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Abstract
Germ cell formation and embryonic development require ATP synthesized by mitochondria. The dynamic system of the 
mitochondria, and in particular, the fusion of mitochondria, are essential for the generation of energy. Mitofusin1 and 
mitofusin2, the homologues of Fuzzy onions in yeast and Drosophila, are critical regulators of mitochondrial fusion in 
mammalian cells. Since their discovery mitofusins (Mfns) have been the source of significant interest as key influencers of 
mitochondrial dynamics, including membrane fusion, mitochondrial distribution, and the interaction with other organelles. 
Emerging evidence has revealed significant insight into the role of Mfns in germ cell formation and embryonic development, 
as well as the high incidence of reproductive diseases such as asthenospermia, polycystic ovary syndrome, and gestational 
diabetes mellitus. Here, we describe the key mechanisms of Mfns in mitochondrial dynamics, focusing particularly on the 
role of Mfns in the regulation of mammalian fertility, including spermatogenesis, oocyte maturation, and embryonic devel-
opment. We also highlight the role of Mfns in certain diseases associated with the reproductive system and their potential 
as therapeutic targets.
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Introduction

Mitochondria are organelles with a double membrane struc-
ture and are capable of replication [1, 2]. As a highly com-
plex and dynamic organelle, mitochondria are the primary 
site of cellular bioenergetic and lipid metabolism since 
they support the Krebs cycle, oxidative phosphorylation 
(OXPHOS), and β-oxidation [3–5]. In addition, mitochon-
dria can change their structure and morphology by mito-
chondrial fusion, fission, and degradation, thus maintain-
ing cellular function [6]. Mitochondrial fusion is essential 
for mitochondrial function. It has been established that the 
impairment of mitochondrial fusion leads to a reduction in 
glycolysis, OXPHOS, and the Krebs cycle [7, 8]. In parallel, 
mitochondria exhibit a reduction in ATP production, proton 

leakage, and mitochondrial membrane potential (MMP) [9]. 
These functional abnormalities inevitably affect cell devel-
opment and eventually lead towards cellular aging and/or 
apoptosis.

Mitofusins (Mfns) are necessary for the maintenance of 
normal mitochondrial function and act by regulating mito-
chondrial fusion. Mfns are involved in the regulation of the 
structure and morphology of mitochondria at different stages 
of cellular development, and thus participate in the regula-
tion of cellular differentiation, division, aging, and apoptosis 
[10]. In mammals, Mfns can be divided into two types, mito-
fusin1 (Mfn1) and mitofusin2 (Mfn2), which are widely dis-
tributed on the outer mitochondrial membrane (OMM) and 
are responsible for fusion of the OMM [11]. Mfn1 is located 
on human chromosome 3 and consists of 741 amino acids 
while Mfn2 is located on human chromosome 1 and consists 
of 757 amino acids [12]. Mitochondrial fusion and fission 
depend on specific genes and proteins for accurate regula-
tion. The key gene required for fusion was first identified in 
Drosophila and was named Drosophila fuzzy onions protein 
(Fzo) [13]. Fzo is a transmembrane protein with GTPase 
activity that mediates the fusion of mitochondria. Since then, 
mitochondrial fusion proteins Mfn1 and Mfn2, homologues 
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of FZO, were identified in mammals [14]. These proteins are 
key regulatory proteins for mitochondrial OMM fusion in 
mammalian cells [15, 16]. During cell development, Mfns 
directly regulate fusion of the mitochondrial membrane, 
spatial distribution,  Ca2+ concentration, and the activity of 
OXPHOS complex subunits that are located on the mito-
chondrial cristae. Thus, mitochondria can respond to the 
energy requirements at different stages of cell development, 
thus maintaining cell proliferation and differentiation [17, 
18].

In a manner that differs from somatic cells, spermatogen-
esis and oocyte maturation require two meiotic divisions and 
are both energy-consuming processes; these are essential for 
reproductive success as the ovulation of a healthy oocyte 
and the production of viable spermatozoa is the prerequisite 
to fertilization [19, 20]. As research effort intensifies in the 
reproductive sciences, Mfn1 and Mfn2 have been shown to 
be also involved in germ cell development, including sper-
matogenesis, follicle development, oocyte maturation, and 
embryo development [21–23]. In spermatogenesis, Mfns 
can play an indirect role in the regulation of spermatogen-
esis by mediating the function of Sertoli cells, and a direct 
role by affecting the differentiation of spermatogonia and 
the meiosis of spermatocytes [24]. During the development 
of oocytes and embryos, the expression of Mfns is pre-
cisely regulated in different stages; an excess or deficiency 
of Mfns leads to abnormal mitochondrial dynamics and 
energy metabolism, ultimately preventing oocyte meiosis 
and embryo development [21]. Furthermore, Mfns plays an 
essential role in the development and progression of sev-
eral reproductive diseases in which the expression levels of 
Mfns are reduced [23, 25]. Gaining a better understanding 
of the specific mechanisms of action of Mfns in reproductive 
disorders could help us to identify the causes of infertility. 
However, thus far, few authors have attempted to review 
the role of Mfns in male or female reproduction, particu-
larly with regards to their potential role in germ cell matura-
tion and reproductive diseases. Here, we synthesize recent 
advances in the structural and mechanistic studies of Mfn1 
and Mfn2 and their involvement in mitochondrial fusion. We 
focus particularly on recent progress in the role of Mfns in 
the regulation of spermatogenesis, oocyte maturation, and 
embryonic development. We also highlight the potential role 
of Mfns in certain diseases associated with the reproductive 
system and their potential as therapeutic targets.

