cells 

through hypomethylation of the promoters of genes encoding 
presenilin 1, APP and BACE1. The results showed that SAH 

increases the production of A  in BV-2 cells possibly by 

increased expression of APP and induction of hypomethyla-
tion of APP and PSEN1 gene promoters [137]. Recent stud-

ies on murine cerebral endothelial cells have demonstrated 

that A  reduces global DNA methylation whilst increasing 
DNA methylation of the gene encoding neprilysin (NEP), 

one of the enzymes responsible for A  degradation, thus 

suppressing the NEP expression in mRNA and protein levels 
[138]. These results indicate that A  induces epigenetic ef-

fects, suggesting that DNA methylation might be part of a 

vicious cycle involving the reduction in NEP expression 
along with a resultant increase in A  accumulation, which in 

turn induces global DNA hypomethylation [138].  

2. Animal Models 

 A combination of dietary folate, vitamin B12 and vitamin 
B6 deprivation (B vitamin deprivation) resulted in 
hyperhomocysteinemia, increased brain SAH levels, 
depletion of brain SAM, and enhancement of presenilin 1 
and BACE1 expression and A  deposition in mice [139]. 
Moreover, B vitamin deprivation induced hypomethylation 
of specific CpG moieties in the 5'-flanking region of PSEN1 
in mice, and the PSEN1 promoter methylation status was 
correlated with gene expression [140]. Dietary deficiency in 
folate and vitamin E, in condition of oxidative stress (the diet 
contained iron as a pro-oxidant), increased presenilin 1 
expression, -secretase activity, and A  levels in normal 
adult mice. These increases were particularly evident in mice 
lacking murine apolipoprotein E. Dietary supplementation 
with SAM in the absence of folate attenuated these 
deleterious consequences [141] A similar experiment was 
performed in mice expressing the human APOE gene. Mice 
expressing human apolipoprotein 4 (associated with 
increased risk of AD), apolipoprotein 3, and apolipoprotein 
2 (associated with reduced risk of AD) were subjected to a 

diet lacking folate and vitamin E, and containing iron as a 
pro-oxidant. The study revealed that presenilin 1 and -
secretase were over-expressed in 3 mice to the same extent 
as in 4 mice, and were not alleviated by SAM sup-
plementation. A  increased only in 4 mice and was 
alleviated by SAM supplementation [142]. Moreover, the 
deficient diet increased phosphorylated tau levels (the 
component of neurofibrillary tangles) in 4 but not in 3 

not in 3 mice, which was prevented by SAM supplementa-
tion [143].  

 Basha and co-workers exposed rodents to lead (Pb) and 
monitored the lifetime expression of the APP gene. Authors 
observed that APP mRNA expression was transiently in-
duced in neonates, but exhibited a delayed over-expression 
20 months after exposure to Pb had ceased. This up-
regulation in APP mRNA expression was commensurate 
with a rise in activity of the transcription factor Sp1, one of 
the regulators of the APP gene. Furthermore, the increase in 
APP gene expression in old age was accompanied by an ele-
vation in APP and A  proteins. In contrast, APP expression, 
Sp1 activity, as well as APP and A  protein levels were un-
responsive to Pb exposure during old age. [144]. The same 
group analyzed brains of cynomolgus monkeys who had 
been exposed to Pb as infants, observing elevated levels of 
APP mRNA, and APP and A  protein levels in old monkeys 
exposed to Pb during brain development [145]. Overall, 
these data suggested that environmental influences occurring 
during brain development predetermined the expression and 
regulation of APP later in life, potentially altering the course 
of amyloidogenesis [144,145]. The authors observed that 
lead exposure during brain development of rats and monkeys 
inhibits DNA-methyltransferases, thus resulting in hy-
pomethylation of the promoters of genes associated with 
AD, such as APP. Whereas AD-related genes were over-
expressed late in life, others were repressed, suggesting that 
early life perturbations result in hypomethylation of some 
genes as well as hypermethylation of others [144-146].  

