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Abstract The lateral prefrontal cortex is involved in the integration of multiple types of

information, including working memory and motor preparation. However, it is not known how

downstream regions can extract one type of information without interference from the others

present in the network. Here, we show that the lateral prefrontal cortex of non-human primates

contains two minimally dependent low-dimensional subspaces: one that encodes working memory

information, and another that encodes motor preparation information. These subspaces capture all

the information about the target in the delay periods, and the information in both subspaces is

reduced in error trials. A single population of neurons with mixed selectivity forms both subspaces,

but the information is kept largely independent from each other. A bump attractor model with

divisive normalization replicates the properties of the neural data. These results provide new

insights into neural processing in prefrontal regions.

Introduction
Complex flexible behaviors require the integration of multiple types of information, including infor-

mation about sensory properties, task rules, items held in memory, items being attended, actions

being planned, and rewards being expected, among others. A large proportion of neurons in the lat-

eral prefrontal cortex (LPFC) encode a mixture of two or more of these types of information

(Rigotti et al., 2013; Parthasarathy et al., 2017; Masse et al., 2019; van Ede et al., 2019;

Marcos et al., 2019). This mixed selectivity endows the LPFC with a high-dimensional representa-

tional space (Rigotti et al., 2013), but it also presents the challenge of understanding how down-

stream regions that receive mixed-selective input from the LPFC can read out meaningful

information. One possible solution would be to have multiple low-dimensional information subspa-

ces, embedded within the high-dimensional state space of LPFC, which could enable the indepen-

dent readout of different types of information with minimal interference from changes of information

in other subspaces (Remington et al., 2018; Parthasarathy, 2019; Semedo et al., 2019;

Mante et al., 2013; Wolff et al., 2019; Druckmann and Chklovskii, 2012). Information subspaces

have been identified in the medial frontal cortex (Wang et al., 2018), lateral prefrontal cortex (Par-

thasarathy, 2019), early visual areas (Semedo et al., 2019), and motor cortex (Kaufman et al.,

2014; Elsayed et al., 2016). However, no studies to date have explicitly tested whether information

about two separate cognitive processes can be simultaneously encoded in subspaces within a single

biological neural network. Here, we demonstrate the existence of two minimally dependent
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information subspaces in the LPFC network: (1) a working memory subspace in which target informa-

tion emerged in Delay 1, and was maintained till the end of Delay 2; and (2) a motor preparation

subspace in which information emerged only in Delay 2 after the presentation of the distractor, pos-

sibly due to the initiation of saccade preparation after the last sensory cue that reliably predicted the

timing of the Go cue (i.e. the offset of the distractor). Both subspaces exhibited behavioral relevance

with significantly decreased information in error trials only in the subspace, and not in the null space.

Interestingly, we found a reduction in information in the memory subspace when information in the

movement preparation subspace emerged. At the same time, we found that the average firing rate

of the neurons across the population remained unchanged. This suggested that a normalization

mechanism could have been acting on the population activity (Ruff and Cohen, 2017; Duong et al.,

2019). We subsequently found that a bump attractor model (Compte et al., 2000) with divisive nor-

malization allowed us to replicate the observed neurophysiological properties. We believe these

results provide insights into the neural mechanisms of cognitive flexibility and cognitive capacity.

Results
We measured LPFC activity from two monkeys while they performed a delayed saccade task with an

intervening distractor. Briefly, the monkeys had to remember the location (out of eight possibilities)

of a briefly presented visual target for 2.3 s. One second after the target disappeared, a distractor

was presented briefly in a different location. At the end of an additional 2.3 s, the monkeys reported

the location of the remembered target using an eye movement (Figure 1a). We recorded single-unit

activity from the LPFC and FEF of both monkeys while they performed the task. We only analyzed

data collected for seven target locations for both animals, since one animal had difficulty making sac-

cades to the lower-right location. Figure 1b shows the different electrode positions in the LPFC and

FEF on an anatomical map. Additionally, FEF electrodes were differentiated from LPFC electrodes

using microstimulation (see Materials and methods). We previously reported that the presentation of

the distractor led to code-morphing in the LPFC (which was not observed in the FEF), such that a

decoder trained in the delay period that preceded the distractor (Delay 1) could not be used to

decode memory locations during the delay period that followed the distractor (Delay 2), and vice

versa (Parthasarathy et al., 2017; Figure 2a). In other words, there were two stable population

codes in the LPFC, one in Delay 1 and one in Delay 2, but they did not generalize to each other. In

this paper, the presence of code-morphing in the LPFC motivated us to analyze the 226 single neu-

rons recorded from the LPFC, which did not include those recorded from the FEF. Single neurons in

the LPFC showed sustained selectivity to target locations during both delay periods, with some

maintaining the same target tuning in both delays (Figure 1c, left), while some changed target tun-

ing from Delay 1 to Delay 2 (Figure 1c, right). The latter category of neurons was characterized as

non-linearly mixed selective neurons and was shown to drive code-morphing in the LPFC

(Parthasarathy et al., 2017). On the population level, most of the cells with target selectivity in one

delay also showed selectivity in the other delay (Figure 1d).

Two minimally dependent subspaces coexisted within the LPFC
Two different and stable population activity patterns in the LPFC were observed in Delay 1 and

Delay 2 (Figure 2a), which implied that a downstream region would need to use different decoders

in the two periods to extract the working memory information (neural codes supporting the discrimi-

nation of different intended items), and would need to know which of them to use in the appropriate

delay period. Alternatively, the difference observed between Delay 1 and Delay 2 activity could be

explained by a superposition of different types of information in independent subspaces, such that

each downstream region can use the same decoder to extract a specific type of information invari-

antly across time, even if the mixing of different types of information is dynamic across time. We

have previously shown that a time-invariant (henceforth stable) working memory subspace can be

identified in the LPFC (Parthasarathy, 2019). However, significant information about the target was

present outside of this space (null space decoding performance of 35.7 ± 1.7% in Delay 1, and 31.6

± 1.5% in Delay 2) (Parthasarathy, 2019) suggesting the existence of a non-trivial additional sub-

space that contains target information. The incorporation of the new information from the additional

subspace into the neuronal population, alongside the existing information from the working memory

subspace, would have then resulted in code morphing in the full space (illustrated in Figure 2b).
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One possible source of the new information could be motor preparation activity. The stable popula-

tion activity in Delay 2 suggested that the animals could have initiated preparatory activity right after

distractor offset, as the distractor was the last signal that reliably predicted the Go cue. In order to

assess this possibility, we looked for a subspace decomposition that could maximally differentiate

Figure 1. Experimental design and responses of example neurons. (a) Behavioral task: Each trial began when the

animal fixated on a fixation spot at the center of the screen. The animal was required to maintain fixation

throughout the trial until the fixation spot disappeared. A target (red square) was presented for 300 ms followed

by a 1000 ms delay period (Delay 1). A distractor (green square) was then presented for 300 ms in a random

location that was different from the target location and was followed by a second delay of 1000 ms (Delay 2). After

Delay 2, the fixation spot disappeared, which was the Go cue for the animal to report, using an eye movement,

the location of the target. (b) Implant locations of 16-channel and 32-channel electrode arrays (with electrode

lengths ranging from 5.5 mm closer to the sulci, to 1 mm further from the sulci) in the LPFC (red dots) and the FEF

(blue dots) in the two animals. Analyses were carried out only on LPFC data. (c) Peristimulus time histograms

(PSTH) for two single neurons in the LPFC. Time 0 marks the onset of target presentation; responses to the

different target locations are color-coded according to the legend shown in the top right; the colored regions

surrounding each line indicates the standard error. (d) Venn diagram showing the number of LPFC neurons

selective in Delay 1, in Delay 2, and their overlap. Target selectivity was tested using one-way ANOVA (p < 0.05)

with spike counts averaged during 800–1300 ms for Delay 1 and 2100–2600 ms for Delay 2.
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the neural codes for working memory and motor preparation. Standard methods for such decompo-

sitions are regression (Mante et al., 2013; Brody et al., 2003) (resulting in a one-dimensional com-

ponent for each task-dependent variable) and, more interestingly, Demixed Principal Component

Analysis (dPCA) (Brendel et al., 2011; Kobak et al., 2016), which selectively isolates and constructs