Structure basis of Mfns functions

Mitochondrial fusion proteins were first reported in the 1998 
[26]. With the development of crystallography, Cao et al. 
[27] resolved and predicted the crystal structure of Mfn1. 
Then, Li et al. [28] resolved the crystal structure of Mfn2 

and found that Mfn1 and Mfn2 have the same topological 
structure; the sequence identity of both was above 80%. 
Mfn1 and Mfn2 share the same motifs and are composed 
of the GTPase domain, helical domain 1 (HD1), predicted 
helical domain 2 (HD2), and transmembrane (TM) (Fig. 1). 
Of these, the TM region is inserted into the OMM and the 
rest region (the GTPase domain, HD1 and HD2) are oriented 
towards the cytoplasm. The main role of the GTPase struc-
tural domain is to catalyze the hydrolysis of GTP to provide 
energy for fusion to the OMM, while HD1 and HD2 mainly 
pull the OMM closer, thus accelerating mitochondrial 
fusion. Compared to other members of the membrane fusion 
Dynamin family, the topology of Mfns is most similar to 
that of bacterial dynamin-like protein, which mediates bacte-
rial membrane fusion [29]. The GTPase structural domain 
consists of eight α-helices wrapped around eight β-folds, 
with the two parts of HD1 and HD2 forming a four-stranded 
helical bundle using strong hydrophobic interactions; this 
is referred to as the structural domain HD1 [12, 27]. HD1 
is linked to the GTPase structural domain via arginine and 
lysine. Mfn1 and Mfn2 can form homodimers by hydrolyz-
ing GTP to complete fusion with the OMM. Although the 
sequence homology of Mfn1 and Mfn2 is high, there are 
significant differences in the efficiency and ability of the 
two to fuse membranes. Li et al. [28] found that both Mfn2 
and Mfn1 form tight dimers to mediate the fusion of the 
OMM during the catalytic hydrolysis of GTP; however, the 
dimeric states of Mfn2 and Mfn1 were found to be signifi-
cantly different. After the completion of GTP hydrolysis, 
Mfn2 remained undissociated after catalytic GTP hydrolysis; 
this was very different from the Mfn1 dimer that rapidly 
dissociated after catalytic GTP hydrolysis, thus suggesting 
that Mfn2 may have a stronger membrane bolus ability than 
Mfn1. However, Hall et al. reported that Mfn1 has a higher 
GTPase activity than Mfn2, and can, therefore, hydrolyze 
GTP faster; therefore, Mfn1 is more efficient at promoting 
mitochondrial fusion than Mfn2 [30]. Furthermore, Mfn2 
and Mfn1 can also form heterodimers via the GTPase struc-
tural domain [28], thus suggesting that such heterodimers 
may play an important function in the process of mitochon-
drial fusion.

OMM fusion is mediated by the hydrolysis of GTP by the 
mitochondrial fusion proteins Mfn1 and Mfn2 [31]. Recent 
crystallography studies have provided a deeper insight into 
the molecular mechanisms underlying OMM fusion. The 
process of Mfn-mediated OMM fusion can be divided into 
three stages (Fig. 1B) [27, 28]. In the first stage, before GTP 
hydrolysis, the HD1 and HD2 structural domains of Mfns 
are coupled together in a "closed" conformation and the TM 
region is inserted into the OMM, with each Mfns responsible 
for a segment of the OMM. In the second stage, the GTPase 
structural domain catalyzes GTP hydrolysis, thus trigger-
ing the conformational rearrangement of the HD1-HD2 



Mitofusins: from mitochondria to fertility  

1 3

Page 3 of 19 370

structural domain. In the "open" state, the Mfns can effec-
tively pull the OMMs within 30 nm of one another to bring 
the adjacent cell membranes closer to one another. The third 
stage involves the formation of trans-crossover oligomers 
around the docking site via organized Mfns in a manner 
that is dependent on the hydrolysis of GTPase. The process 
of OMM fusion is reversible and can be controlled by the 
local GTP concentration and Mfns density, thus avoiding 
excessive fusion [27].

Mfns in mitochondrial homeostasis

Mitochondria are dynamic organelles that exhibit a highly 
plastic adaptation of mitochondrial morphology in response 
to different biological requirements and intracellular envi-
ronments [32, 33]. Mitochondria undergo constant fusion 
and fission to form a dynamic network of mitochondrial 
reticulation and have two states (Fig. 2A): one is the elonga-
tion mitochondrial network, in which adjacent mitochondria 
undergo membrane fusion to form elongated mitochondria 
[34]; while the other is the fragmentation mitochondrial net-
work, in which elongated mitochondrial membranes undergo 
fission and reform a network consisting of smaller mitochon-
dria that look like fragments in the cell[35]. The purpose of 

morphological transformation of the mitochondrial network 
is to ensure that the cell can respond to various changes in 
energy requirements in a precise manner [15, 36].

Notably, when located in the OMM, Mfns are key pro-
teins that regulate the morphology of the mitochondrial 
network [37]. Under normal physiological conditions, once 
the cell requires a large supply of ATP and the intracellular 
nutrients are not insufficient, the GTPase structural domain 
of Mfns catalyzes GTP hydrolysis to induce the mitochon-
dria to convert into an elongation mitochondria network 
[38]. Subsequently, the network of elongated mitochondria 
increases the surface area between the mitochondrial mem-
brane and the intracellular environment, thus up-regulating 
the efficiency of intracellular nutrient uptake (Fig. 2B). This 
promotes glucose oxidation, the Krebs cycle and oxidative 
phosphorylation, thus maintaining the MMP potential and 
accelerating the production of ATP, and vice versa (Fig. 2C) 
[9, 39]. If the cell does not require a large supply of ATP but 
only needs to maintain normal cellular activity, the HD1 and 
HD2 structural domains of Mfns will be coupled together 
in a 'closed' conformation to keep the common fragmented 
state or allowing the elongated mitochondria to convert into 
a network of fragmented mitochondria. Then, the efficiency 
of the Krebs cycle and OXPHOS would decrease; proton 
leakage reduces and the mitochondria produce less ATP [40, 

A

B

Fig. 1  The molecular structure and mechanism of Mfns. A Molecular structure of human Mfns (PDB code 5GO4). B The fusion mechanism of 
the outer mitochondrial membrane
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41]. Interestingly, this fragmented mitochondrial network 
also acts as a more efficient nutrient storage model, espe-
cially for excess intracellular nutrients. This, may help the 
mitochondria to deal with a sudden increase in the demand 
for ATP synthesis from the organism [9].

The cristae of the mitochondria host all the complexes 
involved in mitochondrial respiration and are key sites 
for OXPHOS, including complexes I-IV, coenzyme Q, 
cytochrome c, and ATP polymerase [42]. In the process of 
OXPHOS, NADH, and  FADH2 are re-oxidized through the 
respiratory chain to transfer electrons and eventually form 
 H2O [43]. During electron transfer, large amounts of  H+ are 

pumped out of the mitochondrial matrix to the intermem-
brane space, while  H+ from the intermembrane space are 
returned to the mitochondrial matrix with the ATP poly-
merase and form large amounts of ATP [44]. Interestingly, 
there is a strict correlation between ATP production and the 
expression level of Mfns [35]. But how Mfns located in the 
OMM regulate the energy metabolism of the IMM is not 
fully understood.

