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Network- and enrichment-based inference of phenotypes and
targets from large-scale disease maps
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Complex diseases are inherently multifaceted, and the associated data are often heterogeneous, making linking interactions across
genes, metabolites, RNA, proteins, cellular functions, and clinically relevant phenotypes a high-priority challenge. Disease maps
have emerged as knowledge bases that capture molecular interactions, disease-related processes, and disease phenotypes with
standardized representations in large-scale molecular interaction maps. Various tools are available for disease map analysis, but an
intuitive solution to perform in silico experiments on the maps in a wide range of contexts and analyze high-dimensional data is
currently missing. To this end, we introduce a two-dimensional enrichment analysis (2DEA) approach to infer downstream and
upstream elements through the statistical association of network topology parameters and fold changes from molecular
perturbations. We implemented our approach in a plugin suite for the MINERVA platform, providing an environment where
experimental data can be mapped onto a disease map and predict potential regulatory interactions through an intuitive graphical
user interface. We show several workflows using this approach and analyze two RNA-seq datasets in the Atlas of Inflammation
Resolution (AIR) to identify enriched downstream processes and upstream transcription factors. Our work improves the usability of
disease maps and increases their functionality by facilitating multi-omics data integration and exploration.

npj Systems Biology and Applications            (2022) 8:13 ; https://doi.org/10.1038/s41540-022-00222-z

INTRODUCTION
Background
Molecular and cell biology has amassed a tremendous amount of
information on molecular interactions related to disease develop-
ment, progression, and treatment. Clinical scientists and biome-
dical researchers have access to any chosen disease phenotype,
process, or molecule through databases built on scientific
literature and experimental data. However, searching publications
and databases for molecules of interest and identifying regulatory
mechanisms and potential drug targets is—in most practical cases
—a long-term research project rather than a quick task.

The disease map approach
Disease maps are developed to support the disease-oriented
exploration of state-of-the-art knowledge. Community-built dis-
ease maps are comprehensive and accessible resources that
collect validated knowledge about a disease, its molecules,
phenotypes, and processes1,2. Encoding this knowledge in a
standardized format enables established analytical tools to extract
information from the complex interactions or perform in silico
experiments on integrated experimental data (Fig. 1). Examples of
published disease maps include the Parkinson’s Disease Map3, the
Rheumatoid Arthritis Map4, the AsthmaMap5, the Atherosclerosis
Map6, and the COVID-19 Disease Map7.
Systems biology standards encode contextual and visual

information, such as Systems Biology Markup Language (SBML),
Systems Biology Graphical Notation (SBGN), or CellDesigner-SBML,
which can organize molecular interactions into diagrams and
layers8–10. Usually, disease maps consist of multiple, functionally
organized diagrams, so-called submaps, that describe the
molecular interactions regulating related biological processes or

clinically observable signs and symptoms, represented as SBGN
phenotype elements. Elements of these submaps can be linked to
public databases using stable identifiers and organized into
different layers that aid in the visualization and exploration of
disease maps. Figure 2 gives an example of a submap from the
“Atlas of Inflammation Resolution” (AIR)11.
The curation of submaps is a manual process that aggregates

experimentally validated evidence from the literature and
provides a rich annotation of interactions with links to various
databases. In the AIR, the submaps are programmatically
extended with protein-protein interactions (PPI) and regulatory
information, including transcription factors (TF), microRNA
(miRNA), or long non-coding RNA (lncRNA) interactions. The
curation of the AIR has been described previously11. The entirety
of molecular interactions, the “bottom layer” of the disease map,
combining information from submaps and regulatory interac-
tions, we refer to as the molecular interaction map (MIM). The
MIM encodes information about molecules and their interactions
in pathways, networks, and their relationship to disease
phenotypes. Even for a narrowly defined context, most disease
maps will include large numbers of interactions. To make disease
maps publicly accessible and interactive to the community,
MINERVA was developed as a web-based platform for curating
and interactively visualizing disease maps that support
community-driven projects12. Because it enables automated
annotation with multiple databases and extensive exploration
tools, MINERVA hosts many currently published disease maps,
including the AIR. Additionally, MINERVA allows data mapping
and coloring of corresponding elements in the submaps, and
thereby, the intuitive exploration of experimental measurements
such as changes in gene expression, metabolite concentrations,
or genetic mutations.
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Research gap
The development of tools for disease map analyses has many
challenges, given their complex nature and the wide range of
proposed applications. These challenges include, for example,
applying them on large-scale networks and having minimal
restrictions to include various biological data types. From a
computational perspective, such tools should enforce data
security guidelines, be made easily accessible, and be implemen-
ted into an intuitive user interface. Because of these challenges,
disease maps analysis has been limited and typically requires
implementing external tools into the workflow. Consequently,
data must be exported, transformed, and again imported, which
requires knowledge of programming languages and limits the
usability of disease maps for non-bioinformaticians.
Increasing the analytic power of methodologies usually comes

