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ABSTRACT
While zoonotic diseases are defined by transmission processes between animals and 
humans, for many of these diseases the presence of a contaminated environmental 
source is the cause of transmission. Most zoonoses depend on complex environmentally 
driven interactions between humans and animals, which occur along an occupational 
and recreational environmental continuum, including farming and animal marketing 
systems, environmental management systems, and community leisure environments. 

Environmentally driven zoonoses (EDZs) are particularly challenging to diagnose and control 
as their reservoirs are in the natural environment and thus often escape conventional 
surveillance systems that rely on host monitoring. Changes in the environment as a result 
of climate change [1], human population density [2], and intensification of agriculture [3] 
have been linked to increasing transmission events for this group of infections. As such, 
there is a recognised need to be able to detect the presence of EDZs in the environment 
as a means to better anticipate transmission events and improve source attribution 
investigations. Finally, the recognition that a One Health approach is needed to combat 
these infections is signalling to governments the need to develop policy that optimises 
trade-offs across human, animal, and environmental health sectors. 

In this review, we discuss and critically appraise the main challenges relating to the 
epidemiology, diagnosis, and control of environmental zoonotic disease. Using a set of 
exemplar diseases, including avian influenza and antimicrobial resistant pathogens, we 
explore the epidemiological contexts (risk factors) within which these infections not only 
impact human health but also contribute to animal health and environmental impacts. 
We then critically appraise the surveillance challenges of monitoring these infections in 
the environment and examine the policy trade-offs for a more integrated approach to 
mitigating their impacts.
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INTRODUCTION 
The transmission mechanisms of zoonotic pathogens that rely on the environment to be passed 
on to human or animal hosts (i.e., livestock, companion animals and wildlife) are complex 
and diverse (Figure 1). Infected animals can shed pathogens through bodily fluids, afterbirth 
products, faeces, and milk. These modes of pathogen excretion result in the contamination of 
the surrounding environment such as soil, air, and water bodies, which may then act as form 
reservoirs of infectious agents that subsequently transmit to other animals and people interacting 
with these environments. Cholera, for instance, is transmitted through the ingestion of water 
contaminated with Vibrio cholerae, and is closely linked to poor sanitation and hygiene. Q fever is 
another example, but this is primarily transmitted by the inhalation of dust particles contaminated 
with Coxiella burnetii and is typically associated with animal industries.

The epidemiology of environmental-driven zoonotic (EDZ) and the capability of pathogens to 
spread in the environment are affected by multiple factors, including changes in the natural 
environment. The growing world population has resulted in a higher demand for food and 
expansion of agricultural land. The encroachment of farmland into wildlife habitats is an important 
ecological driver of environmentally driven zoonoses as it enhances the probability of livestock 
exposure to wildlife reservoirs of infection. The proximity between livestock and wildlife species 
promotes zoonotic pathogen transmission through the contamination of livestock feed and 
water sources by wildlife excreta harbouring important zoonotic pathogens. For example, wildlife 
habitat encroachment was found to lead to higher risks of SARS-related coronavirus outbreaks 
[4]. The impact of future encroachment of peri-urban settlements on cropland, and the impact of 
climate variation on biodiversity hotspots and future transmission of EDZs to human and livestock 
populations, will require further modelling work to enable identification hotspots of human and 
livestock exposure to environmental and wildlife reservoirs of infection. 

The environmental success of soil-transmitted, airborne, and waterborne infections is determined 
by the survival of the pathogen in these substrates. For example, the bacteria Coxiella burnetii, 
causative agent of Q fever in humans and coxielosis in ruminants, is categorised as an airborne 
pathogen. Coxiella burnetii can survive up to 10 months at 15–20°C and travel by wind (in 
contaminated dust particles) up to ~20 km from the primary source [5]. Furthermore, the 
transmission efficiency of an environmentally driven pathogen is determined by its ability to 
be transmitted via multiple pathways of infection increasing the difficulty understanding their 
epidemiology. Using the example of C. burnetii, the main pathway of human and animal infection 
is through the inhalation of contaminated aerosols with extracellular forms of C. burnetii [5–8], but 
drinking contaminated raw milk has also been described as a potential pathway of infection [9].