3. Studies in Humans 

 Despite evince of possible epigenetic modifications of 
AD-related genes obtained in neuronal cell cultures as well 
as in rodents and primates, epigenetic studies in AD patients 
are scarce. A recent study performed in lymphocytes (6 AD 
patients and 6 controls) and post-mortem brain samples (24 
AD brains and 10 control brains) of late onset AD patients 
and matched controls revealed a notably age-specific epige-
netic drift associated with unusual methylation patterns in 
AD samples, supporting a potential role of epigenetic effects 
in the development of the disease. Particularly, some of the 
genes that participate in A  processing (PSEN1, APOE) and 
methylation homeostasis (MTHFR, DNMT1) showed a sig-
nificant interindividual epigenetic variability, which could 
contribute to AD pathology [147].  

 The promoter of the APP gene shows a high GC content 
(72%), and the frequency of CpG dinucleotides is five times 
higher than in other eukaryotic promoters, suggesting that its 
expression might be regulated through methylation of the 
CpG regions [148]. An initial study of seven potential meth-
ylation sites between position -460 and -275 of the APP 
promoter in healthy human brain tissue revealed that none of 
them was methylated [149]. A subsequent study revealed 
that the region of the human APP promoter upstream of -500 
displays complex, tissue-specific patterns of methylation. 
Furthermore, different patterns of methylation were observed 
even in DNA from different regions of brain, and these 
methylation patterns crudely reflected differences in APP 
expression [150]. Tohgi and co-workers identified at least 13 
potential methylation sytes in the APP promoter region from 



254    Current Genomics, 2010, Vol. 11, No. 4 Fabio Coppedè 

-226 to -101 in the DNA extracted from post-mortem brain 
regions of 10 neurologically healthy control subjects. They 
also observed a reduction with age in the methylcytosine 
content in this region, suggesting that an age-related de-
methylation might be linked to A  deposition in the aged 
brain [151]. All these studies have been performed in healthy 
brains and suggest that APP expression might be regulated 
through methylation of its promoter. However, more recent 
data indicates no difference in methylation of the APP gene 
in AD versus control brains [147]. 

 Recently, Mastroeni and co-workers examined global 
DNA methylation in monozygotic twins discordant for AD, 
observing significantly reduced levels of DNA methylation 
in temporal neocortex neuronal nuclei of the AD twin. These 
findings are consistent with the hypothesis that epigenetic 
mechanisms may mediate at the molecular level the effects 
of life events on AD risk [152]. The same authors analyzed 
brain tissues from 20 AD patients and 20 cognitively and 
neurologically normal age-matched controls, observing a 
markedly decreased nuclear immunoreactivity for 5-
methylcytosine in the entorhinal cortex of AD patients, re-
spect to controls. They also observed that nuclear im-
munoreactivity for the DNA methyltransferase (DNMT1) 
and for six different components of the MeCP1/MBD2 
methylation complex was significantly reduced in the en-
torhinal cortex of AD subjects than in controls. Overall, 
these findings indicate epigenetic dysfunctions in AD-
vulnerable neurons [153].  

PERSPECTIVE 

 A recent meta-analysis of high quality published studies 
indicates that plasma Hcy levels are significantly higher in 
AD patients respect to controls. On the contrary, plasma fo-
late values are significantly reduced in AD patients and the 
levels of vitamin B12 tend to be lower in AD individuals 
respect to matched controls [13]. There is also indication 
from prospective cohort studies that hyper-homocysteinemia 
and low serum folate values represent risk factors for the 
development of AD [120-123]. Moreover, studies performed 
in post-mortem AD and control brains revealed impaired 
SAM and SAH levels in the first group and suggested a pos-
sible inhibition of methyltransferases in the brain of AD in-
dividuals [14,51]. Indeed, a recent study performed on post-
mortem AD and control brains revealed a marked reduction 
of DNA methylation in AD brains, as well as a marked re-
duction in DNA methyltransferase activities [153]. Overall, 
there is indication that one-carbon metabolism and DNA 
methylation are impaired in AD. 

