
5938  |     Ecology and Evolution. 2019;9:5938–5949.www.ecolevol.org

 

Received: 11 January 2019  |  Revised: 27 March 2019  |  Accepted: 28 March 2019

DOI: 10.1002/ece3.5177  

O R I G I N A L  R E S E A R C H

Machine learning of large‐scale spatial distributions of wild 
turkeys with high‐dimensional environmental data

Annie Farrell1 |   Guiming Wang1  |   Scott A. Rush1 |   James A. Martin2 |    
Jerrold L. Belant3 |   Adam B. Butler4 |   Dave Godwin5

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, 
provided the original work is properly cited.
© 2019 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.

1Department of Wildlife, Fisheries and 
Aquaculture, Mississippi State University, 
Mississippi State, Mississippi
2Warnell School of Forestry and Natural 
Resources and Savannah River Ecology 
Laboratory, University of Georgia, Athens, 
Georgia
3Camp Fire Program in Wildlife 
Conservation, State University of New 
York College of Environmental Science and 
Forestry, Syracuse, New York
4The Mississippi Department of Wildlife, 
Fisheries, and Parks, Jackson, Mississippi
5Mississippi Forestry Association, Jackson, 
Mississippi

Correspondence
Guiming Wang, Department of Wildlife, 
Fisheries and Aquaculture, Mail Stop 9690, 
Mississippi State University, Mississippi 
State, MS 39762.
Email: guiming.wang@msstate.edu

Funding information
Mississippi State University

Abstract
Species distribution modeling often involves high‐dimensional environmental data. 
Large amounts of data and multicollinearity among covariates impose challenges to 
statistical models in variable selection for reliable inferences of the effects of envi‐
ronmental factors on the spatial distribution of species. Few studies have evaluated 
and compared the performance of multiple machine learning (ML) models in handling 
multicollinearity. Here, we assessed the effectiveness of removal of correlated co‐
variates and regularization to cope with multicollinearity in ML models for habitat 
suitability. Three machine learning algorithms maximum entropy (MaxEnt), random 
forests (RFs), and support vector machines (SVMs) were applied to the original data 
(OD) of 27 landscape variables, reduced data (RD) with 14 highly correlated covari‐
ates being removed, and 15 principal components (PC) of the OD accounting for 90% 
of the original variability. The performance of the three ML models was measured 
with the area under the curve and continuous Boyce index. We collected 663 nondu‐
plicated presence locations of Eastern wild turkeys (Meleagris gallopavo silvestris) 
across the state of Mississippi, United States. Of the total locations, 453 locations 
separated by a distance of ≥2 km were used to train the three ML algorithms on the 
OD, RD, and PC data, respectively. The remaining 210 locations were used to validate 
the trained ML models to measure ML performance. Three ML models had excellent 
performance on the RD and PC data. MaxEnt and SVMs had good performance on 
the OD data, indicating the adequacy of regularization of the default setting for mul‐
ticollinearity. Weak learning of RFs through bagging appeared to alleviate multicol‐
linearity and resulted in excellent performance on the OD data. Regularization of ML 
algorithms may help exploratory studies of the effects of environmental factors on 
the spatial distribution and habitat suitability of wildlife.
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1  | INTRODUC TION

Studies of the spatiotemporal distribution of resources that sup‐
port organisms are indispensable for understanding the dynamics 
of animal populations, including avian populations, across space and 
time (Fuller, 2012). Habitat suitability is the likelihood that a spe‐
cies uses or occupies a particular habitat (Kearney, 2006). Habitat 
suitability models predict the likelihood of animal occurrences at a 
spatial location using abiotic and biotic environmental variables, thus 
quantifying the environmental conditions that may lead to species 
occurrence (Hirzel & Le Lay, 2008). Animals select habitats based 
on their ecological and physiological needs and resource availability 
(Fretwell & Lucas, 1969; Rosenzweig, 1981). Consequently, habitat 
and its ecological conditions selected by animals may represent a 
subset of the species’ fundamental ecological niche, which is defined 
as the environmental conditions allowing populations of a species to 
persist and grow (Basille, Calenge, Marboutin, Andersen, & Gaillard, 
2008; Hirzel & Le Lay, 2008; Hutchinson, 1957). Therefore, habitat 
suitability index (HSI) may predict the abundance or carrying ca‐
pacity of animal populations (Weber, Stevens, Diniz‐Filho, & Grelle, 
2017).