Mfns are not isolated, they also convert energy metab-
olism (OXPHOS and aerobic glycolysis) by interacting 
with some specific regulatory factors, further suggesting 
that Mfns not only mediate mitochondrial fusion, but also 

B

A

C

Fig. 2  Mitochondrial morphology and cellular metabolic homeo-
stasis. A The networks of elongated and fragmented mitochondrial. 
B Mitochondrial morphology and energy metabolism when supply 

is lower than the needs. C Mitochondrial morphology and energy 
metabolism when supply is more than the needs
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directly determine cellular metabolism. The M2 isoform of 
pyruvate kinase (PKM2) is one of the rate-limiting enzymes 
in glycolysis and can promote aerobic glycolysis by forming 
tetramers and also switch the pyruvate of glucose metabo-
lism from the Krebs cycle to the pentose phosphate pathway 
by forming dimers [45]. Li et al. showed that Mfn2 can acti-
vate PKM2 via interaction, thus promoting mitochondrial 
OXPHOS [46]. In response to the Mfn2-PKM2 interaction 
mediated OXPHOS, mTOR, a serine/threonine kinase, also 
participates in the Mfns-PKM2 interactions by phosphoryl-
ating Mfn2 [46]. Once phosphorylated Mfn2 interacts with 
PKM2, the Mfn2-PKM2 would convert the glucose metabo-
lism pattern from aerobic glycolysis to OXPHOS to satisfy 
the energy requirements of specific cellular events. Apart 
from directly affecting the glucose metabolism pattern, Mfn2 
might regulate the OXPHOS process by proton across, such 
as in muscle cell development, the repression of Mfn2 leads 
to reduced proton leakage [41]. Another study also supports 
this opinion in that the knockout of Mfn2 induced coenzyme 
Q depletion, impaired mitochondrial respiratory function, 
and reduced ATP production in mouse cells [47]. In these 
studies, the decreasing expression levels of Mfns triggered a 
reduction in ATP synthesis, considering that the main func-
tion of Mfns is to induce fusion of the OMM, converting 
the fragmentation mitochondrial network to an elongation 
mitochondrial network will promote ATP synthesis. Thus, 
the abnormal energy metabolism induced by the absence of 
Mfns may be due to an imbalance in mitochondrial homeo-
stasis, where the mitochondria are unable to elongate and 
provide cells with a large supply of ATP.

In addition, Mfn2 regulates the expression of subunits 
involved in the OXPHOS complex. The depletion of Mfn2 
inhibits the expression of OXPHOS I, II, III, and V subunits, 
thus leading to a decrease in their enzymatic activity [48, 
49]. The overexpression of Mfn2 leads to an increase in the 
expression of several complex I, IV, and V subunits [48]. It 
has been shown that Mfns not only provide more energy to 
the cell through membrane fusion by associating with more 
isolated mitochondria, they also directly participate in the 
energy metabolism of the IMM by influencing the expres-
sion of subunits in the OXPHOS complex.

Mitochondria are not only the energy source of the cell 
but also an important center for the regulation of  Ca2+, which 
is essential for the regulation of apoptosis and cell death 
[50]. Indeed,  Ca2+ transfer from the endoplasmic reticulum 
(ER; one of the intracellular calcium reservoirs) to the mito-
chondria is required for the initiation of programmed cell 
death by several apoptotic factors [51]. Another function of 
 Ca2+ in the mitochondria is regulated oxidative metabolism. 
 Ca2+ accumulation in the mitochondria activates mitochon-
drial oxidative metabolism by regulating dehydrogenases 
and metabolite carriers [52, 53]. When mitochondrial func-
tion becomes abnormal, it will interfere with the transport 

of  Ca2+ from the ER to the mitochondria [50], thus leading 
to an insufficient  Ca2+ content in the mitochondria. Further-
more, the lack of  Ca2+ support for mitochondrial oxidative 
metabolism leads to a secondary reduction in mitochon-
drial respiration and adenosine triphosphate production; 
this event is thought to be associated with apoptosis [54, 
55]. Mfn2 plays a key role in  Ca2+ regulation by influenc-
ing the transport of  Ca2+ from the ER to the mitochondria 
[56, 57]. Mfn2 also regulates the mitochondrial response to 
 Ca2+ and prevents cell fate from moving towards calcium-
mediated apoptosis by converting the network morphology 
of the mitochondria [58]. In normal mitochondrial metabo-
lism,  Ca2+ transport is a fundamental event for maintaining 
mitochondrial homeostasis. A large number of studies have 
confirmed that Mfns are involved in energy metabolism and 
 Ca2+ transport, thus suggesting that the normal functionality 
of Mfns is essential for mitochondrial homeostasis.

Mfns in germ cell fate

Under normal physiological conditions, mitochondria can 
convert the state of the mitochondrial network by both fusion 
and fission, thus altering the efficiency of the Krebs cycle 
and OXPHOS to satisfying energy requirements and main-
taining cell development, proliferation, and differentiation 
[36]. In somatic cells, as cells enter interphase, the mito-
chondria show an elongated network pattern and accumulate 
around the nucleus and cell periphery. In contrast, during 
most of the mitosis period, mitochondria show a fragmented 
network pattern that disperses in the cytoplasm [59, 60]. The 
development of germ cells and meiosis are far more com-
plex than that of somatic cells. For example, both sperm and 
oocytes are need to undergo meiosis and complex dynamic 
distribution of the cytoskeleton; these processes require 
large amounts of ATP to maintain [61, 62].

Since Mfns regulate mitochondrial function as well as 
ATP synthesis, the role of Mfns in germ cells has received 
wide attention. The germ cells require different ATP produc-
tion capacities in different stages of development [63]. The 
capacity of mitochondria to produce ATP mainly depends 
on the ability of Mfns to regulate the level of mitochondrial 
energy metabolism, predominantly by regulating the state 
of the mitochondrial network [64]. During oogenesis, there 
are two peak periods of ATP production, one during GVBD 
and the other during first polar body elimination [65]. 
GVBD is an important marker for the resumption of meio-
sis in oocytes and this process is induced by progesterone 
[66]. During oocyte maturation, a large majority of oocytes 
undergo GVBD from the germinal vesicle (GV) phase to 
resume the first meiotic division and eventually arrest at 
the metaphase of second meiosis. To satisfy the high ATP 
requirements of oocytes during GVBD and meiosis, Mfns 
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can improve ATP production by regulating mitochondrial 
membrane fusion but can also satisfy the ATP requirement 
by directly regulating the activity of the OXPHOS subu-
nits. OXPHOS is the main source of ATP production during 
oocyte maturation; Mfns can directly influence the supply of 
ATP for different phases of oocyte development by activat-
ing the subunits of OXPHOS complexes I, IV, and V, thus 
maintaining normal oocyte development. Once Mfns are 
depleted, the lack of ATP supply will inhibit chromosomal 
separation and oocyte meiosis as well as increasing the level 
of reactive oxygen species (ROS) in the cell, thus leading to 
autophagy and apoptosis [67].