Figure 1 Potential routes 
of transmission of 
environmentally driven 
zoonoses along the landscape 
gradient of human-animal-
environment interactions.
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These human-livestock-wildlife interactions are expected to intensify as the world’s urban areas 
are projected to increase between 21 and 72% by 2050 [10]. A study found that approximately 
4% of the world’s biodiversity hotspots (900,000 km2) are expected to be converted to cropland 
by 2050, particularly in the Indo-Burma Hotspot [11]. For instance, previous work estimated that 
50–63% of the newly expanded urban land over the next 30 years is expected to encroach on 
current croplands [12]. Some of these croplands may constitute environmental reservoirs and 
their conversion to urban or peri-urban presents significant risks of infection from highly-resistant 
diseases in abandoned agricultural areas, such as C. burnetii. These forecasted scenarios pose 
a number of policy conundrums for EDZs in that human-dominated landscapes, such as urban 
areas and croplands, are believed to have a particularly strong influence on disease patterns in 
wildlife, domestic animals, and human populations [13]. Anthropogenic activities resulting in 
degraded wildlife habitat quality have increased opportunities for animal–human interactions and 
facilitated zoonotic disease transmission [14]. Research into decision-science approaches to better 
EDZ policy will be needed to evaluate trade-offs between health risks, food security, livelihoods 
and environmental conservation associated with land use change, and inform policies and land 
use management that can minimise these trade-offs.

In this review we discuss novel modelling approaches to uncover the environmental determinants that 
influence EDZ distribution and transmission, critically appraise the opportunities for environmental 
surveillance approaches for monitoring them, and examine the policy trade-offs that must be 
considered when informing integrated approaches to mitigating the impacts of these infections. 

SYSTEMS-BASED MODELLING OF THE DETERMINANTS OF 
ENVIRONMENTALLY DRIVEN ZOONOSES
Measuring the contribution of environmental and sociodemographic factors on the incidence of 
EDZs is critical to understanding the risk of infectious disease. Yet this is a very challenging task 
[15]. EDZs appear in human populations as a result of a complex cascade of transmission events, 
often originating at the wildlife-livestock interface. Due to urban development, expansion of cities, 
and population growth, communities are now more likely to have contact with wildlife, either 
directly or indirectly, via contact with livestock or farmed environments. The expansion of urban 
areas and croplands tends to negatively impact biodiversity and provides suitable conditions for 
smaller animals, adaptable to human pressures, which are more likely to carry zoonotic diseases 
[16]. Furthermore, human population density and the proximity to species’ range have been found 
to be positively related to pathogen richness in mammals, leading to zoonotic “spillover” events 
[17]. The proximity of urban or peri-urban settlements to wildlife reservoirs is a major driver of 
several zoonotic infections. For instance, outbreaks of human Nipah virus encephalitis cases in 
Bangladesh and India are believed to have originated first from bats via contaminated date palm 
sap, and subsequently through human-to-human transmission [18].

To capture the complex causal pathway of EDZ infection risk into a harmonised disease modelling 
framework, there is a need to fully consider the environmental transmission pathways as well 
as approaches to model validation and calibration [19]. For example, a study in Queensland, 
Australia, used a Bayesian spatial hierarchical model to estimate the risk of hospitalisation due 
to EDZs [15]. The study found that an increase in average rainfall and occupational exposures 
were associated with an increased risk of hospitalisation for zoonotic diseases. While the identified 
changes in the morbidity patterns due to zoonotic diseases in Queensland can be partly attributed 
to spatial variations in environmental and occupational risk factors, there is a need to uncover the 
prognostic ability of clinical, sociodemographic, and contextual environmental characteristics of 
zoonotic disease hospitalised patients.

Most epidemiological studies of zoonoses use regression analyses that model theoretical 
representations of disease transmission and can restrict the consideration of other potential 
determinants such as multiple correlated features or traits across species [20]. Although traits can 
contribute to determine the development of zoonotic diseases (e.g., high population density and 
short lifespan can determine the infection period), these are usually not incorporated in conventional 
epidemiological studies. Since traits evolve from selection pressures in complex environments, 
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functional traits can be used as proxies of characteristics that can determine host responses to 
pathogenic agents but are difficult to identify, such as immune strategies [21]. Machine learning 
methods have been increasingly used to assess the associations of multiple variables in big data 
sets where complex interactions are difficult to measure. This has been demonstrated in analyses 
using machine learning algorithms to study zoonotic vector status of mosquitoes and ticks and 
the zoonotic reservoir status of hosts [22–24]. Other methodological approaches, such as system 
dynamics, can be used in conjunction with machine learning to predict disease dynamics and 
potential spillovers by considering the characteristics of hosts in a given ecosystem [20]. 

