
Databases and ontologies

MOLGENIS/connect: a system for semi-

automatic integration of heterogeneous

phenotype data with applications in biobanks

Chao Pang1,2, David van Enckevort1, Mark de Haan1, Fleur Kelpin1,

Jonathan Jetten1, Dennis Hendriksen1, Tommy de Boer1, Bart Charbon1,

Erwin Winder1, K. Joeri van der Velde1, Dany Doiron3,4, Isabel Fortier3,4,

Hans Hillege2 and Morris A. Swertz1,2,*

1Department of Genetics, University Medical Center Groningen, Genomics Coordination Center, University of

Groningen, Groningen, The Netherlands, 2Department of Epidemiology, University Medical Center Groningen,

University of Groningen, Groningen, The Netherlands and 3Research Institute of the McGill University Health

Centre and 4Department of Medicine, McGill University, Montreal, Canada

*To whom correspondence should be addressed.

Associate Editor: Janet Kelso

Received on January 20, 2016; revised on March 14, 2016; accepted on March 15, 2016

Abstract

Motivation: While the size and number of biobanks, patient registries and other data collections

are increasing, biomedical researchers still often need to pool data for statistical power, a task that

requires time-intensive retrospective integration.

Results: To address this challenge, we developed MOLGENIS/connect, a semi-automatic system to

find, match and pool data from different sources. The system shortlists relevant source attributes

from thousands of candidates using ontology-based query expansion to overcome variations in

terminology. Then it generates algorithms that transform source attributes to a common target

DataSchema. These include unit conversion, categorical value matching and complex conversion

patterns (e.g. calculation of BMI). In comparison to human-experts, MOLGENIS/connect was able

to auto-generate 27% of the algorithms perfectly, with an additional 46% needing only minor edit-

ing, representing a reduction in the human effort and expertise needed to pool data.

Availability and Implementation: Source code, binaries and documentation are available as open-

source under LGPLv3 from http://github.com/molgenis/molgenis and www.molgenis.org/connect.

Contact: m.a.swertz@rug.nl

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Biobanks, patient registries and other human data collections have

become an indispensable resource to better understand the epidemi-

ology and biological mechanisms of disease. While these collections

have grown to include data from over 100 000s of individuals

(Scholtens et al., 2015), many research questions still require data

from multiple collections to reach sufficient statistical power or to

achieve sufficient numbers of subjects having rare (disease) charac-

teristics. To make data integration easy, all collections would ideally

use the same data collection protocols and questionnaires. In prac-

tice however, biobanks collect different data because of differences

in their scientific goals. For integration to be valid, data must be

compared and harmonized before combined analyses are carried out

(Fortier et al., 2011).

Substantial efforts are now underway to make data ‘inferentially

equivalent’ or ‘harmonized’ as a basis for pooled analysis. The

Maelstrom Research group has taken the lead in defining protocols

for retrospective data integration (https://www.maelstrom-research.

2176

Bioinformatics, 32(14), 2016, 2176–2183

doi: 10.1093/bioinformatics/btw155

Advance Access Publication Date: 21 March 2016

Original Paper

VC The Author 2016. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits

unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

http://github.com/molgenis/molgenis
http://www.molgenis.org/connect
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw155/-/DC1
Deleted Text: ,
https://www.maelstrom-research.org/
http://www.oxfordjournals.org/

org/) (Maelstrom Research, 2015). Within the BioSHaRE project,

we have re-used and refined this protocol to harmonize and inte-

grate 90 variables from 9 biobanks as a basis for pooled analysis

(Doiron et al., 2013). This research-question-driven approach con-

sists of three steps:

1. Defining the target DataSchema: the list of targeted variables ne-

cessary to address the research questions in a specific study;

2. Matching biobank schemas to the target DataSchema: match

data elements from participating data sources/biobanks to the

variables in the target DataSchema;

3. Generating of Extract-Transform-Load algorithms: define the

algorithms that take the matched source data elements as the in-

put and convert these data values to the target DataSchema for

data integration.

Existing biomedical data integration tools still require significant

manual effort and technical skill. For example, Maelstrom uses

Opal software for biobank pooling with a professional team to find

mappings and create algorithms, available at http://www.obiba.org/

pages/products/opal/ (Opal, 2011). Similarly, clinical/translational

data warehouses tranSMART and i2b2 require knowledgeable ana-

lysts to manually identify mappings, based on which ETL developers

implement the programmatic transformations (Murphy et al., 2010;

Szalma et al., 2010).

To alleviate this burden, we previously presented BiobankConnect,

a system to semi-automatically match data elements from biobanks to

target variables (Pang et al., 2015a). In this paper, we introduce an

additional system to semi-automatically define the transformation al-

gorithms to produce an integrated dataset. We have wrapped all func-

tions described above into an integrated user interface, MOLGENIS/

connect, to support research teams through the entire integration

procedure.

2 Methods

We have used the Maelstrom Research harmonization protocol as

the basis for our system. Figure 1 provides an overview of its main

components. First, we implemented a metadata model component

that allows users to upload, view and visualize the target

DataSchemas as well as the data of the source biobanks. Second, we

incorporated a semantic search facility to shortlist candidate source

data element matches to each variable in the target DataSchema.

Third, an integration algorithm generator incorporates algorithm

templates, semantic searches, category convertors and a unit

convertor.

