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Abstract

Chronic wounds are wounds that cannot heal properly due to various factors, such as underlying

diseases, infection or reinjury, and improper healing of skin wounds and ulcers can cause a

serious economic burden. Numerous studies have shown that extracellular vesicles (EVs) derived

from stem/progenitor cells promote wound healing, reduce scar formation and have significant

advantages over traditional treatment methods. EVs are membranous particles that carry various

bioactive molecules from their cellular origins, such as cytokines, nucleic acids, enzymes, lipids

and proteins. EVs can mediate cell-to-cell communication and modulate various physiological

processes, such as cell differentiation, angiogenesis, immune response and tissue remodelling.

In this review, we summarize the recent advances in EV-based wound healing, focusing on the

signalling pathways that are regulated by EVs and their cargos. We discuss how EVs derived from

different types of stem/progenitor cells can promote wound healing and reduce scar formation

by modulating the Wnt/β-catenin, phosphoinositide 3-kinase/protein kinase B/mammalian target

of rapamycin, vascular endothelial growth factor, transforming growth factor β and JAK–STAT

pathways. Moreover, we also highlight the challenges and opportunities for engineering or

modifying EVs to enhance their efficacy and specificity for wound healing.
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Highlights

• EVs derived from stem/progenitor cells can enhance wound healing and reduce scar formation by modulating various
signalling pathways and inflammatory mediators.

• EVs modulate various signalling pathways, such as Wnt/β-catenin, PI3K/AKT/mTOR and VEGF, to regulate inflammation,
angiogenesis, cell proliferation and migration, and extracellular matrix remodelling.

• Engineered EVs can optimize their therapeutic potential and target specific aspects of wound healing.

Background

Wound healing refers to the healing process of skin and other
tissues after being broken or damaged by external forces,
and includes the complex combination of regeneration of
various tissues, granulation tissue hyperplasia and scar tissue
formation [1, 2]. Wound care is one of the fastest growing
segments of the modern health care market, with the global
wound care market valued at US $17.49 billion in 2021.
The market is projected to grow from USD 18.51 Billion
in 2022 to USD 28.23 billion in 2029, progressing at a
compound annual growth rate (CAGR) of 6.2% during the
forecast period. The types of wounds have also changed.
Wounds can be divided into acute or chronic wounds [3,
4]. At present, refractory chronic wounds have surpassed
acute wounds, and have become a widespread medical burden
worldwide, bringing pain, psychological pressure and loss
of quality of life to millions of people [5]. The common
clinical chronic wounds mainly manifest as pressure ulcers,
diabetic foot ulcers and venous ulcers of the lower limbs.
The global epidemic of chronic underlying diseases, such as
ageing, heart disease and intractable infections, contributes to
the development of chronic wounds [6, 7]. Traditional treat-
ment options for chronic wound healing are now divided into
nonsurgical and surgical treatments. Nonsurgical treatments

include physical therapy, negative pressure wound therapy,
gene therapy, new surgical dressing and application of growth
factors [8–13]. Refractory wounds have multiple aetiologies
and pathologies, but the clinical symptoms are quite similar,
making diagnosis and proper treatment difficult [14]. How to
prevent scar formation caused by refractory wounds is also a
tricky problem and new treatment options are needed [15].

Extracellular vesicles (EVs) can be used in the diagno-
sis and treatment of many wounds and diseases and are a
promising new therapy [16]. EVs are 30 nm–10 μm mem-
branous particles that can be derived from almost all cell
types, and that transfer various bioactive molecules between
cells, thereby mediating a variety of physiological processes,
such as cell differentiation and proliferation, blood vessel
formation, stress response and immune response [17]. EVs
are natural, nanotransport particles with biocompatibility,
circulatory stability, low toxicity and low immunogenicity,
so they can be used as efficient carriers of molecular cargo
and are ideal therapeutic candidates for regenerative medicine
[18]. In addition, compared with synthetic transporters, EVs
are more stable, simpler to produce and lower in cost. Sev-
eral studies have demonstrated that stem cell therapy has a
significant effect in the treatment of trauma [19]. Recently,
it has been found that stem cells exert their effects mainly
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through EVs, and EVs can bypass the potential tumourigenic
risk of stem cells, adverse immune response and poor survival
of stem cells in wounds [20]. In other words, EVs are more
promising because they have better therapeutic effects than
stem cells and can avoid many disadvantages of cell therapy.
EVs derived from stem/progenitor cells have shown great
potential in the treatment of refractory wounds and have
been investigated for skin beauty treatment, relief of chronic
skin wounds caused by diabetes and bedsores [21, 22]. There
are even teams investigating the efficacy of EVs for many
diseases, such as epidermolysis bullosa, dry eye, cardiovascu-
lar diseases, cancer, neurodegenerative diseases and COVID-
19, showing the powerful generalizability of the therapeutic
effects of EVs [23].

An engineered EV is a type of EV that has been modified
or enhanced to improve its therapeutic potential for wound
healing. Engineered EVs can be derived from different cell
sources and loaded with various molecules, including growth
factors, cytokines or drugs, to target specific signalling path-
ways or processes in wound healing. The use of engineered
EVs in wound treatment is an emerging and promising field
that has the potential to overcome some of the limitations of
natural EVs or other regenerative therapies. More research is
needed to optimize the engineering methods, characterization
techniques, standardization protocols, delivery systems and
safety assessments of engineered EVs for clinical applications.
In this review, we discuss how EVs derived from different
sources can regulate the Wnt/β-catenin, phosphoinositide
3-kinase (PI3K)/protein kinase B (AKT)/mammalian target
of rapamycin (mTOR), vascular endothelial growth factor
(VEGF), transforming growth factor (TGF)-β and JAK–STAT
signalling pathways to promote wound healing and reduce
scar formation in refractory wounds. We also highlight the
recent advances in engineering and modifying EVs to control
their biotherapeutic performance and enhance their applica-
tion prospects.

Review

Wound healing processes and challenges

Four phases of wound healing (1) Haemostasis phase: within
seconds of trauma, the blood and the fibrous proteins in the
wound are quickly solidified into a clot, some of which dry
to form scabs, and the clots and scabs play a role in the
protection of the wound, preventing further blood loss and
pathogen invasion [24]. Platelets secrete a variety of growth
factors, such as fibroblast growth factor (FGF), platelet-
derived growth factor and TGF, which recruit inflammatory
cells to the wound, triggering the inflammatory phase of
wound healing [25].

(2) Inflammatory phase: inflammation often occurs
24–36 h after injury, manifested as congestion, serous
exudation and leukocyte swim out, resulting in local
redness and swelling [26]. The main leukocytes involved are
neutrophils, which change to macrophages after 3 days [27].
Neutrophils infiltrate the wound and secrete proteases and

antimicrobials (such as reactive oxygen species) to remove
damaged extracellular matrix (ECM) and pathogens [28,
29]. Released products such as nuclear factor-κB (NF-κB)
and Toll-like receptor (TLR), which are required for cytokine
transcription and pathogen recognition, respectively, attract
macrophages and lymphocytes to the wound and activate
them [30, 31]. Macrophages can initiate or end inflammation
through phenotypic transformation. In the early stage of
inflammation, classically activated macrophages (M1-type)
are recruited at the wound site, expressing a broad spectrum
of proinflammatory cytokines, such as interleukin-1β (IL-1β)
[32]. In the later stage of inflammation, macrophages change
to the M2 type, which mediates anti-inflammatory effects.
By activating keratinocytes, fibroblasts and endothelial cells,
M2-type macrophages promote tissue regeneration and
initiate the proliferative phase of wound healing [33].