with decreasing applicability. Established approaches such as ODE
or Boolean models—although providing more detailed simulations
—require many efforts to prepare the desired subpart of the
network and can be very computationally extensive. Hence, one of
the most used approaches is enrichment analysis, which is
computationally effective and has many applications in commonly
used tools, including DAVID13, ClueGO14, or Enrichr15. Its simplest
form, the overrepresentation analysis (ORA), evaluates the statistical
overrepresentation of a user-supplied list of input elements in
predefined sets of elements16. Typically, the input list consists of
differentially expressed genes (DEGs) from RNA-seq or microarray
experiments, while the predefined sets contain genes linked to
phenotypes. In this way, ORA can analyze whether, for example,
genes related to a particular disease are overrepresented in the
analyzed data. The Enrichr web platform provides a simple user
interface for ORA, harnessing many public databases for generating
gene sets, including disease databases such as the human
phenotype ontology (HPO)17 or pathway resources such as
KEGG18,19 and WikiPathways20. However, ORA is limited in its
interpretability. It provides a statistical evaluation of overrepresenta-
tion, but no information about (i) the type of regulation (up- or
down-regulation), (ii) the relationships between genes and the
enriched entity, (iii) the range of fold changes, or (iv) the importance
of each gene (its weighting) in the set. The “Gene Set Enrichment
Analysis” (GSEA) extends the ORA approach by ranking the input
genes by their fold change values and analyzing whether their up-
or downregulated genes are overrepresented. Several commonly

used analysis tools, such as GeneTrail21, have integrated the GSEA
approach. Still, GSEA does not evaluate the relationship between the
genes and the enriched element. Numerous enrichment approaches
have addressed these limitations to broaden their scope for specific
purposes. They distinguish between up- and down-regulated
interactions (BD-Func) or integrate network topology information
into their algorithms (network-weighted GSEA)22–24. The “Reverse
Causal Reasoning approach” (further referred to as RCRA) integrates
network information of upstream elements and statistically analyzes
whether their regulatory directions correspond to the fold change
directions25. However, RCRA does not include fold change values of
genes in the list and only considers direct upstream regulations,
restricting applications of the approach. In 2014, QIAGEN published
the “Ingenuity Pathway Analysis” (IPA) software that provides a
range of network-based solutions to infer knowledge from
molecular data26. Like RCRA, IPA considers only directions of gene
expression regulations. However, IPA additionally analyses down-
stream effects, includes multiple steps in the network, and
implements a more sophisticated statistical analysis. IPA is similar
to the disease maps approach because it visualizes molecular
pathways and provides data integration and analysis tools. Still, it
has been designed for commercial use, limiting its use in academic
community-driven projects.
In summary, none of the current approaches incorporate

sufficient information into their algorithms. Either information on
the input list (fold change values and direction) or on the
relationship between the inputs and the enriched elements is
missing. One of the reasons for this could be the lack of such
information, since most databases store gene sets without further
information about the relationship between entities. Second, the
inclusion of continuous values (e.g., fold changes) that are not
normally distributed complicates statistical analysis. GSEA, for
example, solves this problem by using running sum statistics with
gene set permutation to analyze enrichment along with ranked
fold changes (one-dimensional). Even if all these issues are
resolved, using these approaches for disease maps remains a
challenge. Users would need to generate gene sets from the map
manually and import them into the enrichment tools together
with their data. For some enrichment approaches, this would
require an additional coding step, as they may not have a ready-
to-use implementation. These limitations compromise data
integration and force users to re-export the enrichment results

Fig. 1 Overview of the disease map approach to address disease-specific research questions, as implemented within the suite of tools
developed in the present work. Disease maps are context-specific. The starting point is thus the selection of the targeted phenotype,
molecules, or networks of interest. The goal may be the search for diagnostic markers or therapeutic checkpoints. The information that is used
to curate the disease map, comes from a variety of sources, covering information about clinical phenotypes, cell types, specific molecules of
interest, and experimental data. Information about molecular interactions is encoded using standardized formats. The analyses can then be
conducted with the suite of tools presented in this paper.
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to the disease map for visualization. Such a workflow is contrary to
the principles of disease maps, which envision intuitive and
straightforward web-based implementations. Therefore, there is a
need for tools that enable in silico experimentation, data
integration, and data visualization directly on disease maps
through intuitive and simple user interface elements.

Outcomes
We developed a two-dimensional, network-based enrichment
analysis (2DEA) approach that, through the combination of
topology and data-integration methods, facilitates deriving
information from complex, large-scale networks such as disease
maps. Since MINERVA supports customized plugins that can
interact with the displayed submaps, it provides an excellent
framework for community-driven and application-focused pro-
jects27. By integrating our approaches in a multifunctional,
interactive MINERVA plugin suite within the AIR, we help users
answer their research questions on the map itself and visualize
results in colored overlays of map elements. To demonstrate
applications of the tools, we derived regulated phenotypes from
a bulk RNA-seq dataset of a murine colitis model28. Additionally,
we applied the upstream enrichment to an RNA-seq dataset of
IFNα-stimulated B-cells and identified well-known transcription
factors activated by IFNα as targets29. Both case studies
demonstrated the successful identification of regulated pro-
cesses and known key targets.