With the global concern for the possible zoonotic origin of COVID-19, machine learning models 
have been particularly useful to predict the zoonotic capacity of vertebrate species to transmit 
the virus. Booster regression models that apply the gradient boosting machine learning algorithm 
have been collated with structural modelling that quantifies the virus protein receptor binding 
to the angiotensin-converting enzyme 2 receptor (ACE2) to predict potential spillback COVID-19 
infections [25]. Since the broad host range of SARS-CoV-2 is linked to the ubiquity of ACE2 and the 
high prevalence of SARS-CoV-2 in humans, repeated spillback infections (i.e., human hosts infecting 
animals with SARS-CoV-2 virus) can determine the establishment of new animal hosts from which 
secondary spillover can lead to human infections [26, 27]. Whereas structural models can predict 
how ACE2 homologous gene sequences across species bind to the viral spike protein, the prediction 
of host range for SARS-CoV-2 is restricted by the availability of ACE2 sequences between species. 
Combining structural modelling of viral binding with machine learning of species traits has increased 
the capacity to predict the zoonotic potential of SARS-CoV-2 across 5400 mammal species [25]. This 
combined approach can allow prediction for species for which ACE2 sequences are not available 
because it leverages data from the virus binding dynamics and biological traits. 

INTEGRATED APPROACHES TO THE ENVIRONMENTAL DETECTION 
OF ENVIRONMENTALLY DRIVEN ZOONOSES
The interconnectedness of EDZ transmission is facilitated by shared environments where humans, 
livestock, and wildlife interact. The environmental context of transmission such as soil, air, or water 
bodies act as a hub for many EDZ-causing pathogens. The quintessential example of an EDZ is the 
transmission of antimicrobial resistant pathogens. Antimicrobial resistance (AMR) is an increasing 
concern globally as it is estimated that 1.27 million death were directly caused by AMR [28] and 
about 10 million deaths are forecast in 2050. While the primary driver of AMR is the misuse of 
antibiotics in human and animal health settings and agriculture, there is increasing recognition 
of where and how AMR is emerging and being transmitted, especially from wastewater and 
soil, which ends up being accumulated in wastewater and soil [29, 30]. AMR pathogens can be 
transmitted between humans, animals, and the environment through different routes, including 
ingestion and direct contact [31]. The environment has been identified as an important bridge for 
AMR transmission as it receives waste products from both humans and animal populations under 
selective pressure of antimicrobials and acts as a reservoir of clinically relevant AMR organisms, 
resistance genes, and antibiotic residues. 

Wastewater (either influent or effluent) from communities (Figure 1) such as urban, hospital, 
and pharmaceutical plants have been reported as important reservoirs of clinically relevant AMR 
bacteria and resistance genes [29, 32–34]. Both untreated and treated water from wastewater 
treatment plants can be environmental reservoirs of AMR organisms and resistance genes. AMR 
resistance genes are not degradable and therefore can contribute to the spread of AMR among 
microbial communities via horizontal gene transfer [35, 36].

AMR has been surveyed and characterised with the help of molecular and phenotypic methods. 
These methods use polymerase chain reaction (PCR) coupled with Sanger sequencing to 
characterise AMR genotypes. Recently, whole genome sequencing (WGS) and metagenomic 
analysis have been deployed for extensive detection and characterization of AMR bacteria and 
resistance genes in wastewater samples. However, these approaches may not be suitable for 
immediate detection and decision-making in the field. Point of care tests (POCT) provide an option 
for quick and timely detection of AMR bacteria and resistance genes in wastewater.
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There are emerging, emerged, and promising technologies that could be used in the field. 
Traditional phenotypic resistance tests occur in a microbiology laboratory, and this simply involves 
culture and antimicrobial susceptibility testing in 2-days. These tests are often subjective and user 
dependent and therefore are not amenable for field detection of AMR. Phenotypic tests that could 
detect phenotypic resistance to antimicrobials at POCT would be useful. Flexicult (SSI Diagnostica, 
Hillerød Denmark) is a user-friendly platform for pathogen culture and AMR detection at POCT, 
but overnight incubation of cultured plates is still required before results are interpreted; this may 
prolong decision-making and intervention at the field which will impact transmission of AMR from 
wastewater to humans. A more rapid phenotypic resistance test that could detect AMR from 
wastewater in 10–15 minutes would be highly regarded to mitigate transmission. 