Figure 2. Code morphing, and two minimally dependent subspaces. (a) Heat map showing the cross-temporal population-decoding performance in

the LPFC. White lines indicate target presentation (0–0.3 s), distractor presentation (1.3–1.6 s), and cue onset (2.6 s). (b) Schematic illustration of the

projection of the full-space activity into Subspace 1 and Subspace 2. Delay 1 activity (purple and green filled circles) projected into the Subspace 1

would cluster according to target location (filled circles in the red subspace), and because this was a stable subspace, the Delay 2 activity for each

target location (purple and green unfilled circles) would overlap with those for Delay 1 (open circles in the red subspace). In Subspace 2, Delay 1 activity

would not cluster according to location (filled circles in the blue subspace), and the clustering by location would emerge only from the Delay 2 activity

(open circles in the blue subspace) after the emergence of the new information. (c) We projected the trial-averaged full-space population activity for

each time bin across the whole trial into Subspace 1 and Subspace 2 and calculated the magnitude of the projections. For each subspace, the

magnitude was normalized to have a maximum value of 1. The projections into Subspace 1 and Subspace 2 exhibited different temporal profiles. (d)

Cross-temporal decoding performance after projecting full-space activity into Subspace 1. (e) Cross-temporal decoding performance after projecting

full-space activity into Subspace 2. (f) Projection of single-trial activity for two target locations (actual locations shown in the upper left corner) onto the

first three principal components. Delay 1 is depicted as closed circles, and Delay 2 as open circles. Re-projections into the Subspace 1 (red plane) and

Subspace 2 (blue plane) are shown and guided by projection cones (green and purple cones connecting the PCA projections into the subspace re-

projections).

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Unmixed population activity between Delay 1 and Delay 2.

Figure supplement 2. Single-session subspace identification.

Figure supplement 3. Effective dimension of full-space data in the subspaces.

Figure supplement 4. PCA projections in the first and second subspaces.

Figure supplement 5. Inter- and intra-cluster distance analysis.

Figure supplement 6. Mean population firing rate.

Figure supplement 7. Correlated and uncorrelated information.
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a subspace for one task-dependent variable at a time by averaging out all the other task-dependent

variables. However, these methods are not suitable for our data, because we always had the same

target location label for working memory and motor preparation in each trial. As a result, for regres-

sion, the working memory and motor preparation variables will not have different coefficients; for

dPCA, we cannot differentially represent the neural activity by averaging trials according to working

memory or motor preparation locations to find different subspaces. Instead, we developed a novel

method to identify the two subspaces even given that working memory and motor preparation

always had the same target labels in each trial by regarding the trial-averaged and time-averaged

Delay 1 and Delay 2 activity (each had a size 226 � 7, where 226 was the number of neurons, and

seven was the number of target locations) as a mixture of working memory and motor preparation

activity, and assumed that working memory and motor preparation activity themselves to be mini-

mally dependent on each other. Our objective was then to find, through an optimization technique,

the best unmixing coefficients to apply to Delay 1 and Delay 2 activity that could recover the work-

ing memory and motor preparation activity with the lowest mutual information possible between

them (see Materials and methods). The original Delay 1 and Delay 2 activity exhibited 0.33 bits of

mutual information. Using our method, we found two unmixed elements (representations of unmixed

population activity that were each of size 226 � 7) from D1 and D2 activity with a minimum mutual

information of 0.08 bits (Figure 2—figure supplement 1). The two elements we identified consisted

of seven vectors in the 226-dimensional space, and according to the unmixing coefficients we identi-

fied, the magnitude of one element (Element 1) in Delay 2 was 65% of that in Delay 1, and the mag-

nitude of the other element (Element 2) in Delay 1 was 12% of that in Delay 2. The orthonormal

bases of the two elements defined two subspaces (Subspace 1 and Subspace 2). The temporal

dynamics of the full-space population activity projected into these subspaces showed that the mag-

nitude of activity in Subspace 1 increased early after target presentation and was maintained until

the saccade cue, while the magnitude of activity in Subspace 2 increased after distractor presenta-

tion and stayed relatively high even after the Go cue (Figure 2c, single-session results are shown in

Figure 2—figure supplement 2). Next, we used the decoding performance of a linear decoder

(LDA) as a proxy of target information and evaluated target information in each subspace. We

trained an LDA decoder at each time point of the trial, and tested the decoder against all other time

points across the trial to evaluate the temporal generalization of the population activity (cross-

Figure 3. Preparatory and pre-saccadic activity. (a) Correlation between unmixed elements found from Delay 1/Delay 2 activity (Elements 1 and 2) and

the unmixed elements from Delay 1/pre saccadic activity (Elements 1’ and 2’). The matrices were flattened into 1-d for the correlation analysis. Elements

1 and 1’ were almost identical (r > 0.99, p < 0.01, left), while Elements 2 and 2’ were highly correlated (r = 0.62, p < 0.01, right). (b) Left, the percentage

of cells that exhibited significant correlation between Elements 2 and 2’. Right, the percentage of cells that exhibited significant correlation between

Elements 1 and 2’. The shaded area shows the 5th and 95th percentiles of the chance percentage obtained by shuffling the tuning across cells. (c)

Response tuning of four representative cells that showed significant correlation between their activity in Elements 2 and 2’.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Principal angles between subspaces.

Figure supplement 2. Decorrelated population activity between Delay 1 and the pre-saccadic period.

Figure supplement 3. Cross-temporal decoding for distractor locations.
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temporal decoding, see Materials and methods). Cross-temporal decoding after projecting the full-

space neural activity into Subspace 1 showed that information emerged right after target presenta-

tion, and although the information was higher in Delay 1 (60.5 ± 1.3%), it was present throughout

the whole trial, even during the distractor period (Figure 2d). This was qualitatively consistent with

our hypothesis, aside from the decrease in information in Delay 2 (39.9 ± 1.1%). Cross-temporal

decoding of full-space neural activity projected into Subspace 2 showed that information emerged

after distractor presentation (42.6 ± 1.1%), and was stable throughout Delay 2 (Figure 2e). In Delay

1, Subspace 1 and Subspace 2 accounted for 14.6% and 10.3% of the variance in the full space; in

Delay 2, Subspace 1 and Subspace 2 accounted for 5.8% and 8.1% of the variance in the full space.

Full-space data in the two subspaces had an effective dimensionality of 6 dimensions each – after

projecting single-trial full-space data into the subspaces, we performed a PCA on the projected

data, and the first six out of the seven principal components cumulatively accounted for more than

95% of the variance within each subspace (Figure 2—figure supplement 3). This indicated that the

true dimensionality of the neural code could be smaller than the number of discrete target locations

imposed by the experiment. In addition, as the number of discrete target locations increases in the

experiment (for example, 24 target locations), we expect the effective dimensionality of data in the

subspaces will asymptote to the true dimensionality of the neural codes supporting the cognitive

processes.

Figure 2f shows single-trial projections of two different target locations (purple and green loca-

tions shown in the top-left corner) onto the top three principal components (PCs). These projections

were then re-projected into Subspace 1 (red plane) and Subspace 2 (blue plane). The low-dimen-

sional visualizations are merely used to provide intuitions underlying the cross-temporal decoding

results, which were all obtained using high-dimensional data (see Materials and methods). Consistent

with our hypothesis, Delay 1 and Delay 2 projections into Subspace 1 clustered according to target

location, although they overlapped less than we expected (we will revisit this deviation from our

expectation later on). However, the separation between the projected points was small enough that

target location information could be decoded in both delays, regardless of whether the classifier

was trained using Delay 1 or Delay 2 activity (Figure 2d).

On the other hand, projections into Subspace 2 behaved differently, such that Delay 1 projections

for multiple target locations overlapped, whereas Delay 2 projections remained separated. This

explained why in Subspace 2, target location information could not be decoded in Delay 1, but

could be decoded in Delay 2 (Figure 2e). Projections into Subspace 1 and Subspace 2 for all target

locations confirmed that these observations generalized to the rest of the locations (Figure 2—fig-

ure supplement 4, which also illustrates the reason for the difference in performance in the two off-

diagonal quadrants in Figure 2d).