Besides mitochondrial membrane fusion and OXPHOS, 
Mfns can also support oocyte maturation directly by regu-
lating mitochondrial movement to determine the spatial 
distribution of the mitochondria. More specifically, as the 
oocyte develops, mitochondria gradually migrate towards 
the nucleus in response to GVBD and meiosis, thus exhibit-
ing a fluctuating pattern to eventually create a uniform dis-
tribution in the cytoplasm of the mature oocyte (Fig. 3A) 
[68, 69]. For instance, during GV, most of the mitochon-
dria are in the cell membrane of the oocyte, thus provid-
ing energy for intracellular protein synthesis and secretion, 
as well as for oocyte-granulosa cell interactions [68, 70]. 
After then, the mitochondria migrate towards the perinu-
clear region with oocytes developing from the GV to GVBD; 
After GVBD, mitochondria continue to diffuse toward the 
membrane; and mitochondria reaccumulate toward the peri-
nuclear region at the time of polar body exclusion, this may 
be related to the provision of additional energy for activi-
ties such as RNA transcription [69]. Finally, mitochondria 
are distributed throughout the oocyte during metaphase of 
the second meiosis to maintain the basal metabolism of the 
oocyte [70]. During this process, mitochondria are anchored 
to the kinesin motor which is located on the cytoskeleton 
and subsequently transported to specific locations along the 
cytoskeleton, thus completing the dynamic distribution of 
mitochondria during oocyte development [71]. Mfn1 and 
Mfn2 can anchor mitochondria to the cytoskeleton by inter-
acting with Miro and Milton proteins, thus linking mito-
chondria to kinesin motors. This allows mitochondria in the 
cytoplasm to move to specific regions [72]. This suggests 
that Mfns direct interactions with the microtubule-based 
transport apparatus. Many studies have supported this view, 
for instance, during oocyte maturation, the correct number 
of mitochondria needs to move to the spindle to ensure that 
the energy requirements of spindle migration are met [73]. 
However, following spindle migration, these mitochon-
dria also need to be released so that they provide enough 
space for the spindle to be able segregate the chromosomes 
[74]. Previous work showed that if Mfn2 was knocked out 
in the oocyte, then mitochondria did not localize around 
the spindle [75, 76], thus suggesting that Mfn2 is involved 

in regulating the movement of mitochondria during meio-
sis. But in Mfn2-overexpressed oocytes, the release of the 
mitochondria surrounding spindle were absent, leading to 
a failure of spindle movement and chromosome segrega-
tion, ultimately cause the majority oocytes to arrest at the 
MI stage (Fig. 3B) [74, 76]. Both the overexpression and 
depletion of Mfn2 has been shown to affect the number of 
mitochondria distributed around the spindle, thus leading to 
meiotic failure in oocytes (Fig. 3C). These findings demon-
strate that the proportion of mitochondria distributed around 
the spindle in meiosis can influence meiotic events.

It is evident that Mfns can regulate the dynamic dis-
tribution of mitochondria around the spindle. However, 
these proteins can also regulate a dynamic structural and 
functional link between the mitochondria and the ER, 
thus exerting influence on mitochondrial autophagy and 
cellular senescence. Gbel et al. [77] revealed that Mfn2 
is also located in the ER and plays a role in regulating 
the formation of mitochondria-associated membranes 
(MAMs), which regulate the dynamic link between the 
mitochondria and the ER. It has also been shown that 
MAMs are the initiation site for autophagosome forma-
tion; this is the location of the pre-autophagosome marker 
ATG14 and the autophagosome-formation marker ATG5 
[78]. Furthermore, MAMs are also the initiation site for 
mitochondrial fission, which is accomplished by wrapping 
mitochondria in ER tubules, and by activating ER localiza-
tion proteins on MAMs, thus leading to actin multimeri-
zation and the completion of mitochondrial division [78, 
79]. Another function of MAMs is to allow the exchange 
of  Ca2+ between two organelles (the ER and mitochon-
dria) [57, 80]. MAMs help to create a microregion of 
high  Ca2+ within the binding region of the ER and mito-
chondria that can enhance the transport of  Ca2+ to the 
mitochondria via mitochondrial calcium monomers [81, 
82]. This  Ca2+ uptake event via MAMs is essential for 
maintaining cellular bioenergetics, since this process also 
involves Krebs cycle regulation, dephosphorylation and 
the activation of pyruvate dehydrogenase [83, 84]. During 
the process of  Ca2+ exchange, Mfn2 serves as an essential 
regulator of bound ER and the mitochondrial formation 
of MAMs; the depletion of Mfn2 leads to a reduction in 
 Ca2+ concentration in the mitochondria and an increase 
in  Ca2+ concentration in the ER [85]. This would lead to 
 Ca2+ imbalance and a reduction in the Krebs cycle in the 
mitochondria, ultimately blocking cell development [86]. 
MAMs are key elements of mitochondrial involvement in 
cell development, apoptosis and aging, and act by regulat-
ing mitochondrial division and ER stress [87]. Not only 
does Mfn2 positively regulate the formation of MAMs, 
some studies suggest that Mfn2 can also negatively regu-
late the maintenance of the structure of MAMs [88, 89]. 
Although the specific regulatory role of Mfn2 on MAMs 
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is not well understood, it cannot be ignored that the large 
distribution of Mfn2 in the structure of MAMs is involved 
in regulating the autophagic process (MAMs are key sites 
for autophagosome formation) [90]. Currently, the role of 
MAMs in regulating mitochondrial autophagy and  Ca2+ 
transport is well established, and it has been confirmed 
that Mfns can regulate the function of MAMs in somatic 
cells; however, it is unknown as to whether Mfns can simi-
larly regulate the function of MAMs in germ cells.