2.1 Metadata model
To load both the target DataSchema as well as the various biobank

data models (i.e. data dictionaries), we have designed a flexible

meta-model called Entity Model Extensible (EMX), the documenta-

tion is available at http://molgenis.github.io/documentation/

(Molgenis, 2014). [TQ1]This model evolved from Observ-OM,

which has been proven to model all kinds of biomedical data

(Adamusiak et al., 2012). EMX is a lightweight version of Observ-

OM in which only two types of information (Entity and Attribute)

are needed to sufficiently describe a dataset. Attributes are features

that can be observed such as ‘disease’, ‘gender’ and ‘height’, and

which are often referred to as ‘metadata’ by researchers. In EMX,

an attribute ideally contains the following information: a unique

name, a pre-defined data type (e.g. string, integer, decimal), a

human readable label, a detailed description of the attribute and

how it can be used, and categories or cross-references (xrefs) if the

data type is categorical or a relationship (e.g. ‘Gender attribute’ has

two categories, ‘Male’ and ‘Female’). Entities are definitions of

tables that define groups of attributes as columns and data (entity in-

stances) as rows. The relations of entities and attributes are

described in Figure 2. In the rest of this paper, we will refer to both

of the variables of the target DataSchema and the data elements of

the source (biobank) as ‘attributes’.

2.2 Semi-automatic source-to-target attribute matching
Standard practice for identifying candidate biobank attributes for

pooled analyses has been to manually go through all data attributes

of all biobanks, an extremely time-consuming process. To automate

this step, we used our previously published BiobankConnect method

(Pang et al., 2015a). It combines the Information Retrieval System

of Lucene, available at https://lucene.apache.org/core/ (The Apache

Software Foundation, 2006), with query expansion to automatically

shortlist good candidate attributes. It consists of (i) query expansion

(Bhogal et al., 2007) in which attributes of the target DataSchema

are (semi-) automatically annotated (‘expanded’) with ontology

terms, whose synonyms and subclasses are collected to create a list

Fig. 1. The overview of the framework of MOLGENIS/connect

Fig. 2. Example of the EMX data upload format. Data can be uploaded using

Excel Metadata describing the columns of each data sheet (i.e. ‘entity’) that

must be provided in a special ‘attributes’ sheet. Data values are stored in or-

dinary sheets (e.g. ‘patients’). The ‘categorical’ gender attribute and the ‘xref’

disease attribute refer to another two sheets, ‘genders’ and ‘diseases’ (omit-

ted for readability)

MOLGENIS/connect: a semi-automatic system for data integration 2177

https://www.maelstrom-research.org/
http://www.obiba.org/pages/products/opal/
http://www.obiba.org/pages/products/opal/
Deleted Text: ; Murphy <italic>et<?A3B2 show $146#?>al.</italic>, 2010
http://molgenis.github.io/documentation/
https://lucene.apache.org/core/
Deleted Text: I

of semantically identical or similar terms that get added to the ori-

ginal query to find other relevant source attributes and (ii) retrieving

relevant attributes in which the ‘expanded’ target attributes are

matched against the biobank attributes using Lucene, and matched

candidates are sorted based on Lucene scores for human experts to

choose from, as described in (Pang et al., 2015a).

2.3 Transformation syntax
To create an executable data integration procedure, the rules for

transforming data from source to target attributes need to be

encoded in a computer algorithm. These algorithms transform attri-

bute values from the source datasets to the statistically equivalent at-

tribute value required in the target DataSchema. The simplest

algorithm simply renames the source attribute, e.g. transforming

‘length’ (in LifeLines) to ‘height’ in the target DataSchema. More

advanced algorithms can implement unit conversions, recode cate-

gories or execute more advanced formulas like a body mass index

(BMI) calculation.

For the implementation of the transformation algorithms, we

have used the ‘Magma’ (Magma, 2014) syntax, available at http://

wiki.obiba.org/display/OPALDOC/MagmaþJavascriptþAPI, which

is a domain-specific programming language for data harmonization

that was used in BioSHaRE. Magma is a JavaScript library that

works similar to jQuery, a popular JavaScript framework. To access

values, the name of attributes can be wrapped in brackets and a dol-

lar sign, e.g. $(‘var’). There are many methods available in Magma

which can be called by chaining calls to the attribute accessor, e.g.

$(‘var’).div(2). We have implemented the most commonly used

methods including div(), times(), plus(), map(), pow(), unit() and

toUnit(). In addition, we have created an algorithm generator, which

consists of a unit conversion algorithm generator, a categorical val-

ues algorithm generator and a complete algorithm generator,

described below.

2.4 Unit conversion algorithm generator
One of the recurring challenges in data harmonization is harmoniz-

ing units. Detecting units in attribute metadata can be difficult be-

cause different forms of units are used to describe the same

parameter in different databases, e.g. ‘meter’ is used to describe the

attribute ‘Height in meter’ in one database while ‘cm’ is used in

describing the attribute ‘Body length in cm’ in another. Because no

suitable algorithm generator could be found, we have developed a

new two-step method for unit convertor generation. First, unit terms

that occur in the label of target attributes and/or source attributes

are annotated with the Units of Measurement Ontology (UO).

Labels of attributes and target attributes are tokenized by white-

space and matched against terms in the UO using Lucene (analogous

to how BiobankConnect does attribute matching). To prevent false

positives, we accept only exact matches for unit detection. Second,

we have used the unit converter software library developed by

JScience (JScience, 2012), which is implemented based on The

Unified Code for Units of Measure http://www.unitsofmeasure.org/

trac (Schadow and McDonald, 2005), for international standard

units and commonly used non-standard units, available at http://

jscience.org/. This has a list of conversion rules for units that are

compatible, e.g. cm¼m�100 or g¼kg�1000. For example, to

convert units from ‘centimeter’ to ‘meter’ for the attribute ‘Height’,

the terms ‘centimeter’ and ‘meter’ are automatically annotated with

ontology terms UO:centimeter and UO:meter, respectively, based on

the formal name and synonyms of the units. The formal symbols of

these two units (cm and m) collected from the UO are then parsed to

JScience, in which the suitable rule is found for converting ‘cm’ to

‘m’ and incorporated into the algorithm template. We implemented

two different syntaxes for unit conversions: using a chain of expli-

cit methods, e.g. $(‘Height’).unit(‘cm’).toUnit(‘m’).value(), or

more by generating the necessary calculation formula, e.g.