Terminology
Theoretically, any input type can be applied for enrichment
approaches, not only DEGs. In this work, we extend the definition
of the input list to a list of arbitrary elements with quantitative
(level-based) or qualitative (activity-based) changes, which we
refer to as differentially changed elements (DCEs). DCEs are

elements characterized by a significant log2 fold change value
(FC), either derived from transcriptomics, proteomics, or metabo-
lomics experiments (data-dependent DCEs) or simply assumed by
the user (data-independent, in silico simulated DCEs). DCEs can
also be phenotypes, referring to increased (positive value) or
decreased (negative value) activities of measurable biological
processes or clinical features. Additionally, we redefined the to-be
enriched element as any element that is either regulated by the
DCEs (downstream enrichment) or itself regulates the DCEs
(upstream enrichment). The enrichment is positive or negative
depending on the direction of the DCEs’ fold change and their
relationship to the enriched element. From that perspective,
upregulation of positively associated elements or downregulation
of negatively associated elements has the same net positive effect.
Conversely, in the case of negative enrichment, the fold changes
and the associations should be oppositely directed.

RESULTS
The two-dimensional enrichment analysis (2DEA)
Figure 3 summarizes the 2DEA approach and its implementation as
a disease maps analysis tool. The approach is described in detail in
the method section. 2DEA distinguishes between up- or down-
regulation of positively- or negatively associated elements by
combining information on quantified input elements (fold changes)
with the weighted relationship to the element that will be enriched
(influence scores) (Fig. 3b, c). Because both variables are continuous
and not normally distributed, the statistical analysis becomes
challenging, which we solved by identifying the significance of the
variable distribution in the two-dimensional space among rando-
mized input (Fig. 7). Thereby, 2DEA can statistically evaluate
whether an enriched up- or downstream element is positively or
negatively enriched in the input data (Fig. 3d). Other enrichment

Fig. 2 SBGN representation of the “biosynthesis of PIM and SPM from AA” in the “atlas of inflammation resolution” (AIR). Molecular
interactions represented in the SBML process description format are involved in the regulation of various phenotypes (purple) such as
“thromboxane synthesis” or “prostaglandin synthesis.” The advantage of such standardized representations is that they can be analyzed using
bioinformatics and systems biology approaches, including graph-theoretical analyses of the topological structure of large networks, statistical
analyses, logical and mechanistic modeling, and simulation.
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approaches usually do not or only partially include this information,
as shown in Table 1.
To show how differences in integrated information affect the

results of enrichment approaches and their interpretability, we
compared 2DEA with GSEA in a case study. We analyzed a bulk
tissue RNA-seq dataset from a murine colitis model (Fig. 5a)28. As
the DCE input list for both enrichment approaches, we identified
significant differentially expressed genes (DEGs; adj. p value <
0.05) in all eight samples using the DESeq2 R package. For every
sample, we applied 2DEA as well as GSEA to enrich all 42
phenotypes in the AIR. The gene sets associated with each
phenotype were the same for both approaches, i.e., all elements
within the AIR MIM that have an influence score on the enriched
phenotype that is nonzero. We then selected three enrichment
results, one significant only in GSEA, one significant in both
approaches, and one significant only in 2DEA. Figure 4 shows the
output graphs of both approaches for each of the selected results.
The creation of the 2DEA graph is described in detail in the
Methods section (Fig. 7). For an explanation of the GSEA panel,
we refer to the 2005 paper by Subramanian et al.16. In Fig. 4a, the
enrichment by GSEA, but not by 2DEA, is significant. Although
upregulated DEGs are overrepresented (left side of GSEA panel

and right side of 2DEA panel), these DEGs have ambiguous effects
(similarly distributed positive and negative influence values). GSEA
cannot assess the relationship between DEGs and enrichment
phenotype and thus identifies a significant overrepresentation of
upregulated DEGs. In Fig. 4b, DEGs are also upregulated but all
with positive influence values, so both 2DEA and GSEA identify
significant enrichment. In Fig. 4c, GSEA predicts false negatives
when upregulated and downregulated elements are equally
represented. However, upregulation of DEGs with positive
influences and downregulation of DEGs with negative influences
can be considered the same result and vice versa. The 2DEA shows
its strength by accounting for these correlations and allows such
cases to be predicted as significant.
The use of influence scores in 2DEA allows enrichment to be

weighted based on the importance of the DCEs. This gives 2DEA
an advantage over other network-based enrichment approaches
such as BD-Func or IPA that integrate only non-weighted
regulatory directions. For example, when upregulating an element
that is positively associated with a phenotype, BD-Func does not
distinguish whether there is a close relationship or not. If the
element is one of the strongest and closest regulators of the
phenotype, it is likely to have biological relevance of interest for

Fig. 3 Summary of the two-dimensional enrichment analysis (2DEA) approach and its implementation as a disease map plugin. a We
have developed two plugins for the MINERVA platform that allow user interaction and perform in silico perturbation analysis on disease maps.
Depending on the research question, perturbed elements come either from large experimental data files (Omics plugin) or from elements on
the map individually selected and perturbed by the user (Xplore plugin). b In both cases, the inputs can be viewed as a list of differentially
changed elements (DCEs) characterized by an FC value. c The DCEs are mapped to the molecular interaction map and their topological
relationship to (downstream) or from (upstream) the element to be enriched, represented as a numerical value called Influence Score. d 2DEA
then statistically evaluates whether the combination of FC values and influence scores is overrepresented towards positive enrichment (same
direction) or negative enrichment (opposite direction). e Enrichment scores, FC values, and influence scores can be presented intuitively to the
user as colored overlays on standardized network diagrams and images in MINERVA.
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the user. 2DEA improves the statistical evaluation and, thus,
facilitates their interpretation of molecular data by integrating
causal relationships from molecular networks.