Mfns in the development of germ cells 
and embryos

Spermatogenesis and testicular development

During spermatogenesis, the morphology, number, and posi-
tion of the mitochondria in the spermatogonia, spermato-
cyte, and spermatozoa are constantly changing [91] (Fig. 4). 
In SSCs, Type A spermatogonia, and Type B spermatogonia 

A

B

C

Fig. 3  The mechanism of mitochondrial regulation of germ cell fate. A Dynamic distribution of mitochondria during oogenesis. B The effect of 
overexpression of Mfns on germ cell fate. C The effect of inhibition of Mfns on germ cell fate
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the mitochondrial have an elliptical structure with a frag-
mentation network. However, as the spermatocytes gradu-
ally differentiate into round spermatids through meiosis I 
and II, the mitochondria are distributed around the nuclear 
membrane in an elongated mitochondrial network state 
which is regulated by Mfns (Fig. 4C). Furthermore, the 
number of mitochondria gradually increases, thus suggest-
ing that the active functional state at this stage requires more 
ATP from the mitochondria [92]. During spermatogenesis, 
Mfns exhibit dynamic expression during different stages of 
spermatogenesis; the expression levels of Mfn1 and Mfn2 
increase during the differentiation of SSCs, the differentia-
tion of spermatogonia, and during meiosis I [22]. Mfns are 
important components in the regulation of mitochondrial 
membrane fusion and are involved in the regulation of the 
mitochondrial Krebs cycle and OXPHOS to maintain the 
ATP requirements at different stages of spermatogenesis 
[93]. Although their role in the maintenance of spermato-
genesis is not well understood, many studies have shown 
that Mfns regulate the distribution and morphology of mito-
chondria during spermatogenesis and thus maintain the sper-
matogenic process.

SSCs are the basis of spermatogenesis and are located 
at the base of the varicocele [94]. After division of the 

SSCs, some of the daughter cells form new SSCs, and then 
complete their self-renewal [95]. The other portion of the 
daughter cells differentiate to form Type A spermatogonia 
and Type B spermatogonia [96], thus allowing meiosis. To 
investigate the effects of Mfns in the self-renewal and dif-
ferentiation of SSCs, many studies have knocked out Mfns 
or inhibited the expression of Mfns [24, 97]. Interestingly, 
the depletion of Mfn1 and Mfn2 does not influence the self-
renewal of SSCs; instead, this inhibits the differentiation of 
SSCs (Fig. 4B) [24]. Mfn1 and Mfn2 play a positive role in 
regulating the differentiation of SSCs; this maintains normal 
ATP production and a low level of ROS [22]. The loss of 
Mfn1 or Mfn2 can increase the levels of ROS that can cause 
an increase in DNA damage as well as inducing apoptosis 
[22].

SSCs undergo a series of divisions and then differenti-
ate to form spermatocytes. The spermatocytes then undergo 
meiosis I and meiosis II to form round spermatozoa, which 
ultimately form mature spermatozoa via chromatin con-
densation, Golgi deformation, and the formation of the fla-
gellum. At this stage, the mitochondria show an elongated 
mitochondrial network [24]. Subsequently, the round sper-
matids gradually transform into long spermatids and exhibit 
a significant up-regulation in the expression levels of Mfn1 

A B

C

Fig. 4  The effect of Mfns on spermatogenesis. A The effect of optimal expression level of Mfns on testicular development. B The mechanism of 
Mfns regulation of spermatogenesis. C Morphological changes of mitochondria during spermatogenesis
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and Mfn2 [98]. These data suggest that during sperm defor-
mation or spermatogenesis, Mfns can convert the status of 
the mitochondrial network in a precise manner by mediat-
ing membrane fusion, thus providing the energy required by 
spermatogenesis. Furthermore, the adjacent mitochondria 
cluster around the nucleus and form inter-mitochondrial 
cement (IMC, also referred to as a pi-body, a form nuage 
structure). IMC contains a variety of Piwi-interacting RNA 
proteins and plays a role in transposon silencing, mRNA 
translation, and mitochondrial fusion [91, 97]. Research 
has identified a male germ cell specific protein, GASZ, 
within the IMC; it is believed that this protein is essential 
for the formation of the IMC and can interact with Mfns 
to promote mitosis in the spermatogonia and induce fusion 
of the adjacent mitochondria [99]. Wang et al. [97] further 
confirmed that nuage-associated protein GASZ could inter-
acts with Mfn2 to regulate male germ cell development by 
controlling several gamete-specific mRNA fates. However, 
mitochondrial fusion appears to be an unnecessary func-
tion for spermatids during late spermatogenesis. Although 
Mfns can affect mitochondrial function by inducing mito-
chondria fusion and movement, the knockout of Mfn1 and 
Mfn2 in mice did not affect the development of spermatids 
(late spermatogenesis) [100]. Indeed, the level of mitochon-
drial fusion in spermatids is low, although sperm require the 
mitochondrial synthesis of ATP to maintain sperm motility 
and fertilization; mitochondrial metabolism in spermatids 
remains at low levels [100], thus indicating that after Golgi 
deformation, the fragmented morphology mitochondrial net-
work morphology is sufficient to supply the spermatids with 
energy. Therefore, Mfns-induced mitochondrial membrane 
fusion might be unnecessary or not required for frequent 
action during late spermatogenesis.

Beside spermatogenesis, testicular development is also 
strongly related to mitochondrial dynamics [101]. Wang 
et al. [102] found that Mfns might be involved in the regula-
tion of testicular development by regulating mitochondrial 
OXPHOS and the dynamic distribution of mitochondria 
during cell proliferation, ultimately allowing for a specific 
seasonal estrus in mammals (Fig. 4A). Furthermore, the 
testes are the source of spermatogenesis; the quality of tes-
ticular development has a direct effect on spermatogenesis 
and male fertility. Within the testis, the seminiferous tubules 
are arranged in coils and provide appropriate sites for sper-
matogenesis. The outer layer of the seminiferous tubules 
is made up of Sertoli cells, and help to maintain a normal 
physiological structure [103, 104]. Furthermore, the adja-
cent Sertoli cells are tightly connected to form a blood-testis 
barrier (BTB) that divides the seminiferous tubules into a 
basement membrane region and a lumen region. However, 
SSCs and undifferentiated spermatogonia are located on the 
outer layer of the basement membrane (near the outermost 
basement membrane), and as spermatogenesis proceeds, the 

spermatocytes need to cross the BTB to enter the lumen 
region of the seminiferous tubules [105]. As the germ cells 
cross the BTB into the lumen region, the BTB can protect 
them from foreign substances. In addition, the BTB can 
provide nutrition to the germ cells, regulate spermatogen-
esis through endocrine secretions, as well as organize the 
spermatids in the lumen. However, the effect of Mfns on 
the BTB during spermatogenesis has rarely been investi-
gated. Considering the role of the BTB in spermatogenesis, 
future in-depth investigation of the regulatory mechanism 
of Mfns on the BTB will be beneficial to better understand 
male infertility.