(3) Proliferation phase: this phase mainly depends on the
activity of keratinocytes and fibroblasts to form new tissue
and blood vessels in the wound area [34]. Keratinocytes
are the main proliferating cells of the epidermis and can
differentiate and replace ageing epidermal cells under phys-
iological conditions [35]. The process of re-epithelialization
of a wound begins with the proliferation of keratinocytes at
the edge of the wound [36]. Fibroblasts also play a significant
role, initiating extensive proliferation to secrete a variety
of substances to form new ECM, including collagen type-
III matrix, mucins, fibronectin and proteoglycans (such as
hyaluronic acid) [37, 38]. The newly formed ECM promotes
the formation of granulation tissue, and the damaged ECM
is degraded by several enzymes, including matrix metalloen-
zymes (MMPs) and plasminogen activators [39–41]. Gran-
ulation tissue is composed mainly of fibroblasts, new blood
vessels and type-III collagen, which will mature to form a scar
[1]. Fibroblasts can also differentiate into α-smooth muscle
actin (α-SMA)-rich myofibroblasts, which have a contractile
function and pull the edges of the wound together [40].
Increased levels of growth factors such as VEGF, hepatocyte
growth factor and FGF stimulate the intact blood vessels
around the wound and degrade the partial basement mem-
brane of blood vessels, thus making the vascular endothelial
cells in this area proliferate and migrate to rebuild new blood
vessels [42–45].

(4) Reconstruction phase: the delicate process of scar tissue
remodelling, which involves the reconstruction of new blood
vessels, cells and tissue, can take months or years to mani-
fest itself, much longer than other stages of wound healing
[46, 47]. Collagen decomposes, and type-III collagen, which
constitutes immature ECM, is replaced by stronger mature
type-I collagen, leading to ECM structure adjustment and
wound-thickness reduction [48, 49]. Most new cells undergo
apoptosis, leading to a decrease in dermal cells and blood
vessel density [50]. Most of the newly formed capillaries
recede, and a small part rebuilds to form a new network
of blood vessels [51]. The connective tissue underneath the
wound continues to contract, pulling the edges closer together
[52].
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Chronic wound aetiology and pathology

Chronic wounds fail to achieve anatomical and functional
integrity through a normal, orderly and timely process of
repair [53]. Clinically, the term mostly refers to wounds that
cannot heal for more than 1 month and have no tendency
to heal [54]. Here, the limit of 1 month is not absolute [55].
However, due to the complex aetiology of chronic wounds,
it is difficult to define them simply, so there is no unified
definition of chronic trauma at present [56]. The correct
sequence, timing and regulation of each of the four phases of
wound healing are critical, and any adverse effects of disease
or complications can lead to chronic ulceration where the
wound does not heal properly and enters a persistent state
of inflammation [57]. Chronic wounds usually encompass
venous insufficiency ulcers, peripheral arterial ulcers, diabetic
ulcers, pressure ulcers, infectious ulcers, neoplastic ulcers
and refractory wounds caused by connective tissue diseases
such as leprosy [58–60]. The aetiology of chronic wounds
is complex and various mechanisms have been proposed in
existing research. (1) At the cellular level, increased levels
of proinflammatory factors secreted by neutrophils make
matrix metalloproteinases hyperactive, promote ECM break-
down and impair cell migration [61, 62]. Dysfunction of
the transformation of fibroblasts into myofibroblasts leads
to fibrous disease, hypertrophic scars and keloid formation
[63]. The formation of scars on the skin, especially on the
face, neck and hands, will increase the patient’s psycholog-
ical stress [64]. (2) Underlying diseases, such as diabetes
can lead to dysregulation of insulin levels, and excessive
blood glucose can hinder macrophage polarization, resulting
in macrophages maintaining a proinflammatory (M1-type)
state and causing inflammation and cellular stress, which
are difficult to terminate [65]. Moreover, due to the lack
of polarization, macrophages cannot be transformed into
the M2 type, resulting in stagnation of the healing process
in the inflammatory phase and difficulty in entering the
proliferative phase, making diabetic patients more prone to
chronic skin injury [66]. Dehydration and malnutrition can
also greatly affect cell proliferation and angiogenesis. Ageing
and heart disease are common underlying conditions leading
to the development of chronic wounds in an ageing society
[67]. Loss of certain types of collagen, such as epidermolysis
bullosa due to loss of collagen type VII, can lead to weak
skin that is prone to blisters and nonhealing ulcers that must
be remedied by artificial treatments [68]. (3) Reinjury or
infection is a problem, and if there is persistent pathogen
infection or wound reinjury at the wound site, this will hurt
new cells and ECM in the process of proliferation, which
easily leads to serious scar formation [69].

EVs as therapeutic agents

Definition, origin, composition, structure and function of EVs
EVs contain three main isoforms, i.e. exosomes, ectosomes
and apoptotic bodies [70]. In fact, there is still research
constantly refining the categories of EVs. Therefore, the
EVs mentioned in many articles are generally understood as

generalized EVs. To avoid confusion, EVs are used to refer to
all vesicles secreted by cells in this review. EVs are formed
by fusion of multivesicular bodies (MVBs) with plasma
membranes. During endocytosis, the cell membrane buds
inwards to form endosomes, which then bud inwards to form
MVBs [71]. MVBs are assembled by either an endosomal
sorting complex required for transport (ESCRT)-independent
transport pathway or an ESCRT-dependent endosomal
sorting complex [72]. In the ESCRT-independent pathway,
sphingomyelin (present in endosomal membranes within
lipid rafts) is converted into ceramide by sphingomyelinase
[73]. Ceramide binds to form microdomains that drive
intraluminal vesicles (ILVs) to form MVBs [74]. The ESCRT-
dependent pathway requires ESCRT-protein complexes
(specifically ESCRT-0, ESCRT-I, ESCRT-II and ESCRT-III)
and related proteins [such as Vps4, Vta1 and programmed
cell death 6 interacting protein (ALIX)] that contribute
to ILV production [66, 75]. ESCRTs works together to
twist the endosomal membrane and selectively transport the
components that form ILVs. ESCRT-III component proteins
are aggregated by ESCRT-II or ALIX, and the polymerization
of these components results in neck contraction and cleavage
to form ILVs [76]. Vsp4, an ATPase, dismantles ESCRTs and
allows them to be recycled [76].