$(‘Height’).div(100).value(). In the case of composite units or

derived units such as kg/m2, we first break them into the smallest

units (atomic units), then compare the atomic units with units of

matched attributes individually, and finally convert the units accord-

ingly. For example, the target attribute BMI (kg/m2) is matched to

source attributes height in cm and weight in gram. The term kg/m2

is broken apart into a set of atomic units, kg and m, which become

the standard units because they are detected/derived from the target

attribute, the cm and gram units detected from source attributes are

then converted accordingly.

2.5 Categorical values matching generator
Another recurring challenge is to generate algorithms that convert

between categorical values. For this, we explored matching catego-

ries automatically and identified three different types of categories

that need to be matched:

• Matching categories using lexical similarity: To find lexically

similar categories, we calculate the pairwise n-gram similarity

scores between all target and source categories. For each source

category, the target category that yielded the best n-gram similar-

ity score is automatically selected as the best match. For ex-

ample, the target attribute (Gender: ‘0¼Male, 1¼Female’) and

the source attribute (SEX:‘1¼Male, 2¼Female’) have the same

category labels but different category codes, the system matches

two sets of category labels onto each other based on the n-gram-

based string matching algorithm and with the final result

$(‘Gender’) ¼ $(‘SEX’).map({‘1’: ‘0’, ‘2’: ‘1’}). Thus source cat-

egory 1 and 2 are matched to target category 0 and 1,

respectively.
• Matching categories that represent frequencies: After scrutinizing

many biobank attributes and the target attributes, we realized

that there are a class of attributes that describes the frequencies

of certain activities or food consumption. Supplementary Table

S1 shows an example of matching attributes for consumption of

potatoes. The categories contain two types of information, time

units and frequencies, which can be extracted using regular ex-

pressions, e.g. 2–4 times a week has an average frequency 3 (2–4)

and the time unit week. The first step is to convert both the target

and source categories to quantifiable amounts; the second step is

to find the closest target amount category for each source

amount category. Because categories are often not matched one-

to-one, the algorithm is allowed to have multiple source amounts

matched to one target amount. The matching category function

is implemented in Java using JScience library (JScience, 2012).
• Matching categories based on pre-defined rules: In

Supplementary Table S2, we show a list of custom rules for

matching categories that we have hard-coded into the system.

2.6 Overall algorithm generator
The creation of algorithms is a tricky task and nearly impossible for

those inexperienced in programming. Therefore, as a last step, we

created a generator that assembles the complete algorithms.

Moreover, we have provided a catalogue of templates for more com-

plex algorithms such as ‘BMI calculation’, which can be found in

the Supplementary material javascript_magma.xls. Each template

defines its source and target attributes. These matching templates

2178 C.Pang et al.

Deleted Text: II
http://wiki.obiba.org/display/OPALDOC/Magma+Javascript+API
http://wiki.obiba.org/display/OPALDOC/Magma+Javascript+API
http://wiki.obiba.org/display/OPALDOC/Magma+Javascript+API
http://wiki.obiba.org/display/OPALDOC/Magma+Javascript+API
http://www.unitsofmeasure.org/trac
http://www.unitsofmeasure.org/trac
http://jscience.org/
http://jscience.org/
Deleted Text: ,
Deleted Text: ,
Deleted Text: kg/m2
Deleted Text: &hx2019;
Deleted Text: &hx2019;
Deleted Text: &hx2019;
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw155/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw155/-/DC1
Deleted Text: -
Deleted Text: -
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw155/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw155/-/DC1

will be proposed to the user if one or more of the matched attributes

relates to this template, e.g. ‘height’ or ‘weight’ in the case of BMI.

Figure 3 summarizes the process of generating the complete algo-

rithm using the example of the target attribute ‘Body Mass Index’

from source biobank Prevend is summarized. It consists of the fol-

lowing steps: I) the system looks in its database to find the available

algorithm template for BMI, II) it uses the BiobankConnect algo-

rithm to generate a list of relevant attributes, III) it applies the unit

conversion algorithms towards kg/m2 (e.g. LENGT_1 was measured

using centimeter (cm) rather than the standard unit meter (m) and

therefore needs to be converted), and IV) the building blocks within

the BMI template are replaced with the matched attributes using the

string-matching algorithm (n-gram)(e.g. ‘weight’ was matched with

‘WEIGHT_1:Weight (kg)’ and ‘height’ was matched with

LENGT_1: Length (cm) based on the best lexical similarity scores).

3 Implementation

We have implemented above methods into a seamless user work-

flow: (i) users upload a target DataSchema and the source biobank

data, (ii) users then create a mapping project and select target

DataSchema and data sources, (iii) MOLGENIS/Connect automatic-

ally generates all matches and conversion algorithms for all data

sources and all target attributes, (iv) the user curates each of the

matches and algorithms using the algorithm editor and preview tool

and (v) MOLGENIS/Connect generates the integrated dataset. We

describe each step in detail below. The integration tool has been

built on top of the MOLGENIS software suite and reuses its basic

functions (upload, metadata viewer, data explorer, permission sys-

tem) (Swertz et al., 2010). MOLGENIS is a Java/Maven web appli-

cation implemented using MySql and ElasticSearch as back-end and

HTML5, Bootstrap, jQuery, ReactJS as front-end. The source code

is available at https://github.com/molgenis.