Rapid molecular technologies like isothermal amplification could provide the speed needed in the 
field. Among the isothermal technologies that have been extensively used in the development of 
rapid POCT is Loop mediated amplification (LAMP). LAMP has been used for the detection of Listeria 
monocytogenes from wastewater without DNA extraction in one hour using a water-bath set at 63∞C 
[37]. Also, this technology was recently used to detect SARS-CoV-2 (COVID-19) from wastewater 
[38]. Likewise, recombinase polymerase amplification (RPA) isothermal technology coupled with 
lateral flow strip has been shown to detect Ascaris suum ova in wastewater in less than 30 minutes 
at 37∞C [39]. Interestingly, in a proof of concept that used RPA coupled with microfluidic DNA chip, 
resistance gene (blaCTX-M) in water was detected and quantified in 40 minutes at 39∞C [40]. The 
isothermal diagnostic platform does provide an option for alternative detection of AMR organisms, 
but more research is required to demonstrate the potential of these technologies for detection of 
clinically relevant resistance genes from wastewater, which would help to improve control measures. 

Finally, the increasing use of genome data can facilitate the incorporation of machine learning 
algorithms to identify the source of EDZs. For example, support vector machine algorithms have 
been used to study the relatedness of E. coli isolates in different hosts [41]. These analyses can be 
key for public health strategies in specific sectors as E. coli isolates from cattle have been found 
to have genetic information linked to isolates associated with infection in humans [42]. On the 
other hand, studies of human-like influenza virus in swine have implemented maximum likelihood 
analyses and random forest algorithms to identify gene sequences to differentiate human-origin 
from swine-origin A(H1N1) viruses [43]. The outcomes of these models can improve understanding 
of the biological host restrictions that these pathogens need to overcome to successfully infect a 
new host and indicate its potential zoonotic threat to humans.

Another important use of machine learning to predict potential zoonotic spillovers is its integration 
with networks of shared pathogens to assess the sharing and transmission of different pathogen 
taxa between mammals and mammalian reservoirs of zoonoses. Many studies that investigate 
distribution patterns of pathogens among mammals focus on determinants of pathogen sharing 
within some host groups (mostly primates, bats, carnivores and rodents) or are limited to 
certain pathogens, such as viruses [17, 44, 45]. However, machine learning algorithms allow a 
more comprehensive approach for all non-human mammalian hosts and humans by assessing 
the factors for various taxa of pathogens such as bacteria and viruses [46]. These integrative 
alternatives highlight the importance of multidisciplinary approaches including modelling, field 
surveillance, and laboratory experiments to quantify zoonotic risks and support prevention 
strategies [47]. The development of techniques to distinguish animal-origin pathogens that can 
be associated with human-origin strains is necessary for infectious diseases surveillance.

INFORMING INTERVENTIONS FOR ENVIRONMENTALLY DRIVEN 
ZOONOSES THROUGH THE IDENTIFICATION OF MULTISECTORAL 
SYNERGIES IN POLICY FORMULATION
Given the multidimensional nature and complex problem of EDZs, policies for control and 
prevention require a multi-pronged approach. Interventions critically need to identify synergies 
in policy interventions that support the improvement of animal and human health with the 
least economic and cultural impact on local communities. An example of opportunity for 
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intervention measures occurs when we encounter a high density of animals (high contact 
rate), a high diversity of species (multi-host), and a confined environment, all conditions that 
are met during animal trade, such as in live bird markets (LBM). Despite the high risks to public 
health stemming from LBM, these markets provide multiple benefits to local communities. For 
instance, they greatly facilitate the accessibility to animal source foods, provide dietary diversity, 
and offer a cheaper option than supermarkets to low-income shoppers in several developing 
countries, hence contributing to food security in marginalised communities [48, 49]. In addition, 
live animal markets can provide an additional source of income from tourism [50], can be 
more environmentally sustainable than industrial food systems [51], and have the potential 
to improve the resilience of the food supply chain by supporting different food-acquisition 
strategies of large vulnerable populations [52]. Live bird markets represent a key avenue for 
many smallholder producers, which produce the largest share of the food in developing 
countries, as opposed to products from large-scale, intensified, and often international farms 
sold in formal supermarkets [49]. Therefore, LBMs present important trade-offs between three 
major sustainable development goals, i.e., (1) reducing poverty, (2) achieving food security and 
improved nutrition, and (3) ensuring healthy lives [53].