A plugin suite for disease map knowledge inference
We present a suite of MINERVA plugins, initially developed for the
Atlas Inflammation Resolution (AIR) but adaptable for other disease
maps as well. The plugins can be accessed directly from the AIR
(https://air.elixir-luxembourg.org/) and are thus easily accessible
from any web browser (Supplementary Fig. 1). The two central
components of the plugin suite are the Xplore and Omics plugin,
both of which integrate the 2DEA approach. The plugin suite builds
an interface for users to apply molecular perturbation either through
manual selection or data integration, perform enrichment analyses,
and, finally, intuitively present results in colored overlays (Fig. 3a, e).
The Xplore plugin provides data-independent solutions to

explore disease mechanisms in silico. It allows users to detect
changes in downstream phenotypes based on perturbed elements
or identify common upstream regulators by defining the desired
phenotype state. Easy-to-use UI elements and color-based visuali-
zation facilitate the use of the tools and the interpretability of their
results (Supplementary Fig. 2). Because the user inputs involve few
elements and serve the purpose of exploration rather than full-
fledged analyses, we reduce customizations of methods and details
of results in the Xplore plugin to avoid over-complication. The
plugin extends the primary purpose of disease maps, which is: to
present knowledge about diseases to the public in a user-friendly
form, with tools to perturb molecules or define a biological state by
tracking its effects or causes in the system.
We developed the Omics plugin with sophisticated enrichment

tools that may provide insights into the biological and molecular
environment of large molecular data files supplied by the user. We
provide detailed information on the results by graphically display-
ing the DCEs in each enriched set, intuitively highlighting elements
of interest on the submaps, and allowing multiple options for
statistical analysis. Users can adjust the parameters of the
algorithms or define thresholds for DCEs that fit their data. In
addition, we provide an automated optimization function to
identify settings with as many filtered DCEs for the highest
thresholds as possible. However, we emphasize that interpretations
of the results should always happen in the context of experimental
settings. A detailed explanation of the algorithms is available in the
method section.

2DEA infers modulated downstream phenotypes from a
murine colitis model
To demonstrate data-dependent inference of phenotypes from
the plugins, we analyzed the same dataset as we used for the
comparison with GSEA. As input to the Omics plugin, we
summarized the results in a tab-delimited.txt file containing the
official gene symbol with the respective FC and adjusted p values
generated by DESeq2. Using the plugin, we then identified
significantly regulated phenotypes (p value < 0.05 by 2DEA) for
each sample. Figure 5C summarizes the results in a heatmap
showing significant upregulation of cellular inflammatory and lipid
mediator related processes between day 6 and day 10. Our results
are congruent with the findings of Czarnewski and colleagues28,
who predicted increased immune cell invasion and cytokine
production between day 6 and day 10 based on gene ontology
(GO) enrichment.

2DEA infers upstream regulators of IFNα-induced differential
expression
To demonstrate the target prediction through upstream enrichment,
we analyzed RNA-seq data from single-cell B-cells stimulated with
IFNα in four different concentrations (1 U, 10 U, 100 U, and 1000 U)29

(Fig. 6). Significantly differentially expressed genes were loaded into
plugins with their adj. p values and FC values as generated by GEO2R,
summarized in a text file. We performed an upstream enrichment
analysis to identify transcription factor targets with significant
interactions with the DEGs in the data (see method section). Out
of 700 possible TFs in the MIM, we selected TFs with the highest
Sensitivity that are also differentially expressed in the experimental
dataset. Interestingly, three TFs, namely STAT1, STAT2, and IRF9,
reoccurred multiple times among all the samples (Fig. 6c). These TFs
are listed as known downstream effectors targets of IFNα in the
literature, together forming the Interferon Stimulated Gene Factor 3
(ISGF3) complex30–33. In the dataset, 5, 20, 48, and 104 DEGs are
defined as TFs in the AIR MIM, respectively. As all these TFs could
have been predicted as targets, a reoccurrence of the three ISGF3 TFs
by chance would have been very improbable (p= 5.61E-9). Figure 6c
provides additional insight into calculating results by target-
regulation plots illustrating the correlation between FC values of
DEGs and their transcriptional influence scores from STAT1 and
STAT2, respectively.

Table 1. Comparison of 2DEA with other established enrichment approaches.

Approach Reference Downstream Upstream Fold change
direction

Fold change
value

Regulatory
direction

Regulatory
weighting

ORA38 Boyle et al.

GSEA16 Subramanian et al.

RCRA25 Catlett et al.

IPA26 Krämer et al.

ROMA39 Martignetti et al.

PADOG40 Tarca et al.

Weighted GSEA24 Zito et al.

BD-Func23 Warden et al.