Farnesyltransferase is required for Ras protein activation,
and Ras proteins and their downstream effectors, including
Raf and the extracellular signal-regulating kinases RhoA and
ADP-ribosylation factors 1 and 6 (ARF1 and ARF6), increase
myosin contractility by phosphorylating myosin light chains,
thereby encouraging MVB release [66, 77, 78]. Some of the
formed MVBs bind to lysosomes and are degraded by the
contained hydrolases [79]. Other MVBs do not fuse with
lysosomes and are transported to the cell membrane with
the help of cytoskeletal actin and microtubules [79]. This
process is regulated by several proteins, such as the Rab
protein, and cholesterol can also affect this process [80].
The contents of EVs are quite abundant, including various
proteins, enzymes, transcription factors, lipids, ECM pro-
teins, receptors, metabolites, nucleic acids and especially a
wide variety of microRNAs (miRNAs) [81]. These contained
bioactive molecules enable them to perform functions rang-
ing from targeting/adhesion to metabolism to inflammation
regulation. Some of these proteins are specifically enriched
in EVs and can be used as markers for EV identification
or isolation, such as ALIX, tetramer CD9, CD63, CD81,
CD82 and tumor susceptibility gene 101 [82] (Figure 1).
Exocarta (http://exocarta.org/index.html); The Urinary EV
Protein Database (http://dir.nhlbi.nih.gov/papers/lkem/exoso
me/); and Vesiclepedia (http://www.microvesicles.org/) [83].

Mechanisms of EV cargo selection

Research has shown that the type and content of EVs are
highly dependent on specific conditions [84]. Stressors,
drug treatments or the type of stem cells from which
they are derived can significantly alter EV yield, size and
composition, which are dependent on EV cargo sorting

http://exocarta.org/index.html
http://dir.nhlbi.nih.gov/papers/lkem/exosome/
http://dir.nhlbi.nih.gov/papers/lkem/exosome/
http://www.microvesicles.org/
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Figure 1. Schematic diagram of cellular EVs, their surface molecules and their

contents. The surface of EVs is decorated with different types of molecules

that play important roles in their biogenesis, trafficking and function. These

molecules include: (1) antigen-presenting molecules, such as major histo-

compatibility complex (MHC) class I and II, which are involved in immune

recognition and modulation; (2) adhesion molecules, such as integrin-α and

β, and P-selectin, which mediate EV binding and uptake by target cells; (3)

signalling receptors, such as Fas ligand (FasL), tumor necrosis factor (TNF)

receptor and transferrin receptor (TfR), which trigger intracellular signalling

pathways upon EV interaction; (4) glycoproteins, such as N-linked glycans, O-

linked glycans and beta-galactosidase, which modulate EV stability, solubility

and bioactivity; (5) lipids, such as sphingomyelin, ceramides, cholesterol,

phosphatidylinositol (PI), phosphatidylserine (PS), phosphatidylcholine (PC),

phosphatidylethanolamine (PE) and ganglioside GM1, which affect EV mem-

brane fluidity, curvature and charge; and (6) tetraspanins, such as CD9, CD37,

CD53, CD63, CD81 and CD82, which are the most abundant and characteristic

proteins on EV surfaces and participate in EV formation, sorting and targeting.

The contents of EVs are enriched with different types of molecules that

reflect the origin and function of the EV. These molecules include: (1) heat

shock proteins, such as HSP20, HSP27, HSP60, HSP90 and HSC70, which are

involved in protein folding, stability and protection from stress; (2) cytokines

and growth factors, such as tumor necrosis factor-alpha (TNF-α), transform-

ing growth factor-beta (TGF-β) and TNF-related apoptosis-inducing ligand

(TRAIL), which modulate immune responses, inflammation and cell survival;

(3) cytoskeletal proteins, such as tubulin, actin and cofilin, which regulate EV

shape, size and release; (4) membrane transport and fusion proteins, such

as annexins, dynamin, syntaxin, Rabs, flotillin and GTPases, which facilitate

EV budding, trafficking and fusion with target membranes; (5) endosomal

sorting complex required for transport (ESCRT) machinery, such as tumor

susceptibility gene 101 (TSG-101) and ALIX, which mediate EV formation and

sorting of cargo molecules; (6) DNA, such as mitochondrial DNA (mtDNA),

double-stranded DNA (dsDNA), single-stranded DNA (ssDNA) and viral DNA,

which can transfer genetic information and induce immune responses; and (7)

RNA, such as messenger RNA (mRNA), microRNA (miRNA), precursor miRNA

(pre-miRNA), gamma-RNA (γ -RNA), circular RNA (circRNA), mitochondrial

RNA (mtRNA), transfer RNA (tRNA), transfer strand RNA (tsRNA), small

nuclear RNA (snRNA), small nucleolar RNA (snoRNA) and piwi-interacting

RNA (piRNA), which can regulate gene expression and cellular functions in

target cells. EVs extracellular vesicles

mechanisms, including ESCRT, tetraspanins and lipid-
dependent mechanisms [80, 83]. For instance, mesenchymal
stem cells (MSCs) cultured under serum-free priming

conditions or hypoxia (1% O2) generate EVs rich in specific
metabolites such as cholesterol, arginine, aspartic acid,
adenosine, palmitate and isoleucine [85]. These molecules
have anti-inflammatory activity, promote M2-macrophage
polarization and regulate lymphocyte function [86]. The
MSC-EVs obtained under these conditions can further reduce
the formation of scars compared with those obtained under
general conditions. As another example, treatment of MSCs
with the stressor lipopolysaccharide induced the stem cells
to be in an inflammatory state [87]. The resulting MSC-EVs
after this treatment are found to contain higher levels of anti-
inflammatory signalling factors such as IL-10, TGF-β and
cyclooxygenase-2 (COX-2) (important in the bioproduction
of prostaglandin E2) and are shown to be more effective in
the treatment of chronic trauma [87]. An attractive research
project is achieving the artificial regulation of EV generation
and content [88]. The molecular composition of EVs is
derived from cells, but differs from cells in that EVs contain
a variety of specific proteins, lipids and RNAs and do not
contain some of those present in the cytoplasm [89, 90]. This
suggests that specific sorting mechanisms exist to control
the entry of specific molecules into EVs. Research has shown
that the sorting of specific proteins and RNA in outer secreted
bodies is controlled in a variety of ways, although most ways
are not fully understood. Through existing sorting methods,
we can manipulate the contents of EVs according to different
purposes to achieve a better therapeutic effect with fewer side
effects.

EV-mediated modulation of wound healing

Commonly used EVs derived from various stem cells and their
rich inclusions can be involved in different phases of wound
healing. The therapeutic effect of EVs is mainly achieved by
surface proteins and contents, including a variety of cytokines
and miRNAs, and they play a key role in different phases
of the wound healing process by regulating multiple sig-
nalling pathways and inflammatory mediators [23, 91]. The
proliferation and migration of endothelial cells, angiogenesis
and maturation, and the development of hair follicles and
sebaceous glands are observed after EVs are injected into
the wound [92–94]. EVs can also enhance the proliferation
and migration of fibroblasts in a dose-dependent manner
and increase collagen deposition [21]. Importantly, in general,
the stronger the collagen synthesis ability of fibroblasts at
the wound site, the more likely scar formation is to occur,
which affects the skin appearance and is detrimental to the
normal function of the skin, increasing the psychological
burden of patients [95]. However, EVs can promote the
proliferation and secretion of fibroblasts at the beginning of
wound healing, inhibit the deposition of collagen at the end
of healing and mediate the structural remodelling of newly
formed tissue, achieving the ideal therapeutic effect of both
promoting wound healing and inhibiting scar formation [96,
97]. Therefore, EV therapy has significant advantages and
potential over traditional methods.
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The sequence of wound healing steps is strict and
explicit, and numerous signalling pathways are involved.
Different pathways focus on different functions. For instance,
Wnt/β-catenin has a variety of pathways to regulate
collagen deposition; the PI3K/AKT/mTOR pathway is
more inclined to activate endothelial cell, keratinocyte
and fibroblast functions; the VEGF pathway focuses on
promoting angiogenesis; and the mitogen-activated protein
kinase (MAPK)/extracellular signal-regulated kinase (ERK)
and JAK–STAT pathways focus on inhibiting excessive
inflammatory responses in wounds [98–102]. The TGF-β
pathway is mainly activated in the second phase of wound
healing and has a strong ability to promote inflammation
and collagen deposition [103]. In addition, detection of the
degree of activation of different signalling pathways can be
helpful in refining the classification of wounds and selecting
a more ideal treatment plan. For instance, kinetic analysis of
AKT, STAT-3, ERK1/2, Wnt, and β-catenin in cells at the site
of injury can be performed to determine more appropriate
targeted treatment.