The two minimally dependent subspaces corresponded to working
memory and motor preparation
Since Subspace 1 contained target information throughout the trial, and working memory of the tar-

get location was presumably required throughout the trial, we hypothesized that Subspace 1 corre-

sponded to a working memory subspace. We previously showed that the LPFC contained a working

memory subspace that encoded stable working memory information (Parthasarathy, 2019). In order

to assess whether Subspace 1 corresponded to the working memory subspace previously described

(Parthasarathy, 2019), we calculated the principal angles between these subspaces, as a measure

of similarity (see Materials and methods). We found that Subspace 1 was significantly closer than

chance to the working memory subspace, while Subspace 2 was not (Figure 3—figure supplement

1). This result supported the interpretation that Subspace 1 corresponded to a working memory sub-

space. Thus, henceforth, we will refer to Subspace 1 as the ‘working memory subspace’ and Ele-

ment 1 as the unmixed working memory element.

Since Subspace 2 contained target information only after the distractor disappeared, and motor

preparation presumably began after the last sensory cue that reliably predicted the timing of the Go

cue (i.e. the offset of the distractor), we hypothesized that Subspace 2 corresponded to a motor

preparation subspace. Activity between the Go cue and the saccade onset contained information

about saccade execution (45% of LPFC neurons we recorded were selective in the period between

the Go cue and saccade onset, assessed using a one-way ANOVA, p < 0.05). In order to test

whether Subspace 2 corresponded to a motor preparation subspace, we compared the original
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unmixed elements using Delay 1 and Delay 2 activity with a new pair of unmixed elements using

Delay 1 and pre-saccadic period activity (150 ms to 0 ms prior to saccade). If Subspace 2 corre-

sponded to a motor preparation subspace, we should observe similarities between the second ele-

ment in both pairs of unmixed elements, that is the unmixed motor preparation activity and the

unmixed pre-saccade activity (see Materials and methods). In the new pair of unmixed elements, we

obtained two elements with relative vector magnitudes similar to those found in the first pair of

unmixed elements (for Element 1’, the vector magnitude in the pre-saccade period was 70% of that

in Delay 1, while for Element 2’, the vector magnitude in Delay 1 was 0% of that in the pre-saccade

period, Figure 3—figure supplement 2). We found that Element 1 and Element 1’ were significantly

correlated (Figure 3a left, Pearson correlation r > 0.99, p < 0.01). Importantly, Element 2 and Ele-

ment 2’ were also significantly correlated (Figure 3a right, Pearson correlation r = 0.62, p < 0.01).

This result supported our hypothesis that Subspace 2 corresponded to a motor preparation

subspace.

In an additional test of the hypothesis that Subspace 2 corresponded to a motor preparation sub-

space, we examined the relationship between the unmixed motor preparation activity and the

unmixed pre-saccade activity at the level of single cells. First, we identified cells with spatial tuning

in both Delay 2 and the pre-saccade period (73 cells, two one-way ANOVAs, both p < 0.05). Then,

for each cell, we measured the correlation between the unmixed motor preparation activity and the

unmixed pre-saccade activity across different target locations. We found that 47% of these neurons

showed significant correlation (Pearson correlation, p < 0.05), which exceeded the number expected

by chance (Figure 3b, left bar, p < 0.001, g = 10.82). As a control, we carried out the same analysis

between the unmixed working memory activity and the unmixed pre-saccade activity, and found no

evidence of a higher number of correlated cells than expected by chance (Figure 3b, right bar,

p > 0.19, g = 1.51). Examples of neurons with significant correlation are shown in Figure 3c. This

result provided additional support to our hypothesis that Subspace 2 corresponded to a motor prep-

aration subspace. Thus, henceforth, we will refer to Subspace 2 as the ‘motor preparation subspace’.

Alongside the working memory and motor preparation activity for target locations, there could also

be activity representing distractor locations in Delay 2. By grouping trials according to distractor

labels, we indeed found significant distractor information in the full space (Figure 3—figure supple-

ment 3). However, the distractor activity in Delay 2 was not related to the Element 2 or the motor

preparation subspace we identified, because the distractor activity and the motor preparation activ-

ity were obtained from data grouped by different trial labels (target and distractor labels were

uncorrelated). Very little distractor information (17.9 ± 0.7%) was successfully decoded in the motor

preparation subspace (Figure 3—figure supplement 3).

Activity of neurons with mixed working memory and motor preparation
selectivity formed the two subspaces
The existence of two minimally dependent subspaces could be mediated by one of two possible

mechanisms: (1) two distinct subpopulations of neurons with exclusive working memory or motor

preparation selectivity within the LPFC, or (2) the same population of LPFC neurons with mixed

selectivity to both working memory and motor preparation. In order to distinguish between these

two possible mechanisms, we projected the unit vector representing each neuron in the full space

into the working memory and motor preparation subspaces, and quantified the magnitude of the

two projections for each neuron (i.e. loading weight, Figure 4a). A clustering of the loading weights

along the x- and y-axes would support the first mechanism, and if not this case, a non-significant or

positive correlation would support the second mechanism. In order to test if the points clustered

along the x- and y-axes, we computed the ratio of points near the x- or y-axes (above 67.5˚ line or

below 22.5˚ line) for 1,000 bootstraps, with a random 10% data exclusion in each bootstrap. We

found that there were significantly more points away from the x- or y-axes (88% to 90%, correspond-

ing to the 5th and 95th percentile of 1,000 bootstraps), which rejected the first mechanism. In addi-

tion, to our surprise, we found a significant positive correlation between the loading weights in each

subspace (r = 0.68, which was significantly higher than the 95th percentile of 1,000 shuffles, where in

each shuffle we randomly permuted the population’s loading weights for both subspaces), which not

only supported the second mechanism, but further suggested that neurons with stronger contribu-

tion to the working memory subspace would also have a stronger contribution to the motor prepara-

tion subspace. As a measure of the relative contribution to each subspace, we calculated the ratio
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between the loading weights for each cell, and analyzed their distribution (Figure 4b). We found

that only 14 (6%) of the neurons had ‘exclusive’ loading for the working memory (red) or motor prep-

aration (blue) subspaces. However, these cells were not necessary to identify the subspaces (Fig-

ure 4—figure supplement 1).

In order to understand how a single population of neurons with mixed selectivity could have con-

tributed minimally dependent information to the two subspaces, we created a simple illustration

(Figure 4c). Working memory and motor preparation information were read out by separate readout

neurons with different connection weights to Neurons 1 and 2 that reflected the loading weights of

each subspace. In isolation, the activity of Neuron 1 would be ambiguous for both readout neurons,

as an increase of activity in Delay 2 could be interpreted as a new memory at a different spatial loca-

tion, or as the same memory as in Delay 1, but with superimposed motor preparation activity. In

order to disambiguate the meaning of a change in the activity of one neuron, it would be necessary

to interpret that change in the context of changes in the activity of the rest of the neuronal popula-

tion (i.e. in this example, Neuron 2). In the illustration, a superimposed increase of activity in Neurons

1 and 2 signals a change in memory (i.e. only the readout activity in the working memory subspace

Figure 4. Loading weights for individual neurons. (a) The loading weight of each neuron in the working memory subspace and the motor preparation

subspace. (b) Histogram of the ratio between the loading weights for each cell. For cells with larger loading for the working memory subspace, the

values are plotted to the right of the plot, while for cells with larger loading for the motor preparation subspace, the values are plotted to the left of the

plot. Red dots (in a) and bars (in b) represent cells with ‘exclusive’ loading for the working memory subspace, while blue dots (in a) and bars (in b)

represent cells with ‘exclusive’ loading for the motor preparation subspace. These cells were identified as those with ratios that exceeded two standard

deviations from the mean. (c) Illustration of how overlapping codes can be read out. Different loading weights of the two subspaces (expressed as

connection weights between the readout neurons and Neurons 1 and 2) unambiguously read out working memory or motor preparation information

from the conjunctive population code formed by both Neuron 1 and Neuron 2, whereas it would have been ambiguous to look only at Neuron 1’s

change of firing rate in Delay 2.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Cross-temporal decoding on the population with mixed selectivity and populations with exclusive selectivity.

Figure supplement 2. Bump attractor models with and without normalization.

Figure supplement 3. Neuronal selectivity.

Figure supplement 4. Linear subspace model.
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changed), whereas the same increase in Neuron 1, but with a superimposed decrease of activity in

Neuron 2, signals that the memory has not changed, but that a motor preparation plan has emerged

in Delay 2 (i.e. only the readout activity in the motor preparation subspace changed). This concept

can be extended to the 212 neurons with mixed selectivity to understand how the coordinated activ-

ity between those neurons can contribute minimally dependent information to the working memory

and motor preparation subspaces through different loading weights that we found in the LPFC (low-

dimensional visualizations of neural data provided in Figure 2f and Figure 2—figure supplement

4).