2DEA

aAlthough the respective approach has not been described as applicable for up- or downstream analysis, the enrichment analysis can theoretically be applied
for both.
The table highlights whether each algorithm considers information from the input list (fold change direction or value) or information on the relationship
between items in the input list and the enriched element (regulatory direction or weighting).
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DISCUSSION
Disease maps are increasingly valuable knowledgebases for studying
disease mechanisms in silico and providing researchers and clinicians
with an interactive platform for data exploration and visualization.
We present a two-dimensional enrichment analysis (2DEA) that
combines network topology-based relationships between the inputs
and the enriched element, called influence scores, with fold change
values of input data as weighting factors. The inclusion of both scores
allows for more detailed evaluations by assessing the direction and
strength of the responses. By integrating the influence scores, we
improve the accuracy of the enrichment by giving higher weights to
topologically more relevant elements. Additionally, the enriched sets
of elements can be generated automatically by filtering influence
scores for a defined threshold, thus eliminating the need for manual
set curation. That allows for generating weighted enrichment sets
from large-scale networks. Even on their own, influence scores are a
valuable tool for expanding the information content of disease maps,
which provide a visual overview of regulatory processes (Supple-
mentary Fig. 3).
The two-dimensional approach allows for more accurate biological

regulations predictions than other enrichment approaches. In
molecular biology, many systems or pathways are regulated by the
induction of only a few or even a single key enzyme. Conventional
enrichment tools cannot detect these cases where individual
changes are distributed among different sets. Our approach does
not evaluate the probability that a given element list is over-
represented in the set but whether the accumulated influence of
these elements relative to their fold change is statistically significant
compared to random permutations. In this way, we can detect
enrichments with a small number of associated inputs, allowing
more accurate predictions. By converting large-scale molecular
interaction maps from disease maps into enrichment sets of
molecule-phenotype or context-specific molecule-molecule associa-
tions, we developed a size-independent network-based solution for
disease map analysis. We managed to keep computation times to a
minimum so that analyses can be performed on the client-side,
avoiding the need to upload or store data precluding any data
security issues. The approach is highly customizable in that the

algorithm for network-based influence score calculations can be
adapted for various disease map types without updating the user
interface or enrichment part. This customizability improves enrich-
ment capabilities for different data types, e.g., catalytic influence
scores for metabolomics data and transcriptional influence scores for
transcriptomics data.
We provide an intuitive solution enabling web-based perturba-

tion experiments and data analysis directly on disease maps with
the methodology presented here. We successfully addressed
many challenges in developing disease map analytic tools,
intending to make our method intuitively usable for any
interested researcher. Influence scores can be precalculated and
stored on the server, enabling fast analyses with large datasets.
Plugins require no data upload and can even be performed offline
because they are executed as JavaScript on the web browser, and
computation times are minimized. Systems biology approaches
should help scientists understand their data and point them to
potentially important aspects rather than simply displaying
computational results or rankings. The plugin suite focuses on
making computations transparent. By incorporating graphical
visualization of the DCEs and their weights in the enrichment sets,
the plugins provide as much information as possible, helping
users interpret the results.

METHODS
Network preparation
The enrichment analysis is based on a molecular interaction graph G,
which consists of a set of elements (vertices V(G)) and their connecting
interactions (edges E(G)). Because elements in molecular networks,
especially in disease maps, are usually extensively annotated, we assume
that the biological type of each element (protein, metabolite, phenotype,
…), as well as interaction (catalysis, transcriptional regulation, positive or
negative influence, …) is known. In the reduced activity flow format, the
interactions encode whether two elements are linked by (de)activation, up-
or downregulation, defined as a collection of triples E � s ´ r ´ tð Þ
consisting of a source element s 2 V , a relation r 2 f�1; 1g, and a target
elementt 2 V . A path P in the MIM of the length L 2 N can be written as

the sequence u1 !r1 u2 !r2 ¼ !rL uLþ1

� �
with ui ; ri ; uiþ1ð Þ 2 E. The type T 2

Fig. 4 Comparison of graphs of GSEA (top) and 2DEA (bottom) enrichment results using a case study dataset. We used GSEA and 2DEA to
identify enriched phenotypes in AIR from an RNA-seq dataset using differentially expressed genes (DEGs; adj. p value < 0.05) generated by
DESeq2 as an input gene list. Three results were selected that were significantly enriched in GSEA only (a), in both approaches (b), or in 2DEA
only (c). In the panels of GSEA, a running sum of enriched scores is generated over the list of DEGs, ordered by their log2 fold change (FC)
value from upregulated (red, left) to downregulated (blue, right). In 2DEA, normalized FC values (x-axis) are linked to network topology-based
influence scores (I, y-axis) to identify the distribution of DEGs in either the direction of positive (red) or negative (blue) enrichment.
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f�1; 1g of any P is defined as ðr1 � r2 � ¼ � rLÞ. The shortest path SP
between two elements ðu; vÞ 2 V is defined as an existing path Pu,v
between u and v where L(pu,v) is minimized. SPu,v is considered consistent if
there is no alternative Pu,v with the same length but opposite type. For run-
time identification of interaction paths in the plugins, we implemented a
breadth-first search algorithm. The algorithm calculated L(SP), T(SP) for all
ðu; vÞ 2 V and, for all ðus; vsÞ 2 V originating from submaps, the elements
along Pus ;vs .