Modulation of Wnt/β-catenin pathway: a dual regulator of
wound healing and scar formation The Wnt/β-catenin sig-
nalling pathway is a highly conserved pathway that regulates
various aspects of development, stem cell maintenance and
wound healing [104]. The activation of this pathway involves
the binding of Wnt ligands to their receptors, which inhibits
the degradation of β-catenin and allows it to translocate to
the nucleus and activate Wnt-responsive genes [104]. EVs,
which are membrane-bound particles released by various cell
types, can modulate the Wnt/β-catenin pathway in wound
healing by delivering Wnt ligands or other factors that affect
β-catenin stability or activity [105]. EVs can act as both pos-
itive and negative regulators of the Wnt/β-catenin pathway
depending on the stage of wound healing and the source
of EVs [106, 107]. In this section, we will review how EVs
derived from different stem/progenitor cells can influence the
Wnt/β-catenin pathway in wound healing and discuss the
potential applications and challenges of EV-based therapy for
wound healing (Figure 2).

In the early stage of wound healing, EVs derived from
human umbilical cord mesenchymal stem cells (HUCMSC-
EVs) or adipose mesenchymal stem cells can promote re-
epithelialization, angiogenesis and tissue regeneration by
delivering Wnt4 and activating the Wnt/β-catenin pathway
in endothelial cells, keratinocytes and fibroblasts [108–110].
These EVs can increase the expression of genes related
to cell proliferation, migration and differentiation, such
as N-cadherin, collagen I, CK19 and proliferating cell
nuclear antigen (PCNA), while decreasing the expression
of E-cadherin, which is associated with cell–cell adhesion
and epithelial integrity [111, 112]. These effects can be
reversed by treatment with a β-catenin inhibitor (ICG001),
indicating that the therapeutic effect of EVs is mediated
by the Wnt/β-catenin pathway [113]. In vivo experi-
ments also demonstrated that adipose mesenchymal stem

cell-derived EVs can home to the site of skin incision
and significantly promote skin wound healing in mice
[114].

In contrast, in the late stage of wound healing, HUCMSC-
EVs or endothelial progenitor cell-derived EVs (EPC-EVs)
inhibit excessive cell proliferation and collagen deposition by
delivering 14–3-3ζ protein, which regulates the phosphory-
lation of YAP and its interaction with phosphorylated-LATS,
resulting in the inhibition of the Wnt/β-catenin pathway in
skin cells [107, 115, 116]. YAP is a transcriptional coactivator
that interacts with TCF family transcription factors and
enhances Wnt-responsive gene expression. The phosphoryla-
tion of YAP by p-LATS leads to its cytoplasmic retention and
degradation, thus inhibiting the Wnt/β-catenin pathway. By
regulating YAP or other factors, EVs can fine-tune the activity
of β-catenin to balance wound healing and scar formation
[117].

EVs have emerged as a promising tool for wound healing
therapy because they can deliver various bioactive molecules
to modulate key signalling pathways involved in wound
healing. However, there remain challenges and limitations
that need to be addressed before EV-based therapy can be
translated into clinical practice. Some of these challenges
include: (1) standardization of EV isolation and characteriza-
tion methods; (2) optimization of EV dosage and administra-
tion routes; (3) evaluation of EV safety and immunogenicity;
(4) identification of specific biomarkers for EV tracking and
monitoring; and (5) engineering of EVs to enhance their
targeting and loading capacity. Further research is needed to
overcome these challenges and explore the full potential of
EVs for wound healing [106].

Modulation of PI3K/AKT/mTOR pathway: a key driver of
cell proliferation, migration and angiogenesis The PI3K/AKT/
mTOR signalling pathway is a key pathway that regulates
cell growth, survival, migration and angiogenesis, which are
essential for wound healing (Figure 3). This pathway can be
activated by various cytokines and miRNAs that are delivered
by EVs derived from different stem/progenitor cells [118].
The activation of this pathway can: stimulate the expression
of growth factors such as VEGF, FGF and epidermal growth
factor (EGF), which promote angiogenesis and tissue regener-
ation; enhance the proliferation and migration of endothelial
cells, keratinocytes and fibroblasts, which are involved in
re-epithelialization and granulation tissue formation [119];
and inhibit excessive inflammation by downregulating
proinflammatory factors such as tumor necrosis factor alpha
(TNF-α), IL-1β and IL-6 and upregulating anti-inflammatory
factors such as IL-10 and signal transducer and activator of
transcription 3 (STAT3) [120–123].

(1) Synovial mesenchymal stem cell EVs can deliver
miR-222, miR-21 and miR-let7a, which can activate the
Wnt/β-catenin and AKT/ERK/STAT3 pathways to promote
angiogenesis [124]. (2) EPC-EVs can deliver VEGF-A and
VEGF receptor 2 (VEGFR-2), which can activate the
VEGF/PI3K/AKT/endothelial nitric oxide synthase (eNOS)
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Figure 2. Wnt/β-catenin signalling pathway and its regulation by EVs in wound healing. The Wnt/β-catenin signalling pathway is a key pathway that regulates

cell proliferation, differentiation and survival. The pathway is activated by the binding of Wnt ligands to Frizzled receptors and LRP5/6 co-receptors on the cell

membrane, which inhibits the degradation of β-catenin by the destruction complex composed of Axin, APC and GSK3β. The stabilized β-catenin translocates to

the nucleus and interacts with TCF1 to activate the transcription of target genes, such as MMP-7, Myc and Cyclin D1. EVs are small membrane-bound vesicles that

can modulate the Wnt/β-catenin signalling pathway by delivering various molecules to target cells. For example, EVs can carry Wnt ligands or 14–3-3ζ protein

to activate or inhibit the pathway, respectively. EVs can also deliver microRNAs (miRNAs) such as miR-let7a, miR-21 and miR-222 to activate the pathway by

targeting its different components. EVs can also affect the crosstalk between the Wnt/β-catenin signalling pathway and other pathways, such as the Hippo/YAP

pathway. The Hippo/YAP pathway is a negative regulator of the Wnt/β-catenin signalling pathway by phosphorylating yes-associated protein (YAP) and preventing

its interaction with β-catenin. EVs can deliver phosphorylated YAP (p-YAP) or phosphorylated large tumor suppressor kinaseLATS (p-LATS) to target cells and

suppress the Wnt/β-catenin signalling pathway. The regulation of the Wnt/β-catenin signalling pathway by EVs is diverse and dynamic in wound healing. For