Information in one subspace led to a small amount of interference in
information in the other subspace
Since one population of neurons with mixed selectivity contributed to both the working memory and

motor preparation subspaces, it was possible that information in one of the subspaces interfered

with information in the other, and vice versa. We checked if the two subspaces were orthogonal to

each other by comparing their principal angles with those between two random subspaces of the

same dimension (Figure 5a). All the principal angles between the working memory and motor prep-

aration subspaces were significantly smaller than chance, indicating non-orthogonality between the

two subspaces and the likelihood of interference of information between them. One way to assess

the interference between the information in both subspaces is to ask whether the emergence of

motor preparation activity in Delay 2 (added on top of working memory activity) changes the

amount of readable information in the working memory subspace, compared to the situation where

there is only working memory activity in Delay 2. In order to quantify this interference of information,

we compared the decoding performance of an LDA classifier trained and tested on the unmixed sin-

gle-trial working memory activity (see Materials and methods) projected into the working memory

subspace (Figure 5a: projMSub(M)), with decoding performance of a classifier trained and tested on

single-trial working memory activity plus motor preparation activity (i.e. Delay 2 activity) projected

into the working memory subspace (Figure 5a: projMSub(M+P)). A similar analysis was carried out in

the motor preparation subspace (Figure 5b: projPSub(P) and projPSub(M+P)). We found no evidence

of a drop in performance between projMSub(M) and projMSub(M+P) (p > 0.73, g = 0.61), and between

projPSub(P) and projPSub(M+P) (p > 0.22, g = 2.63), suggesting a lack of interference between these

subspaces.

As we used LDA’s decoding performance as a proxy of target information, the lack of interfer-

ence between two non-orthogonal subspaces indicated that the shift of clusters in the state space

caused by superimposed activity were not large enough to cross the classification boundaries, and

thus did not affect the classification performance. So we performed a more sensitive state-space

analysis on Delay 2 activity to assess whether the working memory and motor preparation subspaces

interfered with each other. We quantified interference by projecting the unmixed single-trial activity

into the two subspaces, and calculated the average distance between clusters of points correspond-

ing to different target locations (inter-cluster distance). The inter-cluster distance was then normal-

ized by the average intra-cluster distance for all clusters, which was a measure of trial-by-trial

variability in the population activity (see Materials and methods). This inter-to-intra cluster distance

ratio was compared between projections of unmixed single-trial working memory activity into the

working memory subspace (Figure 5d: projMSub(M)), and projections of single-trial working memory

plus motor preparation activity (i.e. Delay 2 activity) into the working memory subspace (Figure 5d:

projMSub(M+P)). A similar analysis was carried out in the motor preparation subspace (Figure 5e).

We found a small decrease (7.1%) of the inter-to-intra cluster distance ratio when both working

memory and motor preparation activity were projected into the subspaces, suggesting the existence

of a small, but significant interference between both subspaces (p < 0.001, g = 4.81 between projM-

Sub(M) and projMSub(M+P), p < 0.001, g = 6.63 between projPSub(P) and projPSub(M+P)).

Less information was found in error trials in both subspaces
In a subset of trials, the animals maintained fixation until the Go cue, but failed to report the correct

target location with a saccade. These failures could be due to the animals reporting other locations,

including the location of the distractor, or simply saccading to a completely different location, such

as the edge of the monitor. Classifiers trained on unmixed single-trial working memory activity of
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Figure 5. Comparisons between working memory and motor preparation subspaces. (a) The principal angles between the working memory subspace

and the motor preparation subspace are shown in the magenta lines in ascending order. The black boxplots illustrate the distribution of principal

angles between two random subspaces with the same dimensions as the working memory and motor preparation subspaces. The borders of the box

represented the 25th and the 95th percentile of the distribution, while the whiskers represent the 5th and the 95th percentiles. (b) Decoding performance

in the working memory subspace. M stands for unmixed single-trial working memory activity; projMSub(M), decoding of the unmixed single-trial working

memory activity projected into the working memory subspace; projMSub(M+P), decoding of the single-trial Delay 2 activity projected into the working

memory subspace; projMSub(ME), decoding of the unmixed single-trial working memory activity in error trials projected into the working memory

subspace using a classifier built on unmixed single-trial working memory activity in correct trials projected into the working memory subspace; (c)

Decoding performance in the motor preparation subspace. P stands for unmixed single-trial motor preparation activity. Same conventions as in a, but

for unmixed single-trial motor preparation activity and the motor preparation subspace. We verified that the drop in performance in error trials was

specific to the two subspaces, and not due to a non-specific increase in noise in the population (see Materials and methods). (d) Inter-to-Intra cluster

ratio of unmixed single-trial working memory activity projected into the working memory subspace (projMSub(M)), and of single-trial full-space activity

projected into the working memory subspace (projMSub(M+P)). (e) Same conventions as in d, but for unmixed single-trial motor preparation activity and

motor preparation subspace.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Gram-Schmidt orthogonal decomposition.

Figure supplement 2. | Analytical memory subspace and non-memory subspace.

Figure supplement 3. | Amount of interference in different methods.
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correct trials projected into the working memory subspace, projMSub(M), were tested on unmixed

single-trial working memory activity of error trials (see Materials and methods), which was also pro-

jected into the working memory subspace, projMSub(ME). Decoding performance was significantly

reduced in error trials (Figure 5a,) compared to correct trials (Figure 5a, p < 0.001, g = 13.9

between projMSub(M) and projMSub(ME)), suggesting that failures in memory encoding occurred dur-

ing error trials. A similar analysis on the motor preparation subspace yielded equivalent results

(Figure 5b, p < 0.001, g = 13.8 between projPSub(P) and projPSub(PE)), which were consistent with

the fact that in error trials, saccades were made to different locations than in correct trials. These

results suggested that the subspaces we found could have been used by the animals to perform the

task.

Artificial neural networks with divisive normalization recapitulated the
properties of LPFC activity
An unexpected observation in our results was that decoding performance in the working memory

subspace decreased in Delay 2 compared to Delay 1 (Figure 2d). This decrease coincided with an

increase of decoding performance in the motor preparation subspace (Figure 2e). The reduction of

working memory decoding performance was not expected in the schematic diagram of the subspace

dynamics (Figure 2b), but was captured by the state space visualization of real neural data

(Figure 2f, inter-cluster distance in Subspace 1 reduced in Delay 2). A more rigorous state space

analysis revealed that the decrease of working memory decoding performance was due to a

decrease in the inter-to-intra cluster distance ratio of working memory activity in Delay 2, and the

increase of motor preparation decoding performance was due to an increase in the inter-to-intra

cluster distance ratio of motor preparation activity in Delay 2 (Figure 2—figure supplement 5). In

addition, we noticed that the mean population firing rate did not change between Delay 1, Delay 2

and pre-target fixation periods (Figure 2—figure supplement 6). This observation was consistent

with a population normalization mechanism to maintain the mean population firing rate at a constant

level in the LPFC (Ruff and Cohen, 2017; Duong et al., 2019). In order to assess whether a normali-

zation mechanism was responsible for the decrease of working memory information in Delay 2, we

built artificial neural network models with and without population normalization, and compared their

behavior with the LPFC data.

Bump attractor models have been shown to replicate several properties of LPFC activity, includ-

ing code-morphing in the full space, the existence of a stable subspace with stable working memory

information, and non-linear mixed selectivity of individual neurons (Parthasarathy, 2019;

Compte et al., 2000; Wimmer et al., 2014). Here, we created a model that incorporated subsets of

neurons that represented information in the working memory and motor preparation subspaces (Fig-

ure 4—figure supplement 2), and looked at the effect of adding divisive normalization to keep the

mean population firing rate constant. We constrained the attractor model to utilize neurons with

mixed selectivity by matching the selectivity properties to those found in the LPFC data (Figure 4—

figure supplement 3). We also used the same unmixing method to identify working memory and

motor preparation subspaces from the activity in the attractor model. We found that only the

attractor model with divisive normalization qualitatively replicated all the features of the neural data

(Figure 4—figure supplement 2). We also explored an alternative model that supported the imple-

mentation of subspaces – a linear subspace model (Murray et al., 2017). Similarly, only the linear

subspace model with divisive normalization replicated all the main findings in the neural data (Fig-

ure 4—figure supplement 4). The results of the model simulations supported the idea that divisive

normalization was needed to faithfully replicate the properties of neural data, and suggested that

such a mechanism constituted part of the function of the LPFC. The similarity between the results

obtained from two different categories of models – the bump attractor model and the linear sub-

space model, also indicated the conceptual convergence between the two models in replicating the

sustained-activity aspect of the LPFC activity.