3.1 Upload and view target DataSchema and data

sources
In this step, users upload target DataSchema and source data via the

standard MOLGENIS upload. For this purpose, we use the ‘EMX’

format (Molgenis, 2014), a spreadsheet-based format to describe

and upload tabular datasets and definition of their schemas that can

be edited directly using Microsoft Excel or text editor (CSV files).

For the target DataSchema, one spreadsheet is required that defines

‘attributes’ of the target DataSchema such as name, description and

data type (see ‘attributes’ sheet in Fig. 2). For each biobank, two

spreadsheets are required: a ‘attributes’ metadata sheet just like the

target DataSchema that defines the attributes of each dataset and

one or more dataset sheets where each column matches the attri-

butes and each row is, e.g. data on each biobank participant (see

‘your data’ table in Fig. 2). The data that has been uploaded can be

viewed and filtered using MOLGENIS data explorer.

3.2 Create a mapping project
In this step users start a new mapping project with the desired

DataSchema as the target and the biobank datasets as the sources.

Once these are selected, the system will generate an overview of at-

tribute matches (described below) (Fig. 4).

3.3 Generate overview of attribute mappings from

source to target DataSchema
In this step the system generates a complete overview of all target at-

tributes (shown in the first column) and all the matches from the

source attributes (shown in the following columns), see Figure 4.

When a user selects a new data source, the system automatically

generates candidate matches. Each match can be edited and tested

using the algorithm editor described below. To open this view, users

click on the pencil icon located in any of the cells. For this purpose,

we have refactored the BiobankConnect system, which uses ontol-

ogy terms to generate the candidate matches (Pang et al., 2015a).

Based on user feedback, we learned that manual annotation of target

attributes with ontologies previously required was too labour-

Fig. 3. Example of algorithm generation for target attribute BMI from the

Prevend data source (1) a transformation template is generated from the can-

didate matches (using Magma syntax), (2) the template is automatically

edited based on unit conversion rules if applicable and (3) the software evalu-

ates if more complex algorithm templates can be used. Based on two good

candidate matches and the desired ‘BMI’ target, a previously used BMI con-

version algorithm is proposed that incorporates the unit conversion rules

(e.g. from ‘cm’ to ‘m’ because BMI is recorded as composite unit kg/m2)

Fig. 4. Mapping project overview. The attributes of the target DataSchema

are shown on the left of the table. The columns contain matching attributes

from each of the sources. New source data can be added by clicking the

‘þAdd source’ button. Attribute matches and conversion algorithms are auto-

matically generated and colour coded to indicate if the algorithms are gener-

ated with high confidence (perfect match in semantic search) or low quality

(partial match in semantic search) or to indicate if an algorithm has been

curated by the user

MOLGENIS/connect: a semi-automatic system for data integration 2179

Deleted Text: summarizes
Deleted Text: kg/m2
Deleted Text: 1
Deleted Text: 2
Deleted Text: 3
Deleted Text: 4
Deleted Text: 5
https://github.com/molgenis
Deleted Text: Figure
Deleted Text: ,
Deleted Text: Figure

intensive. We have, therefore, now included automatic annotation

in which the label and description of the target attributes are used to

find ontology terms in all available ontologies (e.g. NCI, SNOMED

CT and MeSH) in the database.

3.4 Edit and test data transformations
In this step the user can edit the integration algorithm, see

Supplementary Figure S3. This is the heart of the system and consists

of three components: (i) the source attribute selector, (ii) the algo-

rithm editor and (iii) the result preview.

In the source attribute selector (shown on the left of the screen)

shortlists candidate attributes sorted by lexical matching scores be-

tween the ontology terms associated to the target attribute and label

or description of the source attributes. The words from the ontology

terms are highlighted in each attribute label or description. Based on

the importance of the highlighted words, users can immediately de-

termine whether the candidates generated are good matches for the

target attribute or not. In the example in Supplementary Figure S4a,

the words blood and pressure are highlighted in the attribute ‘Mean

blood pressure’ and it is clear that this attribute is related but not the

same as ‘Hypertension’. If no good candidates are shown, the user

can enter terms in the semantic search box to quickly find additional

attributes using the syntax term1 or term2 (e.g. weight or gender),

see Supplementary Figure S4b. These query terms are matched with

ontology terms to enable expanded query.

In the algorithm editor (shown in the middle), the user sees the

auto-generated algorithm for the selected attribute (or multiple attri-

butes) using the Magma/JavaScript syntax (see methods section).

We mostly dealt with two types of target attributes: numeric attri-

butes whose value can either be integer or decimal, e.g. the value for

‘height’ is a decimal number, and categorical attributes which only

have a limited number of allowed values, e.g. values for ‘gender’

written in the JSON-like (http://www.json.org/) (JSON.org, 2014)

format {code¼0, label¼male}, {code¼1, label¼ female}. To gener-

ate algorithms for these target attributes, we usually need one source

attribute, although sometimes the values of multiple attributes need

to be combined, e.g. values for ‘BMI’ must be generated via ‘height’

and ‘weight’. Other data types supported include Date, Boolean,

String and Text (see EMX documentation).

In the result preview (shown on the right of the screen), the user

sees a subset of the results of the converted data and how many of

the data conversions failed, e.g. because of syntax errors. This

allows users to rapidly test and correct their conversion algorithms.