In summary, Mfns can be indirectly involved in regulating 
spermatogenesis by mediating the functionality of Sertoli 
cells and can directly influence spermatogenesis by affecting 
the differentiation of spermatogonia and meiosis in spermat-
ocytes. Furthermore, Mfns are involved in regulating sperm 
motility. In mice spermatozoa, Mfn2 is present in the flagella 
and co-localizes on the sperm flagella with meiosis-specific 
nuclear structure 1 (MNS1), which is abundantly expressed 
in post-meiotic sperm and necessary for the formation of 
normal flagella and the maintenance of sperm motility [106]. 
These data suggest that Mfn2 may play an essential role 
in maintaining the structure and function of the sperm fla-
gella. In human spermatozoa, Fang et al. [93] found that the 
expression levels of Mfn2 is associated with sperm motility, 
but how the presence of Mfn2 in sperm maintains sperm 
motility is poorly understood. Based on the distribution and 
function of Mfn2 in human spermatozoa, it is possible that 
Mfn2 might promote fusion to maintain the mitochondrial 
structure in the sperm midpiece, and may provide ATP to 
sperm by regulating the levels of mitochondrial OXPHOS. 
By contrast, we know little about the role of Mfn1 in sper-
matogenesis, particularly with regards to the regulation of 
sperm motility. Based on research on the role of Mfn2 in 
maintaining spermatogonia differentiation and its involve-
ment in regulating spermatocyte meiosis, it is possible that 
Mfn2 may play a more important role in the regulation of 
spermatogenesis.

Follicle development and oocyte maturation

Mammalian follicles develop in the ovarian cortex, are 
spherical in shape, and consist of an oocyte (in the center 
of the follicle) and are surrounded by follicular cells [107, 
108]. As the follicle develops, the oocytes within the fol-
licle begin to mature [109]. During oocyte maturation in 
mammals, oocytes undergo asymmetric cell divisions and 
produce haploid oocytes [110, 111]. In the GV phase, the 
arrested oocytes resume meiosis after GVBD. Then, in MI, 
the spindle migrates from the central cytoplasmic region 
to the oocyte cortex in an actin dependent manner [112, 
113]. After first polar body expulsion, the oocyte enters 
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rapidly into the metaphase of MII and arrests at metaphase 
of MII until fertilization [114, 115]. Notably, these series 
of physiological processes are dependent on the supply of 
energy from the mitochondria [116, 117]. In other words, the 
quality of the oocyte is directly determined by the normal 
functionality of the mitochondria. Studies have shown that 
mitochondrial functionality is a key determinant of oocyte 
developmental potential [118, 119] and that mitochondrial 
dysfunction leads to meiotic defects in oocytes from obese 
mouse [120–123] and the arrest of pre-implantation embryos 
in vitro [124]. Mfns are essential for maintaining mitochon-
drial function and have been demonstrated to be involved in 
regulating follicular development and oocyte maturation in 
mice [125], especially during GVBD and the expulsion of 
the first polar body (Fig. 5A).

During follicle and oocyte development, Mfn1 and Mfn2 
have similar expression levels and are involved in maintain-
ing normal follicular development via the regulation of 
mitochondrial membrane fusion, mitochondrial distribution, 
the activity of the OXPHOS complex subunits, and spindle 
function [126, 127]. In mice, the abnormal aggregation of 
the mitochondria also disables the functionality of MAMs, 
thus leading to a reduction in mitochondrial OXPHOS and 
the Krebs cycle. In combination, the imbalance in mitochon-
drial homeostasis and abnormal mitochondrial distribution 

caused by abnormal mitochondrial function ultimately leads 
to meiotic failure [127, 128]. The deletion of Mfn2 in mouse 
oocytes leads to increased levels of ceramide; this induces 
apoptosis in oocytes by releasing cytochrome C from the 
mitochondria and activating caspases, thus triggering the 
arrest of follicular development [76]. Furthermore, reducing 
the expression levels of Mfn2 also arrest follicular develop-
ment by down-regulating the mTOR signaling pathway, a 
serine/threonine kinase that exerts positive effects on follicle 
growth and development [129]. In addition to Mfn2 dele-
tion and down-regulation, Mfn2 overexpression could affect 
follicular development [130]. In mice, the overexpression 
of Mfn2 in oocytes was shown to excessively increase the 
distribution of mitochondria around the spindle (Fig. 5B), 
this prevented spindle movement and chromosome segrega-
tion, ultimately causing most oocytes to stagnate at MI [131, 
132]. The expression of Mfn2 is precisely regulated dur-
ing oocyte maturation; either too much or not enough Mfn2 
leads to abnormalities in mitochondrial dynamics and energy 
metabolism, ultimately preventing oocyte meiosis [74, 133].

While Mfn2 is essential for follicle development and 
oocyte maturation, it also appears that normal expres-
sion levels of Mfn1 are also necessary for follicle devel-
opment and oocyte maturation. In mice, the deletion of 
Mfn1 can arrest the development of follicles and oocytes 

Fig. 5  The dynamic distribution 
of mitochondria surrounding 
spindle during chromosome 
segregation. A Normal expres-
sion levels of Mfns. B Overex-
pression of Mfns

A

B
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by down-regulating the PI3K-Akt signaling pathway [134]; 
this is the basis of oogenesis and acts by positively regulat-
ing oocyte–granulosa cell interactions to promote oocyte 
development [135]. In addition, Hou et al. [19] showed that 
the knockout of Mfn1 in mice reduced the number of fol-
licles, and most follicles were arrested at 5–8 weeks with an 
abnormal distribution of mitochondria in oocytes.