Discussion
Here, we demonstrate that two minimally dependent subspaces coexist within the LPFC population.

These subspaces contain largely independent information about target location, and appear to

encode working memory and motor preparation information. We show that there is a small, but
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significant interference of information when both subspaces encode information simultaneously, and

during error trials information in the working memory subspace is reduced. Assessment of activity

properties of individual neurons revealed that a single population of neurons with mixed selectivity

generates both subspaces. Finally, we show that a bump attractor neural network model with divi-

sive normalization can capture all these properties described. Overall, our results show that working

memory and motor preparation subspaces coexist in a single neural network within the LPFC.

Our results provided the first evidence suggesting that information about two separate cognitive

processes can be simultaneously encoded in subspaces within the same brain region. The majority of

the literature on information subspaces in the brain has reported a single subspace (Parthasara-

thy, 2019; Druckmann and Chklovskii, 2012; Inagaki et al., 2019; Svoboda and Li, 2018), multiple

subspaces in different regions (Semedo et al., 2019), or multiple subspaces in the same region

where information transited from one subspace to another but did not coexist simultaneously in dif-

ferent subspaces (Kaufman et al., 2014; Elsayed et al., 2016; Yoo and Hayden, 2020;

Kimmel et al., 2020). Mante et al., 2013. showed coexistence of information in three subspaces in

the prefrontal cortex, but two of the subspaces encoded color and motion (stimulus subspace), and

only one subspace encoded action choice (cognitive subspace). Minxha et al., 2020. reported the

existence of two cognitive subspaces for ‘memory’ and ‘categorization’ tasks, but the two subspaces

were employed asynchronously in different types of trial blocks. Thus, the identification of two coex-

isting cognitive subspaces (working memory and motor preparation) in our work could provide new

insights into the brain’s mechanisms underlying our cognitive flexibility.

It is important to minimize interference between different types of information. For example, a

visual area may read out working memory information (Yeterian et al., 2012; Merrikhi et al., 2017),

while a premotor region may read out motor preparation information from the LPFC

(Yeterian et al., 2012; Churchland et al., 2012; Schall and Hanes, 1993). If large interference

existed between subspaces, the computations of downstream regions would be compromised. We

found a small, but significant interference between the subspaces, such that some working memory

information was reflected in the motor preparation subspace (and vice versa). It is not surprising that

there is some degree of interference, since the method we used to decompose the signals did not

impose a constraint to ensure maximal orthogonality between subspaces, and while the mutual infor-

mation was low, it was not zero. In order to assess whether imposing orthogonality between subspa-

ces was feasible, we fixed Delay 1 activity as the first activity subspace and rotated each column

vector in Delay 2 activity matrix to be orthogonal to Delay 1 activity (Gram-Schmidt algorithm) to

obtain the second activity matrix, such that the two activity matrices would be orthogonal to each

other. To our surprise, the two simple orthogonal subspaces were highly similar to our working

memory and motor preparation subspaces (Figure 5—figure supplement 1). The reason for this

similarity could be that the unmixing method showed that there was very little motor preparation

activity in Delay 1, so the assumption that Delay 1 activity exclusively contains working memory infor-

mation would largely align with the unmixing results. However, the unmixing method was in principle

a more flexible approach to identify the subspaces, and also provided a less constrained viewpoint

to interpret the neural data (details discussed in Figure 5—figure supplement 1). We also consid-

ered alternative methods to identify the subspaces, but these produced subspaces with larger inter-

ference (Figure 5—figure supplements 2 and 3). The interference we found suggests that under

conditions that stress the working memory and motor preparation systems (such as a task that

requires the concurrent memorization of four targets, and preparation of four movements) a predict-

able bias should be observable for both the recalled target locations and eventual movements. This

prediction remains to be tested.

We also found an indirect way in which information in subspaces interfere with each other: divi-

sive normalization of population activity. This led to a decrease of working memory information in

Delay 2 once motor preparation information emerged. Divisive normalization, which has been

described before in the LPFC (Ruff and Cohen, 2017; Duong et al., 2019), could be useful as an

energy saving mechanism, since it maintains the population activity at a low level when new informa-

tion is added. A bump attractor model and a linear subspace model with divisive normalization

allowed us to replicate the properties of LPFC activity. However, the models only provide high-level

support for this mechanism, and a mechanistic implementation is still needed.

In this work, we derived two subspaces, and analyzed the benefits of decoding from those sub-

spaces, from data in which the memory location and the motor preparation location were identical.
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However, there are situations where the LPFC is required to store multiple pieces of information that

are uncorrelated, for example if the animal has to remember the location and color of a target to

perform a task, where these are uncorrelated (Warden and Miller, 2010; Cavanagh et al., 2018).

We have verified that our approach can be extended to identify the relevant subspaces in tasks with

uncorrelated information as well (see Materials and methods). We show that in tasks with uncorre-

lated information, decoding in the full space could result in higher interference as compared to tasks

with correlated information (Figure 2—figure supplement 7a,b). However, the use of subspaces

could reduce interference in both cases (Figure 2—figure supplement 7c,d), suggesting a possible

advantage of encoding information in minimally dependent subspaces in a broad range of cognitive

tasks that we typically associate with the LPFC.

Our results support a framework in which low-dimensional subspaces could be a general property

of cortical networks (Remington et al., 2018; Ruff and Cohen, 2019). Under this framework, down-

stream regions could extract specific information from these subspaces (Semedo et al., 2019). This

could provide a mechanism for selective routing of information between regions (Yang et al., 2016),

which could in turn be a building block of our cognitive flexibility capacity. The dimensionality of a

network’s full state space constrains the number and dimensionality of the different information sub-

spaces that could coexist within the network. The LPFC is a densely connected brain hub, anatomi-

cally connected to more than 80 regions, compared to the roughly 30 connected to the primary

visual cortex (Markov et al., 2014). Given the variety of inputs to the LPFC, it is not surprising that a

large number of its neurons show mixed selective activity (Rigotti et al., 2013; Parthasarathy et al.,

2017), which in turn endow the LPFC with high dimensionality (Rigotti et al., 2013). This property

would allow a higher number of subspaces to coexist within the network. The number of items that

can be simultaneously maintained in working memory is limited, which may be the result of encoding

constraints within the working memory subspace. However, the types of information that can be

encoded in working memory seem limitless. These include memories of external events (such as the

visual stimuli in the current study), as well as memories of internally-generated events (such as the

task rules stored in long-term memory in the current study, which previous studies have shown to be

reflected in LPFC activity; Wallis et al., 2001). It is possible that underlying this ability to encode

such diverse types of information is the extremely large number of possible information subspaces

that could coexist within regions of the LPFC.

Materials and methods

Subjects and surgical procedures
We used two male adult macaques (Macaca fascicularis), Animal A (age 4) and Animal B (age 6), in

the experiments. All animal procedures were approved by, and conducted in compliance with the

standards of the Agri-Food and Veterinary Authority of Singapore and the Singapore Health Services

Institutional Animal Care and Use Committee (SingHealth IACUC #2012/SHS/757). The procedures

also conformed to the recommendations described in Guidelines for the Care and Use of Mammals

in Neuroscience and Behavioral Research (Van Sluyters and Obernier, 2003). Each animal was

implanted first with a titanium head-post (Crist Instruments, MD) before arrays of intracortical micro-

electrodes (MicroProbes, MD) were implanted in multiple regions of the left frontal cortex. In Animal

A, we implanted six arrays of 16 electrodes and one array of 32 electrodes in the LPFC, and two

arrays of 32 electrodes in the FEF, for a total of 192 electrodes. In Animal B, we implanted one array

of 16 electrodes and two arrays of 32 electrodes in the LPFC, and two arrays of 16 electrodes in the

FEF, for a total of 112 electrodes. The arrays consisted of platinum-iridium wires with either 200 or

400 mm separation, 1–5.5 mm of length, 0.5 MW of impedance, and arranged in 4 � 4 or 8 � 4 grids.