example, in the early stage of wound healing, EVs contain a dominant Wnt effect, activating the Wnt/β-catenin signalling pathway to promote collagen synthesis,

skin cell proliferation and migration. In the late stage of wound healing, 14–3-3ζ contained in EVs plays an important role in inhibiting the Wnt/β-catenin signalling

pathway, preventing excessive secretion and deposition of collagen causing scar formation. EVs extracellular vesicles

pathway to promote angiogenesis [125]. (3) HUCMSC-EVs
can deliver VEGF-A, IL-15 and EGF, which can activate the
PI3K/AKT and mTOR pathways to regulate the expression
of IGF-1 in DETCs that is beneficial to wound healing
in diabetic mice [126]. (4) Human amniotic epithelial cell
derived EVs can deliver miR-21-5p and miR-181a-5p,
which can target phosphatase and tensin homolog (PTEN)
and increase AKT phosphorylation in keratinocytes and
fibroblasts [127]. (5) MSC-EVs can deliver miR-126-3p
and miR-210-3p, which can target sprouty-related EVH1
domain-containing protein 1 (SPRED1) and protein tyrosine
phosphatase 1B (PTP1B) and increase AKT phosphorylation
in keratinocytes and fibroblasts [128–130].

These EVs can also increase YAP nuclear accumulation
in keratinocytes and fibroblasts by delivering YAP mRNA or
inhibiting LATS1/2 phosphorylation. YAP is a transcriptional
coactivator that interacts with TEA domain transcription
factor (TEAD) family transcription factors and enhances
cell proliferation and migration gene expression [131, 132].
HUCMSC-EVs or MSC-EVs can also inhibit excessive
inflammation by modulating the PI3K/AKT/mTOR pathway

in macrophages or other immune cells by delivering various
miRNAs and proteins that are involved in inflammation
regulation [133]. For example, HUCMSC-EVs can deliver
miR-181c, miR-1180, miR-183, miR-550b and miR-133a,
which can induce M2 macrophage polarization and reduce
proinflammatory cytokine production [134, 135]. MSC-EVs
can deliver: miR-let7b and miR-181c, which can upregulate
AKT and STAT3 phosphorylation and downregulate TLR4
expression in macrophages or other immune cells [136, 137];
heat shock protein (HSP) 90a protein, which can inhibit
NF-kB activation and reduce proinflammatory cytokine
production; and anti-inflammatory miRNAs such as miR-
124a, miR-125b, miR-126 and miR-let7b, which can target
various inflammatory mediators such as NF-kB, MAPK,
TNF-α, IL-1β and IL-6 [138, 139].

Modulation of VEGF pathway: a potent stimulator of angio-
genesis and tissue regeneration The VEGF signalling path-
way is a key pathway that regulates angiogenesis, which is
the formation of new blood vessels from pre-existing ones.
Angiogenesis is essential for wound healing, as it provides
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Figure 3. PI3K/AKT/mTOR signalling pathway and its regulation by EVs. The PI3K/AKT/mTOR signalling pathway is a central pathway that regulates cell growth,

metabolism and survival. The pathway is activated by various growth factors and cytokines, such as epidermal growth factor (EGF), transforming growth factor-

beta (TGF-β), interferon-gamma (IFN-γ ), vascular endothelial growth factor (VEGF), interleukin-4 (IL-4) and IL-15, which bind to their respective receptors on the cell

membrane and trigger the activation of phosphatidylinositol 3-kinase (PI3K). PI3K converts phosphatidylinositol 4,5-bisphosphate (PIP2) into phosphatidylinositol

3,4,5-trisphosphate (PIP3), which recruits and activates protein kinase B (AKT) and phosphoinositide-dependent kinase 1 (PDK1). AKT phosphorylates and

inhibits tuberous sclerosis complex 1 and 2 (TSC1/2), which releases the inhibition of Ras homologue enriched in brain (RHEB). RHEB activates mammalian

target of rapamycin complex 1 (mTORC1), which regulates various cellular processes, such as protein synthesis, lipid synthesis, mitochondrial metabolism,

angiogenesis and inflammatory response. mTORC1 also activates hypoxia-inducible factor 1-alpha (HIF1α), which forms a heterodimer with HIF1β and induces

the expression of target genes, such as TGF-β, platelet-derived growth factor (PDGF), and VEGF. EVs are small membrane-bound vesicles that can modulate the

PI3K/AKT/mTOR signalling pathway by delivering various molecules to target cells. For example, EVs can carry EGF, IL-15 or VEGF to activate the pathway, or

microRNAs (miRNAs) such as miR-let7a, miR-21 and miR-222 to activate the pathway by targeting its different components. EVs can also affect the crosstalk

between the PI3K/AKT/mTOR signalling pathway and other pathways, such as the Wnt/β-catenin pathway or the NF-κB pathway. EVs extracellular vesicles

oxygen and nutrients to the wound site and facilitates the
removal of waste products and inflammatory cells [140]. The
VEGF signalling pathway is activated by the binding of VEGF
ligands to VEGFRs on the surface of endothelial cells [141].
This binding triggers a cascade of downstream signalling
pathways that mediate endothelial cell proliferation, migra-
tion, survival and permeability, as well as the expression of
genes that promote angiogenesis [140]. The VEGF signalling
pathway interacts with other pathways involved in wound
healing, such as the MAPK and PI3K-AKT pathways, which
are located downstream of VEGF signalling and modulate
its effects [142]. EVs derived from different sources can
modulate the VEGF signalling pathway in wound healing by
delivering various cytokines, miRNAs and proteins that are
involved in angiogenesis [143] (Figure 4). For instance, EPC-
EVs can deliver VEGF-A and VEGFR-2, which activate the
VEGF/PI3K/AKT/eNOS pathway and enhance the healing of
soft tissue wounds by stimulating angiogenesis and collagen
synthesis in fibroblasts and keratinocytes [125, 144, 145].

HUCMSC-EVs can deliver VEGF-A, IL-15 and EGF, which
can activate the PI3K/AKT and mTOR pathways and regulate
the expression of IGF-1 in DETCs that is beneficial to wound
healing in diabetic mice [108, 146]. MSC-EVs can deliver
miR-126-3p and miR-210-3p, which can target SPRED1 and
PTP1B and increase AKT phosphorylation in keratinocytes
and fibroblasts, thereby enhancing their proliferation and
migration [147].