3.5 Create the derived dataset and explore the results
Having defined the algorithms in Magma/JavaScript as described

above, users can execute the transformation process from within the

mapping project overview. The data conversion engine is imple-

mented using Rhino and the R interface with Rcurl and rjson, where

Rcurl is used to retrieve data in JSON (JSON.org, 2014) format and

convert it to a DataFrame object in R. A new dataset is then created

that stores values in the target DataSchema. Users can access the

data through MOLGENIS data explorer where advanced filtering

function and visualization capability are offered. The integrated

data can be downloaded in comma-separated values (CSV) and

Microsoft Excel. We also provide the R Application Programming

Interface (R-API), which allows users to access data in the R statis-

tical environment (see MOLGENIS documentation), and HTTP

REST/JSON interfaces to integrate with other software.

4 Results

We performed a qualitative evaluation by applying the software in

active BioSHaRE, BBMRI and RD-Connect harmonization projects

and a quantitative evaluation by comparing the auto-generated algo-

rithms with the manually curated algorithms within the BioSHaRE

Healthy Obese Project (Van Vliet-Ostaptchouk et al., 2014).

4.1 Matching numeric attributes
In the example shown in Supplementary Figure S5a, the target attri-

bute ‘Measured Standing Height’ was matched to source attributes

in the LifeLines biobank (Scholtens et al., 2015). The first source at-

tribute suggested, ‘Height in cm’, is used by default in generating the

algorithm. The unit ‘cm’ was detected by the system in the source at-

tribute whereas there was no mention of unit in the target attribute,

therefore the target unit was assumed to be the same as the source

attribute and unit conversion was not needed. Algorithms are exe-

cuted automatically whenever users change the algorithm syntax in

the editor; an updated preview of algorithm results is provided to

evaluate.

4.2 Matching categorical attributes
Supplementary Figure S5b shows another example, in which the tar-

get attribute and the source attribute were both categorical. We im-

plemented the Magma map({c1:c1’, c2:c2’. . ..}) function to match

categories of the target attribute and source attribute onto each

other. A category-matching editor is demonstrated, where two sets

of categories could be easily matched by selecting target categories

from the dropdown menus. The results from the matching editor

were converted to the Magma syntax so users could easily create

matching functions without writing complex algorithms.

4.3 Evaluation of algorithm generator
We compared the output of the auto-generated transformation algo-

rithms with manually curated algorithms for all 90 target attributes

from the BioSHaRE Healthy Obese Project (Van Vliet-Ostaptchouk

et al., 2014) and three of the biobanks (LifeLines, Prevend and

Mitchelstown) for which we had the participant-level data values

(184 algorithms in total). We evaluated the performance of semantic

search and algorithm generation separately.

To evaluate the semantic search, we defined three result catego-

ries: perfect search, good search and bad search. A search result is

‘perfect’ when the human-matched source attribute was ranked 1st

in the system-suggested list. A search result is ‘good’ when all

human-matched source attributes can be found within top 20 of the

suggested list. We chose this threshold because there were a few tar-

get attributes for which HOP research assistants used more than 10

source attributes. For example, there are 16 source attributes related

to the target attribute ‘current consumption of meat product’ in

Mitchelstown.

To evaluate the algorithm generator, we also defined three cate-

gories (perfect, good and bad). Algorithms were classified as ‘per-

fect’ when the auto-generated algorithms were the same as or

functionally equivalent to manually created ones (i.e. when the algo-

rithms yield the same target values when executed on the source

dataset). Algorithms were ‘good’ when they were almost correct but

still required the users to fix them by hand. For example, when half

of the categorical values were correctly matched between the source

and the target attributes, but some additional matches also needed

to be added by hand to complete the algorithm. An algorithm is

evaluated to be ‘bad’ when the algorithm needs to be completely

replaced by a human-edited version.

2180 C.Pang et al.

http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw155/-/DC1
Deleted Text: 1
Deleted Text: 2
Deleted Text: 3
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw155/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw155/-/DC1
http://www.json.org/
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw155/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw155/-/DC1
Deleted Text: s
Deleted Text:

Table 1 summarizes the quantitative evaluation (the complete

data can be found in the Supplementary material

Evaluation_results.xlsx): 27.7% of the algorithms generated were

immediately equivalent to the manually created ones (perfect search,

perfect algorithm); 9.8% of the algorithms generated where perfect,

but only after users chose the right source attributes from the list of

candidates (good search, perfect algorithm); 16.8% of the algo-

rithms generated were partially correct and required users to modify

them (perfect search, good algorithm); also we considered (good

search, good algorithm), (bad search, perfect algorithm) and (perfect

search, bad algorithm) to be useful. Thus, in total, 73% of the re-

sults were deemed useful (summing up the green colour-coded cells

in Table 1, 27.7þ16.8þ1.6þ9.8þ7.1þ18¼73).

5 Discussion and future work

In the RESULTS section we demonstrated that MOLGENIS/connect

can help users can quickly identify relevant source attributes and

that the program auto-generates mostly useful data integration algo-

rithms. Here we discuss potential areas of improvement.

5.1 Domain-specific improvements
To obtain more insights into the cases for which the system performs

well and the cases for which the system needs improvement, we

have grouped all the target attributes into 10 areas of information:

Diet, Disease, Alcohol use, Education, Food, Employment, physical

and laboratory measurement, Medication, Tobacco use and General

(e.g. Age, Gender). We summarize the performance of the algorithm

generator as well as semantic search per topic in Table 2 and Figure

5, for further details see Supplementary Table S6.