These studies showed that Mfn1 and Mfn2 play a key 
role in maintaining follicle development and oocyte matura-
tion. However, some studies also reported that Mfn2 might 
not affect follicle development and oocyte maturation [19, 
136]. For instance, the specific knockout of Mfn2 in oocytes 
has no effect on ovulation and parturition in mice [19]. The 
oocyte-specific deletion of Mfn1 (but not Mfn2) results in 
an interruption in the communication between oocytes and 
somatic cells, and leads to impaired follicular development 
at the preantral-to-antral follicle transition [136]. Unlike 
Mfn2, current research findings indicate that Mfn1 is posi-
tively involved in the regulation of follicle and oocyte devel-
opment. Data suggest that Mfn1 might play a more impor-
tant role in maintaining follicle and oocyte development 
than Mfn2. However, it remains unclear exactly why Mfn1 
and Mfn2 are not similarly effective in regulating oogen-
esis, although Mfn1 and Mfn2 share the same topology and 
motifs and have 80% sequence identity. It is possible that the 
sequence differences between Mfn1 and Mfn2, or the higher 
structure of the proteins encoded by these genes, might influ-
ence their functionality in follicle and oocyte maturation.

Embryonic development

After maturation of the mammalian oocyte, the sperm and 
oocyte meet at a specific location in the oviduct of the female 
animal. The male and female gametes then fuse to form a 
zygote that includes all the genetic material required for the 
development a new individual [137, 138]. Subsequently, the 
zygote develops into an individual in a suitable maternal 
environment. The zygote divides and undergoes densifica-
tion, eventually forming a blastocyst which migrates to the 
uterine horn. Blastocysts consist of an endocyst and trophec-
toderm, which continue to differentiate to form the ecto-
derm, mesoderm, and endoderm. Next, the ectoderm plays 
a role in the formation of the nervous system and epidermis, 
the mesoderm develops mainly into connective tissue and 
the circulatory system, and the endoderm and trophectoderm 
play roles in the formation of the placenta [139].

Early embryo development and implantation are com-
plex and energy-consuming events, with the embryo form-
ing in the oviductal jugular and then migrating through the 
oviduct, passing through the 2-cell, 8-cell, and blastocyst 
stages, and finally moving to the uterus (Fig. 6) [140, 141]. 
Mfns are necessary for embryo development, and participate 
by regulating mitochondrial fusion and homeostasis, thus 

maintaining ATP and MMP at normal levels during embryo 
development [142]. Hua et al. [143] previously demonstrated 
that high levels of Mfn1 expression increased mitochon-
drial ATP synthesis, MMP levels, and decreased the lev-
els of  H2O2 in bovine somatic cell nuclear transfer (SCNT) 
embryos, which is useful for development in early SCNT 
embryos (Fig. 6A). Instead, during early embryonic devel-
opment, the low expression levels of Mfn1 led to the lethal 
fragmentation of the early embryo by disrupting mitochon-
drial MMP and OXPHOS components, ultimately result-
ing in a reduction in embryo survival rate (Fig. 6C) [144]. 
These data indicate that maintaining Mfn1 at certain lev-
els is necessary for embryonic development. Similarly, the 
normal expression of Mfn2 maintains blastocyst formation 
(Fig. 6B), although once the expression of Mfn2 decreases, 
it triggers mitochondrial dysfunction and induces apoptosis 
through the Bcl-2/Bax and  Ca2+ pathways, ultimately reduc-
ing the rate of blastocyst formation and the speed of cleavage 
the mouse uterus (Fig. 6D) [145, 146]. Furthermore, the lack 
of trophoblast giant cells in Mfn2 mutant mice leads to pla-
cental development arrest and death during mid-gestation; 
this is attributed to reduced mitochondrial fusion and ATP 
supply during embryogenesis due to Mfn2 deficiency [26]. 
Therefore, Mfns might be an important regulator to support 
embryonic development. However, how Mfns are involved 
in regulating the process from zygote to early embryonic 
development and embryonic implantation is poorly under-
stood. It is worth considering whether Mfns are associated 
with embryo-induced infertility, such as early embryonic 
loss in humans as well as animal models, such as the bovine 
and porcine model.

Mfns in reproductive diseases

Mfns serve as key proteins for the induction of mitochon-
drial fusion that are important for mitochondrial dynamics 
as well as mitochondrial function and homeostasis [147]. 
Therefore, the onset and development of many diseases are 
closely associated with Mfns, such as cancer, neurological 
diseases, obesity, and vascular diseases [148–152]. Interest-
ingly, recent discoveries have revealed that several reproduc-
tive diseases are also closely associated with Mfns, such as 
asthenozoospermia, polycystic ovary syndrome (PCOS), and 
gestational diabetes mellitus (GDM) (Fig. 7). Asthenozoo-
spermia is characterized by a progressive decrease in sperm 
motility and is frequently seen in infertile men with primary 
ciliary dyskinesia or immotile ciliary syndrome [153, 154]. 
In asthenozoospermic patient, the sperm exhibits mitochon-
drial dysfunction with a markedly reduced expression level 
of Mfn2 (Fig. 7A); this may be the trigger for the reduced 
sperm motility seen in asthenozoospermia and may arise 
by the regulation of mitochondrial dysfunction [93]. This 
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suggests that the specific regulation of Mfn2 expression lev-
els in the sperm of patients might help to alleviate astheno-
zoospermia and the reduction in progressive sperm motility 
caused by mitochondrial dysfunction. In females, PCOS is 
one of the most common diseases that affect women with 
abnormal endocrine and metabolic conditions that are char-
acterized by ovulatory dysfunction and hyperandrogenemia; 
the main characteristics are an irregular menstrual cycle 
and infertility [155, 156]. Previous research in PCOS mice 
showed that mitochondrial fusion/division was disturbed, 
the levels of ROS were increased, Mfn2 expression was 
significantly reduced (Fig. 7B) [25]. Selenium treatment 
led to an improvement in the abnormal expression of Mfn2 
and successfully ameliorated PCOS-related changes in the 
metabolic phenotype, thus suggesting that Mfn2 may play an 
essential role in the pathogenesis of PCOS. In addition, the 
expression levels of Mfn2 were significantly reduced in the 
women placenta with GDM, but whether Mfn2 is a trigger 
for GDM pathogenesis and the role of Mfn2 in the induction 
of GDM are not well understood (Fig. 7C) [157].

Except for asthenozoospermia, PCOS and GDM, Mfns 
can also induce certain nutritional and metabolic diseases, 
such as non-alcoholic steatohepatitis (NASH) and obesity. 