Influence scores as weighting factors
We used the shortest path information to express the relationship between
each pair of elements in the network as a numerical value called influence
score. Influence scores depend on the context and origin of the data. The
phenotypic influence represents an element’s directed, topological weight-
ing in the curated pathways regulating a phenotype. Transcriptional
influence describes the effect of a MIM element on the transcription of a
particular gene in transcriptomics data analyses. Correspondingly, the
catalytic influence describes the impact of an element on the synthesis of a
metabolite in metabolomics data analysis. We provide a detailed explana-
tion of the calculation of each score in the method section. The scores are
normalized between −1 and 1, where −1 represents a hypothesized strong
negative effect, 0 represents no effect, and 1 represents a strong positive
effect from one MIM element to another. The calculation of an influence
score I between two elements ðu; vÞ 2 V in the MIM is based on their
connecting paths Pu,v. However, the routing of the path depends on the

context of the analysis. For example, analyzing transcription data, the
shortest path leads through transcription factors of v. Or when analyzing
metabolomics data, the path goes through enzymes in synthesis pathways
of v. We differentiate between three different types of influence scores
through context-specific paths between u and v:
1. Transcriptional influence (IT) of u on a gene v is based on the minimal

distance of u to v’s transcription factors (TFv) in the MIM (Eq. 1)). If u 2 TFv ,
its influence is equal to the type of interaction between u and v, i.e., 1 for
gene induction or −1 for gene suppression. If u∉ TFv , its influence is
calculated by aggregating the transcriptional influence of each k 2 TFv on
v multiplied by the interaction path type of u on k and divided by their
distance as a power of two with ITuvj j 6 >1.

ITu;v ¼
T SPu;v
� �

; if u 2 TFv
P
k2TFv

L SPukð Þ�2

ITk;v �
T SPu;kð Þ
2
L SPu;kð Þ

� �
; otherwise

8>><
>>:

(1)

2. Catalytic influence (IC) of u on a metabolite v is based on the minimal
distance of u to v’s synthesizing enzymes (Ev) in the MIM (Eq. 2)). Ev also
includes upstream catalytic enzymes and enzymes that consume v. If
u 2 Ev , its influence is equal to the type of interaction between u and v, i.e.,
1 for synthesis or −1 for consumption. If u∉Ev , its influence is calculated by
aggregating the catalytic influence of each k 2 Ev on v multiplied by the
interaction path type of u on k and divided by their distance as a power of

Fig. 5 Downstream enrichment analysis with the Omics plugin to identify regulated phenotypes in a murine colitis model. a Using
DESeq2, differentially expressed genes (DEGs; adj. p value < 0.05) were identified from a colon bulk tissue RNA-seq dataset of mice with DSS-
induced colitis for eight different time points (Czarnewski et al., 2019). b In the Omics plugin, the phenotype inference was performed by
filtering the DEGs for elements that occur in submaps of the AIR. Results are presented in an interactive table, showing predicted levels
and p values and creating phenotype regulator plots for each entry. c Heatmap of significantly regulated phenotypes in each sample,
normalized for each phenotype separately.
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two with ICu;v
�� �� 6 >1.

ICu;v ¼
T SPu;v
� �

; if u 2 Ev
P
k2Ev

L SPu;kð Þ�2

ICk;v �
T SPu;kð Þ
2
L SPu;kð Þ

� �
; otherwise

8>><
>>:

(2)

3. Phenotype influence (IP) of u on a phenotype v is based on the
topological inclusion of u in paths to v (Eq. 3)). Vs � V is the set of elements
originating from submaps that contain v. If u 2 Vs, its influence is
calculated based on the percentage of elements and paths connected
with u. NP is the number of all paths to v and NPu � NP are paths that go
through u. NV is the number of elements connected to v and NVu � NV the
number of elements on the path from u to v. If u∉Vs, its influence is
calculated by aggregating the phenotype influence of each k 2 Vs on v
multiplied by the interaction path type of u on k and divided by their
distance as a power of two with IPu;v

�� �� 6 >max IPk;v
�� �� j k 2 Vs

	 

. Finally,

influence scores for all phenotypes are normalized by dividing by their
maximum absolute value, thereby taking values between -1 and 1.

IPu;v ¼
T SPu;v
� � � NPu

NP
þ NVu

NV

� �
; if u 2 Vs

P
k2Gv

L SPu;kð Þ� 2

IPk;v �
T SPu;kð Þ
2
L SPu;kð Þ

� �
; otherwise

8>>><
>>>:

(3)

Downstream enrichment
In order to enrich downstream elements, fold changes in DCEs are
assumed to be the source or hypothetical cause, and the goal is to identify
their effects on other elements in the MIM. This analysis is of particular
interest to predict impacts on phenotypes, which we consider the
enriched element in the following. Thus, the weighting factors are the
influence scores of the DCEs on the phenotype. By aggregating the FC
and the influence score values, we obtain a rough estimate of the change
in phenotype levels across samples. Because the phenotype level is not an
empirical measure, its value is not comparable with other phenotypes.
Nevertheless, it provides clues about how the biological process or clinical
trait may be regulated across samples. For each phenotype v we
calculated the estimated change in activity (= level) by aggregating the
phenotype influence scores of all regulating elements and their FC value
in the given sample (Eq. 4)). Because the phenotype level is based on DCE
aggregation, its value depends on the number of elements considered for
the analysis. Therefore, we normalize each phenotype by dividing it by its
absolute maximum level across all samples.

Levelv ¼
P

u2DCEs
ðIu;v � FCuÞ (4)

Additionally, we provide information on the saturation of the phenotype
in the sample, calculated as the percentage of regulators that are DCEs,
weighted by their influence score (Eq. 5)).