Modulation of TGF-β pathway: a major promoter of
inflammation and collagen deposition The TGF-β signalling
pathway is a complex and multifunctional pathway that
regulates various cellular processes, such as proliferation,
differentiation, migration, apoptosis and ECM synthesis
[148]. Among the TGF-β family, TGF-β1 plays a dominant
role in skin wound healing and mainly mediates pathological
healing, such as chronic inflammation and excessive scarring
[149]. The TGF-β signalling pathway can be activated by
various stimuli, including cytokines, growth factors and
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Figure 4. VEGF signalling pathway and its regulation by EVs contents. VEGF is a key factor that stimulates the formation of new blood vessels from existing ones

or from the embryonic circulatory system. VEGF binds to its receptors (VEGFRs) on the surface of endothelial cells and activates various downstream pathways,

such as Ras/MAPK, FAK/paxillin, PI3K/AKT and PLCγ /PKC, that regulate cell proliferation, migration, survival, permeability and angiogenesis. EVs are small

membrane vesicles that are released by various cell types and contain bioactive molecules, such as proteins and RNAs. EVs can modulate the VEGF signalling

pathway by delivering their contents to target cells or by interacting with VEGFRs on the cell surface. Some of the EVs contents that have been shown to affect

the VEGF signalling pathway are SLIT, IGF, ANG, EGF, FGF, VEGFR-2 and VEGF-A. The figure shows the main components and effects of the VEGF signalling

pathway and how EVs regulate this pathway through their contents. FGF Fibroblast growth factor, FGFR FGF receptor, IGF insulin-like growth factor, IGFR IGF

receptor, EGF epidermal growth factor, EGFR EGF receptor, MAPKAPK2/3 mitogen-activated protein kinase-activated protein kinase 2/3, MEK MAPK/ERK kinase,

ERK extracellular signal-regulated kinase, Ra, Ras-related C3 botulinum toxin substrate, PI3K phosphatidylinositol 3-kinase, p38 p38 MAPK, NCK non-catalytic

region of tyrosine kinase adaptor protein, FAK focal adhesion kinase, SHB Src homology 2 domain-containing adapter protein B, eNOS endothelial nitric oxide

synthase, PKC protein kinase C, PLCγ phospholipase C gamma, AKT protein kinase B, Src proto-oncogene tyrosine-protein kinase Src, TSAd T cell-specific

adapter protein, VEGF vascular endothelial growth factor, VEGFR VEGF receptor, EVs extracellular vesicles

mechanical stress, and can interact with other pathways
involved in wound healing, such as the JAK–STAT, MAP-
K/ERK, PI3K/AKT/mTOR and Wnt/β-catenin pathways
[150]. The function of the TGF-β pathway is context-
dependent and can be either beneficial or detrimental for
wound healing depending on the stage, type and location
of the wound [151]. EVs derived from different sources can
modulate the TGF-β signalling pathway in wound healing
by delivering various cytokines, miRNAs and proteins that
are involved in inflammation and ECM remodelling [152]
(Figure 5). For instance, HUCMSC-EVs can deliver miR-21,
miR-125b, miR-23a and miR-145, which inhibit the TGF-
β/SMAD2 pathway and reduce the expression of collagen and
α-SMA in fibroblasts and myofibroblasts [153]. This action
can prevent excessive scar formation and fibrosis in the late
stage of wound healing. MSC-EVs can deliver proteins that
can regulate MMP levels and the TGF-β signalling pathway,
such as tissue inhibitor of metalloproteinases (TIMP)1 and

TIMP2 [154]. This sequence of events modulates the balance
between ECM synthesis and degradation and regulates
α-SMA and collagen deposition in the wound site [155].
MSC-EV treatment can also aid in the contraction of newly
formed scar tissue by altering the ratio of type III to type I
collagen and MMP3 to TIMP1 [156, 157].

Modulation of JAK–STAT pathway: a key mediator of
cytokine responses and macrophage polarization. The JAK–
STAT signalling pathway is a key pathway that mediates
cellular responses to various cytokines and growth factors,
such as interleukins, interferons and colony-stimulating
factors. The JAK–STAT pathway can regulate various aspects
of wound healing, such as inflammation, angiogenesis,
cell proliferation and migration, and ECM synthesis [158,
159]. The activation of the JAK–STAT pathway depends
on the binding of cytokines or growth factors to their
specific receptors, which leads to the phosphorylation of
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Figure 5. TGF-β signalling pathway and its regulation by EVs. The figure shows the major components and regulatory effects of TGF-β signalling and how cellular

EVs regulate TGF-β signalling through inclusions. TGF-β and BMP bind to their respective receptors (TβRII and BMPR) and activate SMAD proteins (SMAD2/3

for TGFβ and SMAD1/5 for BMP). SMAD4 forms complexes with SMAD2/3 or SMAD1/5 and translocates to the nucleus, where it interacts with transcription

factors (TF) to regulate gene expression. SMAD-mediated miRNA regulation involves Drosha complexes and SMAD2/3. The final effect of TGFβ signalling is

myofibroblast accumulation, MMPs and TIMP expression, and an inflammatory condition. Exosome contents, such as miR-145, miR-125b, miR-23a and miR-21,

can modulate TGFβ signalling by targeting different components of the pathway. TβRII TGF-β receptor type II, TGF-β transforming growth factor beta, BMPR

bone morphogenetic protein receptor, BMP bone morphogenetic protein, TF transcription factor, AP-1 activator protein 1, IRF-7 interferon regulatory factor 7,

RUNX runt-related transcription factor, MMPs matrix metalloproteinases, TIMP tissue inhibitor of metalloproteinases, miR microRNA, EVs extracellular vesicles

JAKs and STATs. The phosphorylated STATs then dimerize
and translocate to the nucleus, where they regulate the
transcription of target genes [160, 161]. EVs derived from
different sources can modulate the JAK–STAT signalling
pathway in wound healing by delivering various cytokines,
miRNAs and proteins that are involved in inflammation
and angiogenesis [162] (Figure 6). For example, EVs derived
from fibrocytes can deliver anti-inflammatory miRNAs (miR-
124a, miR-125b, miR-126 and miR-let7b) and HSP90a,
which can promote the phosphorylation of STAT3 and the
polarization of macrophages to the M2 type [163, 164]. This
can reduce the production of proinflammatory cytokines
such as TNF-α, IL-1β and IL-6 and enhance the secretion
of anti-inflammatory cytokines such as IL-10 and TGF-β
[165, 166]. EVs derived from MSCs can deliver miR-21,
which can regulate the JAK–STAT pathway and promote
the activation of Ras protein [167]. This can enhance the

PI3K/AKT pathway and stimulate angiogenesis and collagen
synthesis in the wound site.
Optimal EV therapy for various wound types Different types
of wounds have different requirements and objectives for
optimal healing. Therefore, the choice of EV sources and
contents should be tailored to the specific characteristics and
challenges of each wound type [168]. Some examples of how
exosome sources and contents can be matched to wound
types are as follows (Table S1, see online supplementary
material).

(1) For wounds that suffer from poor blood supply and
oxygenation, such as diabetic ulcers, pressure ulcers and
venous ulcers, EPC-EVs or MSC-EVs might be beneficial
[169]. These EVs can contain VEGF-A and VEGFR-2, which
are key molecules for stimulating the formation and mat-
uration of new blood vessels in the wound area [170]. By
enhancing angiogenesis, these EVs can improve the delivery of

https://academic.oup.com/burnstrauma/article-lookup/doi/10.1093/burnst/tkad039#supplementary-data
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Figure 6. JAK/STAT signalling pathway and its regulation by EVs. The main components of the JAK/STAT signalling pathway are shown. Cytokines, growth factors

(GF) and hormones bind to their receptors on the cell membrane, activating JAK kinases that phosphorylate (p) STAT proteins. p-STAT proteins form dimers and

translocate to the nucleus, where they regulate the transcription of target genes. Ubiquitylated JAK proteins are degraded by proteasomes. The downstream

target genes of p-STAT proteins include those involved in anti-apoptosis, cell-cycle progression, lipid metabolism and differentiation. Some examples of these

genes are PIM1, MCL1, Bcl-XL, Bcl-2, CycD, c-Myc, AOX, GFAP, SOCS, TIMP-1, cytokines and transcription factors (TFs). The JAK/STAT signalling pathway

interacts with other signalling pathways, such as the PI3K-AKT and MAPK pathways. The PI3K-AKT pathway regulates cell cycle and survival through AKT,