 Studies performed in mice and in neuronal cell cultures 
indicate that the depletion of folate and other B vitamins, 
respectively from the diet or from the media, results in epi-
genetic modifications of AD-related genes, with a 
subsequent increased production of presenilin 1, BACE1, 
and A  fragments [134,136,137,139,140]. Moreover, dietary 
SAM administration or addiction to the media attenuated the 
epigenetic changes induced by B vitamin restriction 
[133,141]. It was therefore hypothesized that SAM 
administration could be used as a possible treatment for AD 
[133]. Recent preclinical and clinical findings demonstrate 
that dietary supplementation with SAM alleviates a variety 
of risk factors and hallmarks associated with AD; supporting 
the notion that nutritional supplementation may represent an 

nutritional supplementation may represent an important 
augmentation for therapy in AD [154]. Therefore, it was 
recommended the need of well-designed intervention trials 
using measures of dietary supplementation (dietary omega-3 
polyunsturated fatty acids and SAM plus B vitamin supple-
mentation) to determine if such supplements will reduce the 
risk for cognitive decline in very mild AD and mild cogni-
tive impairment [155]. However, there is no yet available 
data in humans demonstrating that we can use SAM and/or B 
vitamins to counteract epigenetic modifications of AD-
related genes in the brain, and it is my opinion that several 
considerations must be done in this context. 

 One of the most important things that we need to clarify 
is whether or not environmentally induced epigenetic modi-
fications of AD-related genes are reversible and could be 
modulated through dietary SAM or B vitamin supplementa-
tion. The studies performed on rodents and primates exposed 
to Pb in early life suggest that there is a window of time dur-
ing brain differentiation when the brain is particularly vul-
nerable to epigenetic modifications [144,145]. Particularly, 
these data suggested that environmental influences occurring 
during brain development predetermined the expression and 
regulation of AD-related genes later in life [144,145]. How-
ever, no epigenetic modification of AD-related genes was 
observed when animals were exposed to Pb later in life 
[144]. These observations should lead to the following re-
flections: a) What are the vulnerable post-and pre-natal peri-
ods in humans when the developing brain is particularly sus-
ceptible to epigenetic modifications? b) How many envi-
ronmental and/or dietary factors are able to induce epigenetic 
changes in the differentiating brain? c) Are these phenomena 
reversible? Can a dietary intervention occurring during 
adulthood restore the methylation pattern of a gene which 
has been epigenetically modified during brain differentia-
tion? Unfortunately, most of these questions are still un-
solved. 

 The studies performed by the group of Dr. Scarpa sug-
gest that, at least in rodents and in neuronal cell cultures, 
SAM administration is able to attenuate the epigenetic modi-
fication of AD-related genes, particularly PSEN1, induced 
by B vitamin depletion [133,141], leading to the speculation 
that something similar could happen also in humans. How-
ever, what happens in the human brain is still a mystery. 
There is only 1 published study that analyzed the patterns of 
methylation of AD-related genes in post-mortem AD and 
control brains [147]. Even if that study revealed an epige-
netic drift in AD subjects, there is no available data in hu-
mans that correlates plasma values of folate and Hcy, or 
brain SAM levels, to the methylation profile of any specific 
AD gene in the brain. This is another point that requires 
clarification. 

 The study by Mastroeni and co-workers revealed a wide-
spread reduction of DNA methylation in post-mortem AD 
brains, suggesting that epigenetic modifications might con-
tribute to AD pathogenesis [153]. However, the study by 
Chen and co-workers suggest that, at least in the cell model, 
the A  peptide itself exerts epigenetic properties inducing 
global DNA hypomethylation and inhibition of DNA meth-
yltransferases [138]. Therefore, is the reduction of DNA 
methylation observed in post-mortem AD brains [153] a 
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cause of the neurodegenerative process, a consequence of A  
production and deposition in AD brains, or is it part of a vi-
cious cycle that initially triggers A  production and is then 
perpetuated by A  accumulation? We still do not have an 
answer to this question which is of particular interest during 
the design of AD treatments based on SAM and B vitamin 
administration, particularly in the context of when should we 
treat the patients. 