Saturationv ¼
P

u2DCEs IPu;v
�� ��� �

P
u2V IPu;v

�� ��� � (5)

Fig. 6 Upstream enrichment analysis with the Omics plugin to identify targets in IFNα induce differential expression. a We analyzed the
differential expression of IFNα stimulated B-cells for four different concentrations and identified log2 fold change (FC) values of differentially
expressed genes (DEGs) with an adj. p value < 0.05 using GEO2R. bWe used the target inference tool in the Omics plugin by filtering the DEGs
for |FC| >1 and the enriched elements for transcript factors only. The plugin presents the results as an interactive scatter plot showing
specificity (x-axis) and sensitivity (y-axis) scores. c The highest-ranked, significant, and differentially expressed targets (adj. p value < 0.05 by
2DEA) for each sample. Additionally, we show two regulations plots for STAT2 visualizing FC values (x-axis) and transcriptional influence scores
(y-axis) of regulated DEGs in the data.
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For statistical evaluation, we calculate an enrichment score (ES, Eq. 6))
that represents the distribution in the I-FC plot (Fig. 7a).

ESv ¼
P

u2DCEsðjIu;v �FCu j�Iu;v �FCuÞ
kþ
P

u2DCEsðI2u;v �FC
2
uÞ

(6)

ES can be thought of as a regression line through the origin in a plot of
normalized DCEs versus baseline points. The normalization step projects all
points onto the diagonals by fitting them to ðFC � jIjÞ on the x-axis and to
ðjFCj � IÞ on the y-axis, limiting ES to a value between −1 and 1 (Fig. 7b). The
baseline points are added on the x-axis as a counterweight to force ES toward
zero and make it depend on the total number of points. The baseline points
are represented as k in Eq. 6 and provide an individual statistical fit for each
DCE set (see upstream analysis below). For the downstream enrichment, k= 2
by default, which corresponds to the two points (1,0) and (−1,0) (black dots in
Fig. 7b). To identify the statistical significance of the enrichment, we calculated
randomized enrichment scores ESR ¼ fES1; ES2; :::; ESng and levels LevelR ¼
fLevel1; Level2; :::; Levelng for n random DCE lists (n= 1000 by default). The
sets are generated for each sample in the supplied data, with an equal
number and values of the filtered significant log2 FC values as the original
DCEs, randomized among all MIM elements of the same type (e.g., genes or
metabolites). Some enrichment studies suggest using term label perturbation
instead of gene list permutation to avoid scattering the complex

co-expression relationships in the data and thus produce more biologically
accurate null distributions16. However, because the topological relationships in
the network define the weighting factors, even a permutation of term labels
would not be an entirely realistic distribution. Therefore, we opted for a
permutation of DCEs, which is much less computationally expensive because
the number of samples in most cases will be less than the number of enriched
elements. Because the influence scores and FC values are not evenly
distributed between positive and negative values, it is possible that the
normal distribution is different for positive and negative ES values. Therefore,
we determine a separate half-distribution for both directions using Gaussian
fitting. Then, from the standard deviation σ and mean µ of the identified
distribution, the z-score for the original ES or Level is calculated (Eq. 7)):

z � score ¼ ES�μ ESRð Þ
σ ESRð Þ or z � score ¼ Level�μ LevelRð Þ

σ LevelRð Þ (7)

From the z-score, the two-sided p value is calculated using an iterative
approximation based on the Taylor expansion of the distribution’s integral
(the code is available at https://air.bio.informatik.uni-rostock.de/plugins).
Because the calculation time increases for higher z-score values, we set a
cutoff to z-score= 14, thereby achieving a maximum accuracy for the
p value of ≈1.56e-44. The p value represents the probability of achieving
the same or absolutely higher ES or Level than in the original DCE list by
random. Finally, we adjust for multiple testing among all enriched

Fig. 7 Visual representation of the enrichment score (ES) calculation. a Fold change values of elements in the input list and their influence
scores are plotted on a graph. b All points are shifted on the diagonals with slopes of 1 and −1 (dotted lines), respectively, to normalize their
distribution. ES is defined as the regression line’s slope through the origin (red line). Two baseline points (black) are added as a counterweight,
forcing the regression towards the x-Axis, making the ES dependent on the number of elements, and ensuring normal distribution.
c Recalculating ES for randomized input lists (dotted lines) identifies its statistical significance, thus creating a reference null distribution
around the x-axis. d Screenshots of the AIR plugins user interface that show how statistical features are interactively presented for each result.
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elements in each sample using the false discovery rate (FDR)-correction by
Benjamini–Hochberg to generate adjusted p values34. To avoid bias35, any
user-specific filtering of the enriched elements, in both downstream and
upstream enrichment, is performed only after FDR correction.
In the results box, users can choose to display the p values from the

distribution of enrichment scores, from the distribution of the levels, the
highest value from both, or the lowest value from both. For ES statistics,
we provide an additional option to automatically adjust the k value to the
highest FC value in each random set to reduce false negatives in cases
where the permuted FC values are higher than the FC values of the original
sets, i.e., to prevent nonphysiological FC values from biasing the results.
However, as a result of this adjustment, sets with DCEs that have per se
high FC values lose statistical power.