Surgical procedures followed the following steps. 24 hr prior to the surgery, the animals received a

dose of Dexamethasone to control inflammation during and after the surgery. They also received

antibiotics (amoxicillin 7–15 mg/kg and Enrofloxacin 5 mg/kg) for 8 days, starting 24 hr before the

surgery. During surgery, the scalp was incised, and the muscles retracted to expose the skull. A cra-

niotomy was performed (~2�2 cm). The dura mater was cut and removed from the craniotomy site.

Arrays of electrodes were slowly lowered into the brain using a stereotaxic manipulator. Once all the

arrays were secured in place, the arrays’ connectors were secured on top of the skull using bone

cement. A head-holder was also secured using bone cement. The piece of bone removed during the
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craniotomy was repositioned to its original location and secured in place using metal plates. The

skin was sutured on top of the craniotomy site, and stitched in place, avoiding any tension to ensure

good healing of the wound. All surgeries were conducted using aseptic techniques under general

anesthesia (isofluorane 1–1.5% for maintenance). The depth of anesthesia was assessed by monitor-

ing the heart rate and movement of the animal, and the level of anesthesia was adjusted as neces-

sary. Analgesics were provided during post-surgical recovery, including a Fentanyl patch (12.5 mg/

2.5 kg 24 hr prior to surgery, and removed 48 hr after surgery), and Meloxicam (0.2–0.3 mg/kg after

the removal of the Fentanyl patch). Animals were not euthanized at the end of the study.

Recording techniques
Neural signals were initially acquired using a 128-channel and a 256-channel Plexon OmniPlex sys-

tem (Plexon Inc, TX) with a sampling rate of 40 kHz. The wide-band signals were band-pass filtered

between 250 and 10,000 Hz. Following that, spikes were detected using an automated Hidden Mar-

kov-Model-based algorithm for each channel (Herbst et al., 2008). The eye positions were obtained

using an infrared-based eye-tracking device from SR Research Ltd. (Eyelink 1000 Plus). The behav-

ioral task was designed on a standalone PC (stimulus PC) using the Psychophysics Toolbox (Brai-

nard, 1997) in MATLAB (Mathworks, MA). In order to align the neural and behavioral activity (trial

epochs and eye data) for data analysis, we generated strobe words denoting trial epochs and perfor-

mance (rewarded or failure) during the trial. These strobe words were generated on the stimulus PC

and were sent to the Plexon and Eyelink computers using the parallel port.

Microstimulation
For arrays positioned in the prearcuate region (FEF), we used standard electrical microstimulation to

confirm that saccades could be elicited with low currents. These electrodes had a depth of 5.5 mm

inside the sulcus and tapered to 1 mm away from the sulcus. We conducted these microstimulation

experiments after we finished our recording experiments. During the microstimulation experiment,

each electrode implanted in the FEF was tested for its ability to evoke fixed-vector saccadic eye

movements with stimulation at currents of 50 mA. Electrical microstimulation consisted of a 200 ms

train of biphasic current pulses (1 ms, 300 Hz) with no interphase delays, delivered with a Plexon

Stimulator (Plexon Inc, TX). We mapped the saccade vector elicited via microstimulation at each

electrode to verify that the electrodes were implanted in the FEF. Sites at which stimulation of 50 mA

or less elicited eye movements at least 50% of the time, plus regions within 2–3 mm of these loca-

tions, were considered to be in the FEF.

Behavioral task
Each trial started with a mandatory period (500 ms) where the animal fixated on a white circle at the

center of the screen. While continuing to fixate, the animal was presented with a target (a red

square) for 300 ms at any one of eight locations in a 3 � 3 grid. The center square of the 3 � 3 grid

contained the fixation spot and was not used. The presentation of the target was followed by a delay

of 1,000 ms, during which the animal was expected to maintain fixation on the white circle at the

center. At the end of this delay, a distractor (a green square) was presented for 300 ms at any one

of the seven locations (other than where the target was presented). This was again followed by a

delay of 1000 ms. The animal was then given a cue (the disappearance of the fixation spot) at the

end of the second delay to make a saccade toward the target location that was presented earlier in

the trial. Saccades to the target location within a latency of 150 ms and continued fixation at the sac-

cade location for 200 ms was considered a correct trial. An illustration of the task is shown in

Figure 1a. One of the animals was presented with only seven of the eight target locations because

of a behavior bias in the animal.

Cross-temporal decoding
A decoder based on linear discriminant analysis (LDA) was built using the classify function in MAT-

LAB to predict the location of the target. We trained a decoder for each time point in the trial, and

tested the decoder with all other time points throughout the trial. We pooled the activity across

recording sessions to create a pseudo-population of 226 neurons. In the pseudo-population, for

each pseudo-trial with target location T, we randomly picked one trial from each neuron with target
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location T, and stacked the activity from all neurons together as if they were simultaneously

recorded. We constructed 1,750 pseudo-trials (250 for each target location) as the training set, and

1,750 pseudo-trials as the testing set. The training set and testing set were sampled from non-over-

lapping sets of trials from each neuron. When performing cross-temporal decoding in the full space

(226 dimensions, Figure 1b), we denoised the training and testing data using principal components

analysis (PCA) at every time point by reconstructing the data with the top n principal components

that explained at least 95% of the variance. When performing cross-temporal decoding in the sub-

space (seven dimensions, Figure 1e,f), the PCA projection matrix described in the previous step was

replaced by the matrix specifying the desired subspace (working memory or motor preparation sub-

space), and the resulting data in the subspace would thus be seven dimensional.

Activity unmixing and subspace identification
The subspaces where identified using a pseudo-population of 226 neurons. For each trial condition

(which was one of seven possible target locations), we trial-averaged and time-averaged the neural

activity in Delay 1 (800 to 1300 ms from target onset) and Delay 2 (2000 to 2500 ms from target

onset) for each neuron to obtain two activity matrices of 226 x 7. We then normalized the two activ-

ity matrices to the mean of the baseline by subtracting neural activity in the fixation period (300 ms

before target onset), and obtained activity matrices D1 and D2 of size 226 x 7, where each column

represented the change in population activity under one condition. After flattening D1 and D2 activ-

ity into 1-D arrays (each of size 1 x 1,582, denoted as ~D1 and ~D2), we found high mutual information

(0.33 bits) between ~D1 and ~D2 (Figure 2—figure supplement 1). We hypothesized that the highly

correlated ~D1 and ~D2 resulted from a mixture of working memory and motor preparation activity,

while working memory and motor preparation activity themselves were minimally dependent on

each other. In matrix expression, we have:

~D1
~D2

� �

¼ 1 a

b 1

� �

~M
~P

� �

where ~M and ~P are the underlying working memory and motor preparation activity in a flattened

shape (each with size 1 x 1,582); a and b are the mixing coefficients of ~M and ~P. We used a standard

optimization function fmincon in MATLAB to find out a pair of (a, b) that would recover the two

activity arrays ~M and ~P with the least mutual information between them. The objective function we

used was the mutual information for two discrete distributions:

I X;Yð Þ ¼
y¼Y

X

x¼X

X

p X;Yð Þ x;yð Þlog p X;Yð Þ x;yð Þ
pX xð ÞpY yð Þ

� �

where p X;Yð Þ is the joint probability mass function of X and Y; pX and pY are the marginal probability

mass function of X and Y, respectively. To discretize our data, we chose the number of bins accord-

ing to Sturges’ rule, which is conservative in estimating the number of bins (ensuring there are

enough data points in each bin):

Number of bins¼ ceil 1þ log2 Nð Þð Þ

where N is the number of total data points from a distribution. Since a scaling operation on the two

distributions would not change their mutual information, we could always stipulate the coefficient

matrix to have an identity diagonal such that the interpretation of a and b would be intuitive: a indi-

cated the fraction of motor preparation activity in Delay 1 if we assumed the magnitude of motor

preparation activity in Delay 2 was one; b indicated the fraction of working memory activity in Delay

2 if we assumed the magnitude of working memory activity in Delay 1 was one. To obtain a robust

optimization result, we ran the optimization function 1,000 times with random initialization and

examined the results. The values for (a, b) were well centered around the valley of the objective func-

tion landscape (a = 0.118 ± 0.04, b = 0.654 ± 0.027, Figure 2—figure supplement 1) and the mini-

mum mutual information obtained was 0.076 bits when we rounded a to 0.12 and b to 0.65

(Figure 2—figure supplement 1). We then reshaped ~M and ~P arrays into matrices with size 226 x 7

(denoted as M and P, which were also referred to as two unmixed elements), and the orthonormal
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bases of M and P defined the working memory and motor preparation subspaces. The column vec-

tors in M and P were regarded as the trial-averaged and time-averaged population activity for work-

ing memory and motor preparation, respectively, for the different target locations. The working

memory and motor preparation subspaces captured all target information from time-averaged data

in Delay 1 and Delay 2. This was because the columns of D1 and D2 essentially represented the clus-

ter means of each target location in the state space, so all the cluster means collapsed to zero in the

null space of D1 and D2 (there was no linearly decodable information in the null space). Hence, the

space spanned by D1 and D2 captured all target information in Delay 1 and Delay 2. Because M and

P spanned the same space as D1 and D2, the working memory and motor preparation subspaces

also captured all target information in Delay 1 and Delay 2.