Market closure and disinfection are effective ways to reduce the amount of viable virus [54, 55]. 
However, because of the substantial socio-cultural benefits provided by live animal markets, it has 
been argued that, from a medium- and long-term perspective, negative impacts on nutrition and 
on the livelihoods of vendors associated with permanent closure of such markets may outweigh 
the health benefits [49, 56]. Such intervention may have unintended consequences, for instance 
inducing changes in the movement and trade of contaminated animals that can result in the 
spread of microorganisms outside of the original market, e.g., to markets in other regions [57]. 
In addition, permanent closures risk a shift of activities to informal markets, where biosecurity 
measures may become more difficult or impossible to implement [58]. 

Other control measures can contribute to mitigating the risk of contamination before closures 
become necessary, to include reducing the size of markets, selling single poultry species, performing 
cleaning and disinfection, banning overnight storage, and sourcing poultry from local areas; other 
useful measures could include installing handwashing facilities and toilets, providing adequate 
drainage, separating different species of live animals from meat and produce, and implementing 
protocols for cleaning food and slaughtering animals [59, 60].

Surveillance can be costly, and interventions should be prioritized where the risks are the highest. 
For instance, surveillance that prioritises market operations (e.g., wholesale, retail, both wholesale 
and retail), animal species, or seasons and time periods presenting higher risks of contamination 
can be a way to limit costs [61]. Previous studies have shown it is possible to optimize early 
detection of avian influenza in live bird markets by minimising trade-offs between surveillance 
costs and the number of infected birds in live markets at time of detection [62]. However, more 
research is needed to assess the capacity of predictive models to anticipate outbreaks based on 
environmental factors and decision support tools that can consider multiple criteria to identify 
risks and minimise trade-offs, e.g., the article by M.C. Paul et al [63].

Participatory disease surveillance and community-based reporting systems can significantly 
increase case detection in countries at risk of experiencing avian influenza and improve our 
understanding of the epidemiological situation as the local communities are the most vulnerable to 
socio-economic impacts of market closures [64]. Policy homogeneity is easier to design, politically 
appealing, and tends to be cheaper to implement in the short term. Fit-for-purpose surveillance 
systems that consider heterogeneity, localism, and consultation might be more expensive, but are 
likely to be more cost-effective in both the short and longer term [65]. 

Designing policies adapted to local stakeholders that can achieve One Health objectives and 
Sustainable Development Goals will require interdisciplinary research to analyse trade-offs and 
synergies between health, environmental, economic, and cultural interests, particularly given the 
increasing demand for animal source foods and population density in emerging countries.
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CONCLUDING REMARKS
Due to the complex interactions between their different hosts and the natural environment, EDZs pose 
a number of challenges with regard to the measurement of their determinants, the development 
of environmental detection methods, and the formulation of integrated policies for their control. 
One of the main gaps is the lack of understanding of the environmental and sociodemographic 
factors that affect the risk of exposure. Incorporating multiple correlated datasets, including 
environmental variables that are known to affect the survival, maintenance, and spread of EDZs 
into machine learning models can assist in obtaining better insights into these complex interactions 
and help predict areas of higher risk for better preparedness. Novel high throughput molecular 
techniques such as WGS and LAMP linked to machine learning algorithms have shown promise to 
better understand the pathogen-host-environment interaction for the development of detection 
and source attribution monitoring tools. The need for data-driven policy modelling approaches that 
fully consider the complexity in EDZ transmission is critical to inform disease control and prevention 
strategies [19]. Given the multidimensional nature of EDZs, to alleviate their burden in human and 
animal populations, effective and sustainable control and prevention measures must be informed 
by trade-offs between health, economic, and environmental objectives.
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