Upstream enrichment
In the upstream enrichment, the fold changes in DCEs are assumed to be a
consequence or “output”. The goal is to identify other elements in the MIM
that could be caused and act as enriched terms. We refer to these
elements as identified targets because they are likely to trigger (or counter)
the observed changes between samples and thus could be the primary
driver of disease pathologies. In contrast to downstream enrichment, the
weighting factors are the influence scores from targets to DCEs. The
definition of a target depends on the context and nature of the data but is
generally not limited to a specific molecule type. For example, targets can
refer to elements associated with changes in the expression profiles of
genes in a transcriptomics experiment, changes in the concentrations of
metabolites in a metabolomics experiment, or changes in the levels of
phenotypes. In addition, targets can either be positive, affecting DCEs
according to their FC values or negative, having the exact opposite effect.
Both may be of interest to the user, as suppression of positive targets or
activation of negative targets (or vice versa) serves the same purpose. We
rank upstream targets according to their sensitivity (= true positive rate,
i.e., ability to affect DCEs) and specificity (= true negative rate, i.e., ability
not to affect non-DCEs). Sensitivity is greater than zero for positive targets
and less than zero for negative targets. Sensitivity (= true positive rate,
Eq. 8)) will be 1 (= positive target) if the influence of v on every DCE is 1.
For example, a predicted target with a sensitivity of 1 in a transcriptomics
experiment refers to a transcription factor that directly induces the
expression of all DEGs with a positive FC value and represses the
expression of all DEGs with a negative FC value. Conversely, the sensitivity
will be −1 (= negative target) if the influence of v on every DCE is −1.
Specificity (= true negative rate, Eq. 9)) will be 1 if the influence of v on
every non-DCE is 0.

Sensitivityv ¼
P

u2DCEs
ðIv;u �FCuÞP

u2DCEs
ðjFCu jÞ (8)

Specificityv ¼
P

u∉DCEs
ð1�jIv;u jÞP

u∉DCEs
ð1Þ (9)

Statistics for upstream enrichment are performed similarly to the down-
stream enrichment, however, using upstream influence values instead.
When identifying upstream targets, ES should also depend on DCEs that
are not included in the element set of the enriched target. Therefore,
unlike downstream enrichment, we include FC values of DCEs that are not
regulated by v as the parameter k from Eq. 6, resulting in the adapted ES
(Eq. 10)).

ESv ¼
P

u2DCEsðjIu;v � FCuj � Iu;v � FCuÞP
u2DCEs
Iu;v¼0

ðFCuÞ þ
P

u2DCEsðI2u;v � FC2
uÞ

(10)

Implementation as a MINERVA plugin
We developed a JavaScript-based plugin suite for the MINERVA platform,
which implements our 2DEA approach in an intuitive user interface. The
plugin suite is loaded into MINERVA through the main plugin file from
GitHub, which then loads an additional file for each plugin (Xplore.js and
Omics.js) as well as additional JavaScript and CSS files. The underlying
annotated MIM data is fetched from the same directory as two separate
JSON files (Elements.json and Interactions.json) for nodes and edges of the
network, respectively. The plugins can be adapted for other disease map
projects, given that corresponding data files are generated, which is
described in more detail on the AIR website: https://air.bio.informatik.uni-
rostock.de/plugins.

For the case studies in this manuscript, we implement the plugins using
the MIM of the AIR, whose curation has been described previously11. The
complete AIR MIM contains more than 6500 elements connected by a total
of over 22,000 interactions. Of the latter, approximately 12,000 are positive
and 9800 are negative. The elements include more than 90 phenotypes, 250
metabolites, 4700 proteins, 290 complexes, 460 miRNAs, and 410 lncRNAs.
The plugin code and data files are available at: https://github.com/sbi-

rostock/AIR/tree/master/AirPlugins.

Case study input preparation
For the case studies, we analyzed murine colitis RNA-seq data, for which
we downloaded raw read counts from GEO (Accession number
GSE131032). The data were analyzed using the R DESeq2 package,
comparing each of the eight samples from day 2 onwards with the day
zero control. For comparing 2DEA with GSEA, we selected DEGs (adj. p
value < 0.05 by DESeq2) from each of the eight time points as the DCE
input list for both approaches. Gene sets for GSEA were created for each
phenotype using all elements from submaps in the AIR with an influence
score other than zero. For IFNα stimulated B-cells, we directly used GEO’s
GEO2R36 to compute FC values and adjusted p value for four samples vs.
the control (no IFNα) (Accession number GSE75194). For each dataset, we
summarized their results in a tab-separated text file containing the gene
name in the first column together with the FC and adj. p value for each
comparison, respectively, as additional columns. These files were uploaded
to the plugins for further analysis.

Reagents and tools table

Resource/ Software Reference or Source

Plugin Development

npm v6.14.4 https://www.npmjs.com/

Chart.js v3.5.1 https://www.chartjs.org/

Decimal.js v10.3.1 https://mikemcl.github.io/decimal.js/

Data analysis

RStudio v1.4.1106 http://www.rstudio.com/

DESeq2 for R v1.28.1 Love et al.37

SBML visualization

CellDesigner v4.4.2 Funahashi et al.10

GSEA

GSEAPy v0.10.5 https://gseapy.readthedocs.io/

DATA AVAILABILITY
Data files are available from GitHub at: https://github.com/sbi-rostock/AIR/tree/
master/AirPlugins. Case Study datasets were fetched from NCBI Gene Expression
Omnibus (GEO) with the accession numbers GSE131032 and GSE75194.

CODE AVAILABILITY
JavaScript files of the plugins are available from GitHub at: https://github.com/sbi-
rostock/AIR/tree/master/AirPlugins.
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