Figure 5 indicates that semantic search does not perform well on

‘Food and ‘Job’ while algorithm generator needs improvement for

‘Medication’, ‘Smoking’ and ‘Drinking’. Smoking and Drinking

turned out to be very difficult to handle because how these attributes

are defined in different biobanks varies in description and structure.

There are more than 40 smoking-related attributes in LifeLines ver-

sus only 3 in Prevend. As a consequence, it was very difficult for se-

mantic search to identify ‘the one attribute’ among many similar

ones. Further, because there were few recurring patterns, the algo-

rithm generator did not know how to generate the algorithms even

though the source attributes were provided. We originally thought

that the attribute Medication would be well standardized across

Table 1. Summary of the quality measures of algorithm generator and semantic search (in percentages)

Perfect algorithms Good algorithms Bad algorithms Total

Perfect search 51 (27.7%) 31 (16.8%) 3 (1.6%) 85 (46.1%)

Good search 18 (9.8%) 13 (7.1%) 17 (9.2%) 48 (26.1%)

Bad search 18 (9.8%) 12 (6.5%) 21 (11.4%) 51 (27.7%)

Total 87 (47.3%) 56 (30.4%) 41 (22.3%) 184 (100.0%)

Cells are colour-coded to represent the amount of human input (manual work) required to fix the matching, with green being the easiest and red being the most

difficult (Please see the online article at http://bioinformatics.oxfordjournals.org/ for the colour-coded table).

Table 2. Quality measures of algorithm generator and semantic search in percentages, grouped by attribute topic

Algorithm generator Semantic search

Perfect (%) Good (%) Bad (%) Perfect (%) Good (%) Bad (%)

Diet (10) 50 40 10 70 30 0

Disease (14) 86 14 0 71 29 0

Drink (8) 0 38 63 50 38 13

Education (17) 0 82 18 65 35 0

Food (42) 88 5 7 14 33 52

General (18) 28 50 22 50 11 39

Job (8) 0 100 0 25 0 75

Measurement (42) 62 17 21 74 10 17

Medication (11) 0 36 64 27 36 36

Smoking (14) 1 21 64 14 57 29

Total (184) 47 30 22 46 26 28

The numbers between brackets indicate the number of target attributes.

Fig.5. Scatter plot visualizing the success rates of algorithm generator and se-

mantic search per attribute domain. The X-axis and Y-axis represent ‘useful

algorithm’ (defined as when the algorithms generated are correct or partially

correct) and ‘useful search’ (defined as when the matched source attributes

found fall within top 20 of the suggested list) categories of algorithm gener-

ator and semantic search in Table 2. The numbers in parenthesis are the

number of attributes for the corresponding topics

MOLGENIS/connect: a semi-automatic system for data integration 2181

Deleted Text: [TQ2]
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw155/-/DC1
Deleted Text: &hx0026;
Deleted Text: F
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw155/-/DC1
Deleted Text: n&hx2019;t
http://bioinformatics.oxfordjournals.org/

biobanks due to the use of ATC code. In practice, some biobanks

still use internally defined terminology to record medication infor-

mation, making it more challenging to integrate medication data

automatically. On the other hand, rather complex Food and Job tar-

get attributes scored unexpectedly ‘good’ in algorithm generation.

Semantic search is currently limited because we only used

small subsets of SNOMED CT and NCI Thesaurus ontologies

(for performance reasons). The search capability may be further

improved by using the complete version of those ontologies. For

instance, the target attribute ‘Current Consumption Frequency of

Poultry and Poultry Products’ was matched to the source attri-

bute Breaded chicken through manual matching, but semantic

search missed this match due to the lack of knowledge of such

terminology. The relation ‘Chicken is_subclass_of Poultry’ is

stated explicitly in full SNOMED CT and search results could be

greatly improved by incorporating such information. Other chal-

lenges in mapping attributes are the problem of family history,

e.g. ‘parental diabetes’ which was discussed in (Pang et al.,

2015a), and of negation, e.g. ‘I do not smoke’ is considered rele-

vant to the target attribute ‘quantity of cigarette smoked’. One

of the potential solutions would be to highlight the negative

words in a specific colour in the suggested source attributes,

such as not, never and do not, so users can immediately choose

to skip those attributes.

5.2 Complex algorithms
Although semantic search and algorithm generator seem to work

well, the algorithm template functionality is still limited because we

can only define templates for target attributes that have a clear def-

inition or recurring pattern such as BMI and hypertension. It is not

possible to formulate templates for ambiguous target attributes. For

example, BioSHaRE researchers manually created the algorithm for

the target attribute Quantity of Beer Consumption in LifeLines fol-

lowing the logic (i) whether or not the participants have had any al-

coholic drinks (yes/no); (ii) if ‘yes’ the quantity of beer will be

returned otherwise a null value will be returned. The pseudo code of

the algorithm is shown below:

ifð$ð‘drinking alcohol’Þ:valueðÞ ¼¼ ‘yes’Þ

return $ð‘beer quantity’Þ:valueðÞ;

else

return null;

However, there are two major remaining challenges in generat-

ing this kind of algorithm. First, semantic search is only able to find

beer-related attributes; it still misses the alcohol-drinking-related

ones because, while subclass relations are used in the query expan-

sion in semantic search, reversed relations are not. The search knows

about the fact that beer is a subclass_of alcoholic drink but does not

understand that alcoholic drink is a superclass_of beer. We did not

include such reversed relations in the query expansion to prevent se-

mantic search from finding too many false positives (irrelevant

source attributes). This problem could be solved in the future by

including a ‘semantic relatedness’ metric into the system. Wu and

Palmer proposed to calculate the semantic similarities of any two

concepts by considering the depths of the concepts within the onto-

logical hierarchy and the lowest common ancestor in the WordNet

taxonomy (Wu and Palmer, 1994),

WUP similarity ¼ 2� depth of lowest common ancestor

depth of concept1 þ depth of concept2

For example, the semantic similarity for ‘beer’ and ‘alcoholic

drink’ is 91% when using the tool provided by wsj4 Java library

online demo http://ws4jdemo.appspot.com/?mode¼w&s1¼&w1

¼beer%23n%231&s2¼&w2¼alcoholic_drink%23n%231 (Shima,

2011).