A similar optimization was performed between activity in Delay 1 and the pre-saccadic period

(150 to 0 ms prior to saccade onset):

~D1
~Ds

� �

¼ 1 a0

b0 1

� �

~M0
~S

� �

where ~Ds was the activity in the pre-saccade period. Using the same approach as described

above, we obtained ~M0 and ~S with a minimum mutual information of 0.086 bits when �a0 ¼ 0:01(±

0.014) and b0 ¼ 0:706 (± 0.033) (Figure 3—figure supplement 2). We reshaped ~S into a matrix with

size 226 x 7 (denoted as S), and regarded the column vectors as the trial-averaged and time-aver-

aged pre-saccade activity.

In order to extract the unmixed working memory and motor preparation activity in the full space

with single-trial variability, we used:

M1 ¼D1� a�P; M2¼D2�P

P1 ¼D1�M; P2¼D2� b�M

where M and P are the unmixed trial-averaged memory and preparation activity, D1 and D2 were

the single-trial Delay 1 and Delay 2 activity matrices of size 226 x 1,750 (250 random single trials per

condition); M and P (number indicates in Delay 1 and Delay 2) were the unmixed single-trial working

memory and motor preparation activity in the full space (of size 226 x 1750). Subspace memory and

preparation activity were obtained by projecting the unmixed full-space single-trial activity into their

respective subspaces derived from M and P.

In the error trial analysis, single-trial full-space memory and preparation activity in error trials were

estimated by:

M1E ¼D1E � a�P; M2E ¼D2E �P

P1E ¼D1E �M; P2E ¼D2E � b�M

where D1E and D2E were similar to D1 and D2, but from error trials. The decoder was trained and

validated on the data from correct trials in the subspace and tested on the data from error trials in

the same subspace. Although we interpreted the decrease in decoding performance in the two sub-

spaces in error trials to be evidence of the link between these subspaces and the behavior of the ani-

mal, an alternative interpretation could be that there was a general increase in noise in the

population in error trials (perhaps due to factors like inattention), and this led to a non-specific

decrease in information in all subspaces, including the memory and preparation subspaces. In order

to rule this possibility out, we quantified the intra-cluster variance in the full space across locations

for correct and error trials in both Delays 1 and 2 (refer to Figure 2—figure supplement 5). We

found no evidence supporting the fact that the intra-cluster variance in Delay 1 was higher in error

trials than in correct trials (p > 0.46, g = 0.85), and found the intra-cluster variance in error trials in

Delay 2 to actually be lower than correct trials (p < 0.01, g = 6.6), presumably due to the effects of

divisive normalization. These results indicated that the drop in performance in the working memory

and motor preparation subspaces in error trials was not due to a non-specific increase in noise, but

were more likely due to the fact that the activity in error trials deviated significantly from those in

correct trials, resulting in lower information in the two subspaces.
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Principal angles between subspaces
Let X and Y be two subspaces in an N dimensional full space (X has rank x � N, Y has rank y � N),

and all the columns of X and Y be the orthonormal bases of each subspace. We perform a Singular

Value Decomposition (SVD) on the matrix product of X and Y:

U;S;V½ � ¼ SVD XTY
� �

where U, V are orthonormal matrices and S a diagonal matrix. The number of principal angles

between X and Y is min x;yð Þ, and these angles are obtained by computing the inverse-cosine of the

diagonal elements of S and converting radians into degrees. The principal angles in all our analyses

were arranged in ascending order such that the leading principal angles are more indicative of the

overall alignment of two subspaces. To test if subspace X is significantly closer to subspace Y than

chance (e.g. Figure 3—figure supplement 1), we first compute the principal angles between X and

Y, and next sample the principal angles between subspace Y and 1,000 random subspaces with the

same dimensionality as X to obtain min x;yð Þ number of chance distributions corresponding to the

min x;yð Þ number of principal angles between X and Y. X is significantly closer to Y subspaces if the

principal angels between X and Y are smaller than the 5th percentile of their corresponding chance

distributions.

Inter-to-intra cluster distance ratio
To compute the inter-to-intra cluster distance ratio for working memory activity in the full space (Fig-

ure 2—figure supplement 5), we bootstrapped 250 unmixed single-trial working memory activity

for seven target locations. First, to compute the mean inter-cluster distance, we computed the pair-

wise distances between all cluster means, and then computed the grand mean of all the pairwise

cluster distances. Inter-cluster distance could be intuitively understood as the measure of separation

between clusters. Second, to compute the mean intra-cluster distance, we first computed the intra-

cluster distance in each cluster (mean pairwise distance among all the data points in one cluster),

and then computed the grand mean of the intra-cluster distance among all the clusters. Intra-cluster

distance could be intuitively understood as the trial-by-trial variability among all the target condi-

tions. The inter-to-intra cluster distance ratio is then a concept similar to the signal-to-noise ratio of

the working memory activity in the state space. We repeated this procedure for 1,000 times to get a

distribution of the inter-to-intra cluster distance ratio, and presented the 5th to 95th percentile of this

distribution in the boxplot in Figure 2—figure supplement 5. The same procedure was repeated

for the motor preparation activity.

To compute the inter-to-intra cluster distance ratio in subspaces (Figure 4c,d), we first projected

the full-space activity into the desired subspaces, and then repeated the procedure mentioned

above.

Statistics
We considered two bootstrapped distributions to be significantly different if the 95th percentile

range of the two distributions did not overlap. We also computed an estimated p-value for this com-

parison using the following formula (Fi and Garriga, 2010),

1þX

Nþ 1

where X represents the number of overlapping data points between the two distributions and N rep-

resents the number of bootstraps. With this computation, and the N ¼ 1000 bootstraps we used

throughout the paper, two distributions with no overlap will result in a p-value < 0.001, and two dis-

tributions with x% of overlap will result in a p-value ~ x/100.

In addition to the estimated p-value, we also computed the effect size of the comparison using a

measure known as Hedges’ g, computed using the following formula (Fisher, 1936),

1� 3

4 n1 þ n2ð Þ� 9

� �

x1 � x2

s0

� �

where
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s
0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n1 � 1ð Þs12þ n2� 1ð Þs22
n1 þ n2� 2

s

x refers to the mean of each distribution, n refers to the length of each distribution, and s refers

to the standard deviation of each distribution.

No statistical methods were used to pre-determine sample sizes, but our sample sizes were simi-

lar to those reported in previous publications (Murray et al., 2017; Stokes et al., 2013; Jacob and

Nieder, 2014). The majority of our analyses made use of nonparametric permutation tests, and as

such, did not make assumptions regarding the distribution of the data. No randomization was used

during the data collection, except in the selection of the target and distractor locations for each trial.

Randomization was used extensively in the data analyzed to test for statistical significance. Data col-

lection and analysis were not performed blind to the conditions of the experiments. No animals or

data points were excluded from any of the analyses. Please see additional information in the Life Sci-

ences Reporting Summary.