PIP3, PI3K and mTOR. The MAPK pathway regulates proliferation and differentiation through Raf, Ras, SOS, SHP2, GRB2 and ERK. EVs are extracellular

vesicles that contain various molecules, such as microRNAs (miRNAs), proteins and lipids. EVs can modulate the JAK/STAT signalling pathway by delivering

or removing some of these molecules. For example, EVs can carry miR-124a, miR-130a, miR-125b, HSP90a, p-STAT3, miR-132 and miR-126 to target cells and

affect their gene expression and signalling activity. EVs extracellular vesicles, STAT3 signal transducer and activator of transcription 3, TIMP-1 tissue inhibitor

of metalloproteinases, MAPK mitogen-activated protein kinase, ERK extracellular signal-regulated kinase

oxygen and nutrients to the wound site and facilitate wound
healing [168, 171].

(2) For wounds that are prone to excessive inflammation
and scar formation, such as burns, surgical wounds and
lacerations, HUCMSC-EVs or MSC-EVs might be helpful.
These exosomes can contain anti-inflammatory miRNAs,
such as miR-181c, or proteins, such as interleukin-10 (IL-10),
which modulate the inflammatory response and reduce the
production of proinflammatory cytokines, such as TNF-α,
IL-1β and IL-6 [108, 172, 173]. By reducing inflammation,
these exosomes can prevent tissue damage and infection and
promote wound resolution. Moreover, these exosomes can
also inhibit the expression of collagen and the activation of
the TGF-β pathway, which are involved in scar formation.
By inhibiting scar formation, these exosomes preserve the
function and appearance of the skin [174–176].

(3) For wounds that need to accelerate cell growth and
movement, such as abrasions, contusions and punctures,

human amniotic epithelial cell derived EVs or MSC-
EVs might be effective. These exosomes can contain
growth factors, such as EGF, or proteins that activate the
PI3K/AKT/mTOR pathway, such as Wnt4 [171, 172, 177].
These molecules can stimulate the proliferation and migration
of various cell types involved in wound healing, such as
keratinocytes, fibroblasts and endothelial cells. By enhancing
cell proliferation and migration, these exosomes promote
re-epithelialization, granulation tissue formation and wound
closure [174, 178, 179].

Engineered EVs

Enhancing the therapeutic potential of EVs through engineer-
ing EVs have shown great potential for promoting wound
healing and skin regeneration by enhancing angiogenesis,
inflammation, keratinization, ECM remodelling and scar
reduction. However, traditional EVs derived from natural
sources have some limitations and shortcomings that can
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affect their therapeutic effect, such as low yield, impurity,
lack of targeting and low drug delivery rate. These limitations
can reduce the efficiency, specificity and safety of exosome
therapy for wound healing [168, 180, 181]. To overcome
these limitations, engineered EVs have been developed by
modifying or enhancing the properties of natural EVs [182].
Engineered EVs can be derived from different cell sources,
such as stem cells, and loaded with various molecules, such
as growth factors, cytokines or drugs, to target specific
pathways or processes in wound healing [183]. They can
also be modified on their surface or membrane to improve
their stability, biocompatibility, homing ability and delivery
efficiency. Engineered EVs have shown promising results
in preclinical and clinical studies for wound healing and
skin regeneration [184] (Table S2, see online supplementary
material). For example, they can trigger wound healing
and skin regeneration in ischaemic wounds by delivering
TGF-β and VEGF signals to the wound site [185]. They
can also modulate the immune response and enhance the
antimicrobial activity of macrophages in infected wounds
by delivering interferon-gamma and nitric oxide [186, 187].
Engineered EVs are a potential solution to the limitations
of traditional EVs for wound healing. They can offer more
control over the biotherapeutic performance and delivery by
manipulating their cargo or surface markers.

Characteristics, production methods and applications of engi-
neered EVs Engineered EVs are EVs that are modified to
carry specific therapeutic agents or molecules. They can be
used to deliver drugs or RNA molecules to target cells and
tissues and to attenuate the oncogenic activity of cancer
cells [188]. Engineered EVs can be obtained by modification
of natural membrane vesicles, such as by electroporation,
transfection or genetic engineering [189] (Figure 7). Electro-
poration is a technique that uses electric pulses to create
pores in the membrane of EVs, allowing the entry of drugs
or RNA molecules [190]. Transfection is a technique that
uses liposomes or other agents to introduce DNA or RNA
molecules into EVs [191]. Genetic engineering is a technique
that uses viral vectors or the CRISPR–Cas9 system to modify
the genes of EV-producing cells, resulting in altered expres-
sion or secretion of EV proteins or RNAs [192]. Engineered
EVs have been explored for various clinical applications,
such as cancer therapy, immunotherapy, gene therapy, tissue
regeneration and diagnosis. For example, Codiak Biosciences
has developed engineered EVs that carry a tumour antigen
and a stimulatory molecule to activate T cells against cancer
cells [193]. Engineered EVs can deliver therapeutic RNAs
to target cells and tissues affected by rare diseases resulting
from genetic mutations [194]. These engineered EVs can also
carry anti-inflammatory and pro-regenerative factors to mod-
ulate the inflammatory and regenerative responses in cardiac
and muscular disorders [195]. Engineered EVs have several
advantages over conventional EVs or synthetic nanoparticles,
such as biocompatibility, low immunogenicity, high stability,
natural targeting ability and easy modification. Therefore,

engineered EVs have promising prospects for biomedical
applications [196]. However, there are also some challenges
and limitations that need to be addressed, such as scalability,
standardization, quality control, safety evaluation, regulatory
approval and cost-effectiveness [197]. More research and
development are needed to overcome these hurdles and to
translate engineered EVs from the laboratory to the clinic.
Cost-effectiveness and feasibility of engineered EV therapy
Engineered EVs are modified or produced artificially to
enhance their therapeutic or diagnostic potential. They
can be classified into different types based on their origin
(autologous or allogeneic), source (stem cell or nonstem
cell), specificity (tissue-specific or nonspecific) and method
(natural or artificial) [198, 199]. The current production and
cost status of engineered EVs may vary depending on these
factors, as well as the quality and quantity requirements
for different applications [200]. Generally, engineered EVs
may have higher yield and lower cost than traditional
EVs if they are produced by artificial methods that do not
require donor cells or complex isolation procedures, such as
nanovesicles or exosome-mimetics [201]. However, they may
have lower yields and higher costs than traditional EVs if
they are produced by natural methods that require donor
cells and multiple isolation and modification steps, such
as hybrid EVs [199]. Moreover, engineered EVs may have
lower yields and higher costs than traditional EVs if they
are modified to introduce specific functions or targets, which
can increase the complexity and difficulty of engineering
[202]. Some methods that expand production and effect
the cost of engineered EVs may include the following.
(1) Developing standardized and scalable protocols for
isolation, purification, characterization and modification
of EVs from different sources and methods [203]. (2)
Optimizing the culture conditions, engineering strategies
and quality control measures for producing high-quality and
high-purity EVs with desired properties and functions [204].
(3) Exploring novel biomaterials, nanotechnologies and
bioengineering approaches for generating artificial or hybrid
EVs with enhanced stability, specificity and efficacy [205]. (4)
Reducing the production costs by using renewable or low-
cost resources, such as plant-derived or microbial-derived
EVs, or by recycling or reusing the waste materials from
exosome production [206]. (5) Increasing the production
efficiency by using automated or integrated systems, such as
microfluidic devices or bioreactors, for continuous or large-
scale production of EVs [204].