Second, even if suitable source attributes (beer and alcoholic

drinks) can be found by semantic search, the algorithm generator

does not know how to handle them because there are no suitable

templates for these two attributes. One of potential solutions would

be to train the system to learn the patterns of the existing algorithms

defined by the human experts, i.e. to reuse all the matches that have

been created before as potential templates. This would enable the

system to utilize the human expert knowledge now implicitly avail-

able in the data conversion algorithms.

5.3 Repeated measurements
We observed that the same attribute is often measured multiple

times to reach a high precision or to establish time series. For in-

stance, in the Mitchelstown biobank, systolic blood pressure was

measured three times: systolic blood pressure 1st reading, systolic

blood pressure 2nd reading and systolic blood pressure 3rd reading.

When the target attribute Systolic Blood Pressure is matched to

Mitchelstown, we could decide to take the average value of those

source attributes. Because all the repeated attributes are lexically

close, it would be possible for the system to check if the top sug-

gested attributes are repeated measurements and then decide

whether or not to take the average value.

5.4 Matching and recoding of categorical data
To robustly match categories, we not only enabled lexical matching

but also developed a new frequency matching method (see

Supplementary Table S1). Moreover, we introduced a rule-based

category matching system in which we have hardcoded rules to

make the system smart enough to deal with difficult categories (see

Supplementary Table S2). Most of the categories shown in the evalu-

ation section could be matched correctly, but there will no doubt be

new special cases that require us to add new rules. We would like to

allow users to define custom rules for matching categories in the

database. For matching string-type data values, we have developed a

tool (SORTA) to semi-automatically recode the values based on the

selected coding systems or ontologies, which we plan to incorporate

in the near future (Pang et al., 2015b).

5.5 Statistical matching
Although units are now accurately detected from the label of attributes

using the string-matching algorithm, not all attributes actually contain

any information regarding units. In those cases, users now have to

guess the unit from data values based on their empirical experience.

However, when biobank datasets are available in the system, it should

be possible to extrapolate the units using a statistical approach in

which the distribution of data values is compared to the distributions

of other source data values for which unit information is available.

6 Conclusion

We have introduced and demonstrated the utility of MOLGENIS/

connect, a generic computer system for semi-automatic harmoniza-

tion and integration of data with focus on human phenotypes in

2182 C.Pang et al.

Deleted Text: n&hx2019;t
Deleted Text: 1
Deleted Text: 2
Deleted Text: ,
http://ws4jdemo.appspot.com/?mode=w&hx0026;s1=&hx0026;w1=beer%23n%231&hx0026;s2=&hx0026;w2=alcoholic_drink%23n%231
http://ws4jdemo.appspot.com/?mode=w&hx0026;s1=&hx0026;w1=beer%23n%231&hx0026;s2=&hx0026;w2=alcoholic_drink%23n%231
http://ws4jdemo.appspot.com/?mode=w&hx0026;s1=&hx0026;w1=beer%23n%231&hx0026;s2=&hx0026;w2=alcoholic_drink%23n%231
http://ws4jdemo.appspot.com/?mode=w&hx0026;s1=&hx0026;w1=beer%23n%231&hx0026;s2=&hx0026;w2=alcoholic_drink%23n%231
http://ws4jdemo.appspot.com/?mode=w&hx0026;s1=&hx0026;w1=beer%23n%231&hx0026;s2=&hx0026;w2=alcoholic_drink%23n%231
http://ws4jdemo.appspot.com/?mode=w&hx0026;s1=&hx0026;w1=beer%23n%231&hx0026;s2=&hx0026;w2=alcoholic_drink%23n%231
http://ws4jdemo.appspot.com/?mode=w&hx0026;s1=&hx0026;w1=beer%23n%231&hx0026;s2=&hx0026;w2=alcoholic_drink%23n%231
http://ws4jdemo.appspot.com/?mode=w&hx0026;s1=&hx0026;w1=beer%23n%231&hx0026;s2=&hx0026;w2=alcoholic_drink%23n%231
http://ws4jdemo.appspot.com/?mode=w&hx0026;s1=&hx0026;w1=beer%23n%231&hx0026;s2=&hx0026;w2=alcoholic_drink%23n%231
http://ws4jdemo.appspot.com/?mode=w&hx0026;s1=&hx0026;w1=beer%23n%231&hx0026;s2=&hx0026;w2=alcoholic_drink%23n%231
http://ws4jdemo.appspot.com/?mode=w&hx0026;s1=&hx0026;w1=beer%23n%231&hx0026;s2=&hx0026;w2=alcoholic_drink%23n%231
http://ws4jdemo.appspot.com/?mode=w&hx0026;s1=&hx0026;w1=beer%23n%231&hx0026;s2=&hx0026;w2=alcoholic_drink%23n%231
Deleted Text: n&hx2019;t
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw155/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw155/-/DC1

biobanks, patient registries and biomedical research. The system in-

cludes a novel method to automatically generate harmonization/in-

tegration algorithms based on ontological query expansion, lexical

matching and algorithm template matching. Evaluation in 184

BioSHaRE matches showed MOLGENIS/connect is able to generate

useful matches and algorithms in 73% of the cases while only 11%

still needed to be created by completely hand. Users can use these

auto-generated algorithms to rapidly design and execute the integra-

tion via a user-friendly online web application. The application and

source code are available as open source via the MOLGENIS soft-

ware suite at http://github.com/molgenis/molgenis and a demo can

be found at http://www.molgenis.org/connect.