Cell selectivity classification
For Figure 4—figure supplement 3, in order to match the selectivity properties of neurons in the

model with those of LPFC data, we first quantified the selectivity of LPFC activity as follows. First,

using a two-way ANOVA with independent variables of target locations (seven locations) and task

epoch (Delay 1 and Delay 2), we categorized cells as those with pure working memory selectivity

(those with target information in both Delay 1 and Delay 2, and those with selectivity to target loca-

tion and task epoch, but no interaction, 27.6% of cells), those with mixed selectivity to target loca-

tion and task epoch (those with a significant main effect of target location and task epoch, as well as

a significant interaction between target location and task epoch, 43.9% of cells). And using two one-

way ANOVAs of target location (one in Delay 1 and one in Delay 2), we categorized cells as those

with pure motor preparation selectivity (those with significant selectivity in Delay 2, but not Delay 1,

28.6% of cells).

Artificial neural networks
For the bump attractor model in Figure 4—figure supplement 2, we used two populations of firing-

rate units for the memory and preparation input (N = 80 for each, and the whole population con-

sisted of the working memory and motor preparation populations), and tested the model’s perfor-

mance with different overlapping ratios between the two populations (if the overlapping ratio was

0%, then the full network consisted of 160 units, whereas if the overlapping ratio was 100%, then the

full network consisted of 80 units). The firing rate of the population was characterized by:

t
dr

dt
¼�rþ’ WrecrþWinIþsð Þ

where t was a uniform decay constant; r was the population firing rate; Wrec was the recurrent con-

nection weight between units; I was the external input; Win was the loading weight of input signal to

the population; s was a Gaussian noise term. For numerical simulation, we used Newton’s method:

rtþ1 ¼ rt þ �rt þ’ Wrecrt þWinIþsð Þð Þ� dt

t

rt ¼ rt=at

where we set t ¼ 20 ms and dt¼ 2 ms; at was a scalar obtained by mean rtð Þ=mean r0ð Þ, and it was

applied uniformly to each unit of the whole population to maintain the mean population firing rate

at the baseline level (divisive normalization). ’ xð Þ was a piecewise nonlinear activation function

adopted from Wimmer et al., 2014:

’ xð Þ ¼
0; x<0
x2; 0<x <1
ffiffiffiffiffiffiffiffiffiffiffiffiffi

4x� 3
p

; x>1

(
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The matrix, Wrec, had a diagonal shape with stronger positive values near the diagonal, and

weaker negative values elsewhere, such that only a few neighboring units were connected via excit-

atory weights to each other while being connected via inhibitory weights to the rest. In this way, a

structured input signal to adjacent units was able to generate a local self-sustaining bump of activity.

There were eight input units, representing the eight spatial target locations in the animal’s task. For

each input unit, the loading weight matrix Win specified a random group of 10 adjacent units in the

working memory population, as well as the motor preparation population, to receive the signal. The

input to the working memory population was transiently active in the target presentation period,

and the input to the motor preparation population was transiently active in the distractor presenta-

tion period. In each trial, the label for working memory and motor preparation inputs was always the

same. Distractors used the same input loadings as the working memory input did, but the strength

was only 50%, and the distractor label was always different from the target label.

For the linear subspace model in Figure 4—figure supplement 4, we used a total of N = 112

units where the firing rate of the population was characterized by:

t
dr

dt
¼�rþWrecrþWinIþs

where t was a uniform decay constant r was the population firing rate; Wrec was the recurrent con-

nection weight between units; I was the external input; Win was the loading weight of input signal to

the population; s was a Gaussian noise term. For numerical simulation, we used Newton’s method:

rtþ1 ¼ rt þ �rt þWrecrt þWinIþsð Þ� dt

t

rt ¼ rt=at

where we set t ¼ 20 ms and dt¼ 2 ms; at was a scalar obtained by mean rtð Þ=mean r0ð Þ, and was applied

uniformly to each unit of the whole population to maintain the mean population firing rate at the

baseline level (divisive normalization). We constructed the recurrent weight matrix from

eigendecomposition:

Wrec ¼QLQ�1

where Q was a random square matrix whose columns were the eigenvectors of Wrec, and L was a

diagonal matrix whose diagonal elements were the corresponding eigenvalues for each eigenvector.

The first 17 eigenvalues in L were 1 (thus there were 17 stable eigenvectors), while the rest of the

eigenvalues were randomly chosen between 0 and 1 using a uniform distribution. In a network of N

neurons, the simultaneous activity of all the neurons represents a vector in an N dimensional space,

and hence the vector notation and the network activity can be used interchangeably. The population

activity will stay stable across time if it is a linear combination of the stable eigenvectors

(Murray et al., 2017). In each simulation, we assigned 1 stable eigenvector as baseline activity (with

entries selected from a uniform distribution U(0,1)), 8 stable eigenvectors for working memory activ-

ity, and 8 stable eigenvectors for motor preparation activity (with entries selected from U(1,2)). In

order to ensure that decoding performance in Delay 1 and Delay 2 were the same, we imposed a

positive mean for the motor preparation activity, so that the incorporation of motor preparation in

Delay 2 would elevate the population mean, and divisive normalization would reduce the mean activ-

ity of both working memory and motor preparation information. Otherwise, if the motor preparation

activity had zero mean, there would be a significant increase of decoding performance in Delay 2. In

the input weight matrix, the input activity for working memory corresponded to the 8 working mem-

ory eigenvectors, and the input activity for motor preparation corresponded to the 8 motor prepara-

tion eigenvectors. For each target location, there was a one-to-one mapping of working memory

activity and motor preparation activity. The distractor inputs had the same input loading as did the

target inputs, but with a lower magnitude (0.2 compared to target). At the beginning of each trial,

the population started with baseline activity equal to the stable baseline eigenvector, then the input

for working memory was transiently active in the target presentation period, and the input for motor

preparation was transiently active in the distractor presentation period. When the input activity had

the same direction as a stable eigenvector, the resultant population activity would stay stable across
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time because it was still a linear combination of stable eigenvectors. As all the input activity corre-

sponded to stable eigenvectors, all target information, distractor information, and motor prepara-

tion information were maintained stably across time.

Subspaces for uncorrelated information
Due to our experimental design, the working memory location and the motor preparation locations

were identical in each trial, and thus correlated. We can imagine another case where there are two

types of information that do not have a one-to-one mapping (for example, in a task that requires

memorizing locations of items - one out of two possible locations, and their colors - one out of three

possible colors, which are uncorrelated). When each target location is associated with only one stim-

ulus color (similar to our working memory and motor preparation locations), the incorporation of

stimulus color information in Delay 2 would add only one out of three possible shifts (representing

the three possible stimulus colors) to the clusters representing target location (Figure 2—figure sup-

plement 7a). However, when target location and stimulus color are uncorrelated (each stimulus color

is equally likely to appear in each target location), the incorporation of stimulus color information

could add any of the three possible shifts to the clusters representing target location activity, leading

to much more diffuse clusters (Figure 2—figure supplement 7b). In this latter case, we propose a

more general formulation to estimate the information subspaces for target location and stimulus

color. First, we group trials by target location and obtain the trial-averaged and time-averaged activ-

ity in Delay 1 (G1). Next, we group trials by stimulus color and obtain the trial-averaged and time-

averaged activity in Delay 2 (G2). Finally, we estimate the subspaces by:

G1 ¼ Lþ a�E CL

� �

G2 ¼Cþ b�E LC
� �

where L and C define the subspaces for target location and stimulus color, while a and b are scalars

representing the mixing coefficients. E CL

� �

represents the expectation of stimulus color activity asso-

ciated with particular target locations, and E LC
� �

represents the expectation of target location activ-

ity associated with particular stimulus colors. At one extreme, the correlation between target

location and stimulus color could be 0 (completely random pairing), in which case the expectation

value will reduce to 0 if averaging across the other variable does not result in a net translation (which

also means there will be no code morphing). In this case, there is no need to minimize mutual infor-

mation, as the L and C vectors will remain unchanged. On the other hand, if there is a net transla-

tion, code morphing will be present, and there will be a need to minimize the mutual information to

recover the angles between the subspaces. At the other extreme, the correlation could be 1 (one-

to-one mapping), in which case the expectation value will reduce to C and L. We can verify that the

decorrelation method used for working memory and motor preparation elements in this work was a

special case of this formulation (G1 and G2 become D1 and D2 as memory and preparation have the

same grouping, and the expectations reduce to P and M as there is one-to-one mapping). We would

perform the same optimization on a;bð Þ that will give the least mutual information between L and C.
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