NASH is characterized by the excessive accumulation of 
lipids in the liver, which can lead to liver fibrosis, cirrhosis, 
and hepatocellular carcinoma. Mice with NASH are known 
to exhibit a reduction in testicular weight, sperm count, 
and sperm motility (Fig. 7D) [158]. The expression levels 
of Mfn2 in the liver are known to be closely related to the 
development and progression of NASH [159, 160]. Mice 
with NASH show a significant reduction in Mfn2; in addi-
tion, the re-expression of Mfn2 improved the disease, thus 
suggesting that regulating the expression levels of Mfn2 in 
the liver of NASH might potentially serve as a therapeutic 
target for male reproductive function [159]. Like NASH, 
obesity has also become a major public health problem 
and can lead to central dysregulation of the hypothalamic-
pituitary–gonadal axis, thus inducing diseases of the repro-
ductive system. In females, obesity-induced reproductive 
diseases include menstrual irregularities, pregnancy com-
plications, and infertility (caused by anovulation). In males, 
obesity-induced reproductive diseases can lead to infertility 
due lower testosterone levels and a reduced sperm count 
(Fig. 7E) [161]. Strikingly, humans with obesity exhibit a 
reduction in the expression levels in Mfn2. In mice, the spe-
cific knockout of Mfn2 in adipocytes resulted in increased 

A B

C D

Fig. 6  The effect of Mfns on mammalian embryonic development. 
A The effect of up-regulating Mfn1 expression levels on mamma-
lian embryo development. B The effect of normal expression levels 
of Mfn2 on mammalian embryo development. C The effect of down-

regulating Mfn1 expression levels on mammalian embryo develop-
ment. D The effect of down-regulating Mfn2 expression levels on 
mammalian embryo development
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food intake, impaired glucose metabolism, and increased 
adiposity [162, 163]. This suggests that improving the 
expression levels of Mfn2 in obese patients may help to treat 
male or female infertility caused by obesity. The abnormal 
expression of Mfns not only affects the reproductive success 
of the parents, but also has an impact on the health of the 
offspring. Chiaratti et al. [126] previously showed that the 
oocyte-specific deletion of Mfn2 caused weight gain and 
glucose intolerance in the offspring; these findings were con-
sistent with those of Garcia et al. [164] who reported that 
phenotypic abnormality (weight gain and glucose intoler-
ance) in the offspring might relate to the disruption of func-
tionality of MAMs in oocytes following the oocyte-specific 
deletion of Mfn2.

As the functions of Mfns in spermatogenesis, oocyte 
maturation and early embryonic development are gradually 
revealed, Mfns are also emerging as potential targets for 
the therapy of reproduction-related diseases. For instance, 
recent research involving the treatment of t testicular dam-
age induced by the anticancer drug doxorubicin showed that 
the injection of doxorubicin into rats resulted in reduced 
expression levels of Mfn2 in the testis; this induced the dis-
ruption of mitochondrial fusion [165]. The administration 
of alfa lipoic acid to rats exposed to doxorubicin was shown 

to improve the expression levels of Mfn2, and thereby alle-
viate doxorubicin-induced testicular injury [165]. Another 
study, relating to testicular damage caused by Cadmium (Cd) 
also found that an intraperitoneal injection of Cd into rats 
resulted in reproductive toxicity, including poor semen qual-
ity, male infertility, and reduced expression levels of mRNA 
for both Mfn1 and Mfn2 [166]. However, the intraperitoneal 
injection of vitamin E improved the mRNA expression levels 
of Mfn1 and Mfn2, thus improving Cd-induced poor semen 
quality and male infertility [166]. Thereby, Mfns is not only 
associated with reproductive diseases by triggering mito-
chondrial dysfunction, these proteins are also involved in 
various reproduction-related diseases and might represent 
potential therapeutic targets for the treatment of reproduc-
tion diseases.

Conclusions

Mfns maintain the bioenergetics required for all stages of 
germ cell formation and embryonic development and act 
by regulating mitochondrial network morphology, mito-
chondrial movement,  Ca2+ homeostasis, the subunits of 
OXPHOS complex activity and the connections with other 

Fig. 7  Effect of Mfn2 on the 
development of some reproduc-
tive diseases and some certain 
nutritional and metabolic 
diseases. A Effect of Mfn2 on 
asthenozoospermia. B Effect 
of Mfn2 on polycystic ovary 
syndrome (PCOS). C Effect of 
Mfn2 on gestational diabetes 
mellitus (GDM). D Effect of 
Mfn2 on non-alcoholic steato-
hepatitis (NASH). E Effect of 
Mfn2 on obesity

A

B

C
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organelles. The main feature in the past few years was that 
Mfns were reported widely in different reproductive sys-
tem model, providing more novel mechanism determining 
male or female fertility. However, there are still several key 
challenges to overcome to making Mfns of critical interest 
for potential new therapeutic approaches. For instance, as 
“nurturing cells”, it will be interesting to understand the 
Mfns functions in the Sertoli cells and their regulatory 
roles in maintaining the blood-testis barrier and the SSCs 
homeostasis of self-renew and differentiation, which in turn 
impact the continuous production of sperm and male fertil-
ity. Meanwhile, mitochondrial fusion is also essential for 
steroid production in Leydig cells [167], so Mfns regulate 
steroidogenesis in Leydig cells also merit further investiga-
tions. Other interest aspect is that the role of Mfn2 and Mfn1 
in folliculogenesis and spermatogenesis is different. Mfn1, 
but not Mfn2, is essential for oocyte development and folli-
culogenesis [19]; whereas Mfn2 plays a more prominent role 
in regulating spermatogenesis [97]. It indicates that Mfn2 
and Mfn1 have different regulatory roles in the process of 
folliculogenesis and spermatogenesis, and further studies 
are required to explore the different underlying molecular 
mechanisms of MFN1 and MFN2 in the regulation of germ 
cell development.

Additionally, although current research related to Mfn2 
and reproduction has provided us with a wealth of thera-
peutic ideas for alleviating or treating early embryo loss and 
death, PCOS, asthenospermia, and other common human 
reproductive disorders. However, the role of Mfn2, espe-
cially the upstream and downstream molecular mechanisms 
mediating the effects of Mfn2 on reproductive diseases has 
yet to be dissected; in particular, studies that specifically 
target the reproductive disorders caused by Mfn1 have yet 
to emerge. Therefore, there is still much scope to explore the 
role of Mfns in mammalian reproduction, which made Mfns 
of particularly crucial interest for potential new therapeutic 
approaches.
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