Acknowledgements

We thank our collaborators in BioSHaRE, Maelstrom Research and OBiBa

(most notably Yannick Marcon, Vincent Ferreti), the contributing biobanks

(LifeLines, Prevend and Mitchelstown), our collaborators from RD-Connect

(most notably Lucia Monaco and the partner biobanks), BBMRI-ERIC (most

notably Kaisa Silander, National Institute for Health and Welfare, Helsinki)

and Kate Mc Intyre for editing the manuscript.

Funding

This work was supported by the European Union Seventh Framework

Programme (FP7/2007–2013) grant number 261433 (Biobank

Standardisation and Harmonisation for Research Excellence in the European

Union – BioSHaRE-EU), grant number 284209 (BioMedBridges) and grant

number 305444 (RD-Connect) and by BBMRI-NL, a research infrastructure

financed by the Netherlands Organization for Scientific Research (NWO),

grant number 184.021.007.

Conflict of Interest: none declared.

References

Adamusiak,T. et al. (2012) Observ-OM and Observ-TAB: universal syntax

solutions for the integration, search and exchange of phenotype and geno-

type information. Hum. Mutat., 33, 867–873.

Bhogal,J. et al. (2007) A review of ontology based query expansion. Inf.

Process. Manage., 43, 866–886.

Doiron,D. et al. (2013) Data harmonization and federated analysis of popula-

tion-based studies: the BioSHaRE project. Emerg. Themes. Epidemiol., 10,

12.

Fortier,I. et al. (2011) Is rigorous retrospective harmonization possible?

Application of the DataSHaPER approach across 53 large studies. Int. J.

Epidemiol., 40, 1314–28.

JScience. (2012) JScience. http://jscience.org/ (8 July 2015, date last accessed).

JSON.org. (2014) Introducing JSON. http://www.json.org/ (25 September

2015, date last accessed).

Maelstrom Research. (2015) Maelstrom Research. https://www.maelstrom-

research.org/ (12 December 2015, date last accessed).

Magma. (2014) Magma Javascript API. http://wiki.obiba.org/display/

OPALDOC/Magma+Javascript+API (20 July 2015, date last accessed).

Molgenis. (2014) EMX upload format. https://github.com/molgenis/molgenis/

wiki/EMX-upload-format (20 July 2015, date last accessed).

Murphy,S.N. et al. (2010) Serving the enterprise and beyond with informatics

for integrating biology and the bedside (i2b2). J. Am. Med. Inf. Assoc.:

JAMIA, 17, 124–130.

Opal. (2011) Opal. http://www.obiba.org/pages/products/opal/ (20 July 2015,

date last accessed).

Pang,C. et al. (2015a) BiobankConnect: Software to Rapidly Connect Data

Elements for Pooled Analysis across Biobanks Using Ontological and

Lexical Indexing. J. Am. Med. Inform. Assoc., 22, 65–75.

Pang,C. et al. (2015b) SORTA: a system for ontology-based re-coding and

technical annotation of biomedical phenotype data. Database, 2015.

bav089.

Schadow,G. and McDonald,C.J. (2005) The Unified Code for Units of

Measure (UCUM). http://unitsofmeasure.org/ (20 January 2016, date last

accessed).

Scholtens,S. et al. (2015) Cohort Profile: LifeLines, a three-generation cohort

study and biobank. Int. J. Epidemiol., 44, 1172–1180.

Shima,H. (2011) WordNet similarity for Java.

Swertz,M.A. et al. (2010) The MOLGENIS toolkit: rapid prototyping of bio-

software at the push of a button. BMC Bioinformatics, 11, S12.

Szalma,S. et al. (2010) Effective knowledge management in translational medi-

cine. J. Transl. Med., 8, 68.

The Apache Software Foundation. (2006) Apache Lucene. https://lucene.apa

che.org/core/ (7 October 2015, date last accessed).

Van Vliet-Ostaptchouk,J.V. et al. (2014) The prevalence of Metabolic

Syndrome and metabolically healthy obesity in Europe: a collabora-

tive analysis of ten large cohort studies. BMC Endocrine Disorders,

14, 13.

Wu,Z., and Palmer,M. (1994) Verb Semantics and Lexical Selection.

In: 32nd Annual Meeting on Association for Computational

Linguistics, p. 6.

MOLGENIS/connect: a semi-automatic system for data integration 2183

http://github.com/molgenis/molgenis
http://www.molgenis.org/connect
Deleted Text: -
Deleted Text: -
http://jscience.org/
http://www.json.org/
https://www.maelstrom-research.org/
https://www.maelstrom-research.org/
http://wiki.obiba.org/display/OPALDOC/Magma+Javascript+API
http://wiki.obiba.org/display/OPALDOC/Magma+Javascript+API
https://github.com/molgenis/molgenis/wiki/EMX-upload-format
https://github.com/molgenis/molgenis/wiki/EMX-upload-format
http://www.obiba.org/pages/products/opal/
http://unitsofmeasure.org/
https://lucene.apache.org/core/
https://lucene.apache.org/core/

	btw155-TF1
	btw155-TF2