Engineered EVs have shown great promise in various
biomedical applications, such as drug delivery, gene ther-
apy, tissue regeneration, immunotherapy, diagnosis and
biomarker discovery. They have several advantages over
other nanocarriers or cell therapies, such as low toxicity,
high biocompatibility, natural targeting ability, cargo loading
capacity, editable surface structure and immune evasion
[207, 208]. However, engineered EVs also face some
challenges and limitations, such as lack of clear definition and
classification, heterogeneity and variability of exosome

https://academic.oup.com/burnstrauma/article-lookup/doi/10.1093/burnst/tkad039#supplementary-data
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Figure 7. Different methods of EV engineering and their applications. EVs are small membrane-bound vesicles that can be engineered to modify their surface

molecules, cargo contents or targeting specificity. Exosome engineering can be achieved by three main approaches: (a) genetic engineering, (b) surface

modification, and (c) cargo loading. (a) Genetic engineering involves manipulating the genetic information of exosome-secreting cells using viral vectors,

CRISPR-Cas9 system or plasmid transfection of specific gene fragments. This can result in the synthesis of specific proteins, peptides or nucleic acids that can

be incorporated into EVs. For instance, EVs can be engineered to express fluorescent proteins, therapeutic genes or immunostimulatory molecules. (b) Surface

modification involves attaching biological or chemical molecules to the surface of EVs using covalent or non-covalent bonds. This can alter the biophysical

properties, stability or targeting ability of EVs. For example, EVs can be modified with proteins, antibodies, lipids, aptamers, peptides or antigens that can

enhance their binding affinity, specificity or immunogenicity to target cells or tissues. (c) Cargo loading involves introducing exogenous molecules into the

lumen of EVs using physical or chemical treatments. This can increase the functional diversity and efficacy of EVs. For instance, EVs can be loaded with RNA,

nanomaterials, drugs, cytokines or gaseous molecules that can modulate gene expression, imaging contrast, drug delivery, inflammation or vasodilation in

target cells or tissues, EGF epidermal growth factor, EVs extracellular vesicles, FGF fibroblast growth factor, VEGF vascular endothelial growth factor, TGF -β

transforming growth factor-beta, IFN-γ interferon-gamma

characteristics and functions, potential immunogenicity and
transmission of pathogens or malignancies, ethical and
regulatory issues, and technical difficulties in engineering
and manufacturing [197, 209]. Therefore, more research is
needed to address these challenges and limitations, as well
as to explore new applications and mechanisms of action of
engineered EVs [197, 210]. Furthermore, more clinical trials
are needed to evaluate the safety and efficacy of engineered
EVs in human patients with various diseases. In summary,
engineered EVs have a bright future in biomedicine as a
novel and versatile delivery platform with multiple benefits
[200].

EV therapy: a promising strategy

In recent years, research has found that EVs have good
regulatory potential and play an important role in a variety
of biological processes [211]. EVs can not only be used for
chronic wound healing but also show great potential in many
therapeutic areas, including cosmetic dermatology, cardio-
vascular dysfunction, cancer and neurodegenerative diseases
[21, 75, 212]. These complex vesicles have received much
attention in the field of biomarker research and are now
seen as an alternative strategy for stem cell-based regenerative
therapy, which is similar in treatment mechanism to stem cell
therapy but with better efficacy, lower side effects, and is
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easier to artificially regulate and modify [213]. In addition
to the direct use of EVs for wound treatment, EV-mediated
drug delivery is also a good therapeutic approach with low
toxicity, low immunogenicity and high engineering ability,
and is expected to be used as cell-free therapy for a variety of
diseases. Compared with the disadvantages of stem cell ther-
apy, such as low cell survival rate, high immunogenicity and
tumourigenicity, EVs as a cell-free therapy have significant
advantages [214].

However, the current research on EVs for wound treat-
ment focuses more on the research of EVs extracted from
certain stem/progenitor cells applied to the wound site and
whether they promote healing. How to achieve artificial
modification of EVs, i.e. to obtain engineered EVs, is a more
promising field. For instance, therapeutic drugs such as small
molecules or nucleic acid drugs can be incorporated into
EVs and then delivered to specific types of cells or tissues
for targeted drug delivery. Targeted delivery increases the
local concentration of the therapeutic agent and minimizes
side effects [215]. EVs can be engineered through genetic or
chemical methods to achieve targeted drug delivery [216].
There are many directions for engineering modification of
EVs, which can target both the membrane components of
EVs and the contents of EVs, including: (1) artificial incor-
poration of cargos [217]; (2) modification or regulation of
surface lipids or proteins; and (3) changes in the content
and composition of RNA and proteins [207]. The functions
of EV membrane components are numerous and important.
The surface proteins of EVs can mediate their targeting and
adhesion to specific cells or tissues, which gives them an
advantage over liposomes, which have lower targeting and
adhesion abilities. [84]. The membrane component can avoid
activating the immune clearance of the body, is well tolerated
and will not induce toxicity [218]. The targeting of EVs to
wound sites is also related to their membrane surface recep-
tors. Engineered modification of the membrane components
of EVs is designed to increase the local concentration of EVs
at the lesion site, thereby reducing toxicity and side effects
and maximizing therapeutic efficacy [139]. The engineering
of the contents is more complex and promising, for instance,
regulating the sorting mechanism of EV cargo, changing
the type and volume of the contents, and achieving specific
transport of therapeutic agents into EVs.

However, the current research is limited to characteriza-
tion. Although surface engineering has been widely used for
targeted drug delivery, how it affects EVs, their cell stability
entry pathway and tissue distribution in vivo remain to be
elucidated. Characterization of the sorting of EV contents
is insufficient, which increases the difficulty for artificial
regulation. More studies are needed to explore the sorting
mechanism of the exosome cargo, i.e. how EVs selectively
obtain intracellular components.

Conclusions

In this review article, we have summarized and discussed
how EVs derived from different sources can promote wound

healing and skin regeneration by modulating various sig-
nalling pathways and their key proteins. We focused on the
Wnt/β-catenin, PI3K/AKT/mTOR, VEGF, TGF-β and JAK–
STAT signalling pathways, which are involved in various
aspects of wound healing, such as inflammation, angiogen-
esis, cell proliferation and migration, extracellular matrix
remodelling and scar formation. We have also highlighted
the recent advances in engineering and modifying EVs to
optimize their biotherapeutic performance and delivery for
wound healing applications. We have discussed the definition,
source, production method and clinical application of engi-
neered EVs, as well as the prospects and challenges of this
emerging field. We believe that this review article provides
a comprehensive and updated overview of the current state
of knowledge on how EVs promote wound healing and skin
regeneration and that it can inspire further research and
innovation in this field.
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