 Another important observation comes from the studies by 

Chan and co-workers [141-143]. These authors observed that 

in transgenic rodents expressing different variants of the hu-

man APOE gene, the response to folate depletion and SAM 

administration, in terms of expression of AD-related genes, 

was dependent on the APOE genotype [141-143]. This is 

another point to be taken into consideration for the design of 

AD treatments based on SAM and B vitamin, since we need 

to know what response must be expected, based on the geno-

type of the patients. Within this context a recent study per-

formed in an in vitro model using colon and breast cancer 

cells revealed that in colon cancer cells the MTHFR 677T 

mutation was associated with significantly increased ge-

nomic DNA methylation when folate supply was adequate or 

high; however, in the setting of folate insufficiency, this mu-

tation was associated with significantly decreased genomic 

DNA methylation. In contrast, in breast cancer cells, the 

MTHFR 677T mutation was associated with significantly 

decreased genomic DNA methylation when folate supply 

was adequate or high and with no effect when folate supply 

was low [156]. Similarly, it was shown that the MTHFR 

677C>T polymorphism affects promoter methylation of tu-

mor-specific genes in sporadic colorectal cancer through an 

interaction with folate and vitamin B12 status. Particularly, 

high concentrations of serum folate and vitamin B12 levels 

have been associated with the risk of promoter methylation 

in tumor-specific genes, and this relationship was modified 

by the MTHFR 677C>T genotypes [157]. A study performed 

on lymphocyte DNA extracted from 198 healthy subjects 

revealed that genomic DNA methylation was affected by the 

MTHFR 1298 genotypes. Particularly, carriers of the 

1298AA wild-type genotype showed lower genomic DNA 

methylation compared with 1298AC or 1298CC genotypes. 

Moreover, when DNA methylation was evaluated according 

to plasma folate status, only 1298AA with low folate levels 

revealed diminished DNA methylation, and when the two 

MTHFR polymorphisms were concomitantly evaluated at 

the low folate status, DNA methylation was reduced only in 

1298AA/677TT compared with 1298AA/677CC and 

1298CC/677CC genotypes [158]. Overall, there is indication 

that DNA methylation is a complex trait depending on cell 

type, B vitamin status, and polymorphisms of genes involved 

in one-carbon metabolism [156-158]. Unfortunately, there is 

no available literature concerning the interplay between fo-

late status, polymorphisms of metabolic genes, and the levels 

of metylation of AD-related genes in the human brain. This 

is therefore an issue that requires clarification prior to rec-

ommend a widespread administration of dietary SAM and 

folate in dementia and pre-dementia phases. We first need to 

clarify what subjects, depending on their genotype, would 

really benefit from such a treatment and what individuals 
could have no benefits or even adverse consequences. 

 Concluding, increasing evidence supports interplay be-

tween one-carbon metabolism and epigenetic modifications 

in the brain in the onset of AD (Table 4). This is a very 

promising and exciting field for future investigation as well 

as for the design of therapeutic and preventive strategies. 

However, further investigation involving cell cultures, ani-

mal models and particularly humans is required for a better 
comprehension of this complex phenomenon. 

ABBREVIATIONS 

A  = Amyloid beta 

AD = Alzheimer’s disease 

APOE = Apolipoprotein E 

APP = Amyloid precursor protein 

BACE1 = -secretase 

CBS = Cystathionine -synthase  

CSF = Cerebrospinal fluid 

DNMTs = DNA methyltransferases 

DS = Down syndrome 

GSH = Glutathione 

Hcy = Homocysteine 

MAT = Methionine adenosyltransferase 

5-MTHF = 5-methyltetrahydrofolate 

MTHFR = Methylenetetrahydrofolate reductase  

MTR = Methionine synthase  

MTRR = Methionine synthase reductase  

NFT = Neurofibrillary tangles 

PSEN1 = Presenilin 1 

PSEN2 = Presenilin 2 

RFC1 = Reduced folate carrier 

SAH = S-adenosylhomocysteine 

SAM = S-adenosylmethionine 

SP = Senile plaques 

TC = Transcobalamin 

THF = Tetrahydrofolate 
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