Ecological niche modeling (ENM), including habitat suitabil‐
ity modeling, has become a fundamental tool for understanding 
the spatial distribution and conservation of biodiversity. Habitat 
suitability models (HSMs) relate species occurrences to land‐
scape variables or resource availability in space (Hirzel & Le Lay, 
2008). Machine learning (ML) methods such as maximum en‐
tropy (MaxEnt), random forest (RF), and support vector machine 
(SVM) algorithms have been used to map wildlife habitat suit‐
ability with impressive predictive accuracy (Carrasco, Mashiko, & 
Toquenaga, 2014; Kampichler, Wieland, Calmé, Weissenberger, 
& Arriaga‐Weiss, 2010; Milanesi, Holderegger, Caniglia, Fabbri, 
& Randi, 2015; Phillips, Anderson, & Schapire, 2006). Maximum 
entropy is a principle to find a probability distribution, at which 
an event (e.g., species occurrence) occurs with the greatest un‐
certainty (e.g., maximizing the Shannon entropy), while being sub‐
ject to some constraints that the statistical moments (e.g., mean 
and variance) of the distribution match with the sample moments 

of observations. MaxEnt can be parameterized for presence‐only 
(PO) data in a way equivalent to the Poisson point process model, 
a spatial statistical model for count data. Despite the lack of in‐
tuition, MaxEnt has become a benchmarking ENM (Elith et al., 
2011; Phillips, Anderson, Dudík, Schapire, & Blair, 2017; Renner 
& Warton, 2013).

The RF algorithm draws a large number of random samples 
from the original data, fits classification and regression trees 
(CARTs) to each of the random samples, and then aggregates the 
“votes” or averages results over all the trees to make classifications 
or numeric predictions (Figure 1; Breiman, 2001). Random forests 
may achieve excellent performance for habitat suitability predic‐
tions unmatched by other ML methods through minimizing both 
the variance and bias of the models (Breiman, 2001; Kampichler et 
al., 2010). Support vector machines are a popular ML algorithm in 
pattern recognition due to the state‐of‐the‐art classification per‐
formance (Abe, 2005). Support vector machines deterministically 
choose support vectors (a subset of training data) as the boundary 
of a class in a high‐dimension feature space, and maximize sep‐
aration between classes (See figure 8 of Wang, 2019 for a brief 
description and illustrations). Support vector machines also have 
been used to model animal habitat suitability (Drake, Randin, & 
Guisan, 2006; Fukuda & De Baets, 2016). Nonparametric infer‐
ences of RF, deterministic‐learning features of SVMs, and their 
excellent accuracy have made the two algorithms important, 
attractive tools for habitat suitability assessments (Drake et al., 
2006; Evans, Murphy, Holden, & Cushman, 2011; Fukuda & De 
Baets, 2016).

Habitat suitability mapping often uses a large number of land‐
scape variables (e.g., 10 or more variables) to predict habitat suit‐
ability. Many of those landscape variables are highly correlated to 
one another, leading to multicollinearity in habitat and resource 
selection models (Aebischer, Robertson, & Kenward, 1993; Cutler 
et al., 2007). Machine learning uses regularization, which shrinks 
the influences of redundant or overfitting predictors to zero, and 
bagging, which is bootstrapping aggregating (Figure 1), to over‐
come the curse of dimensionality. Random forests and SVMs are 
nonparametric, without relying on statistical distributions and 

F I G U R E  1   Illustration of the random 
forest algorithm. The bagging algorithm 
consists of bootstrapping and aggregating. 
Each oval represents a bootstrap sample 
from training data. The bootstrapping is 
implemented at each tree branching with 
a different random subset of covariates 
(Vars) until fit of each tree is optimized. 
Random forests aggregate “votes” 
over all trees to estimate classification 
probabilities
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specific parametric function forms, which endows ML advantages 
over generalized linear models, generalized additive models, and 
their variants for habitat modeling. Random forests use CART to 
account for nonlinear interactions between predictors and bagging 
to reduce dimensionality and alleviate multicollinearity (Breiman, 
2001; Cutler et al., 2007). Support vector machines may not suf‐
fer from multicollinearity due to their deterministic solutions of 
support vectors (Drake et al., 2006). The program MAXENT im‐
plements the MaxEnt algorithm with an L‐1 regularization equiv‐
alent to the least absolute shrinkage and selection operator 
(LASSO) algorithm to avoid multicollinearity (Phillips et al., 2006). 
However, Merow, Smith, and Silander (2013) recommended to se‐
lect a subset of noncorrelated covariates before using MAXENT. 
Assessments of the effectiveness and accuracy of MaxEnt, RFs, 
and SVMs for high‐dimensional data on large spatial scales can 
help guide ecologists to design ENMs.

There are two common statistical approaches to eliminating or 
reducing multicollinearity in HSMs (Merow et al., 2013). The first 
method is to remove one of two highly correlated variables (e.g., ab‐
solute Pearson correlation |r| > 0.7 or a higher cutoff value; hereafter 
correlation removal). The second method is to use the scores of or‐
thogonal principal components, which explain the majority of vari‐
ation in the original environmental variables (e.g., >90%; hereafter 
principal component approach). Drake et al. (2006) demonstrated 
that unprocessed data (their model 1) and orthogonal transformation 
(method 2) performed equally and better than correlation removal 
(method 3) in SVMs. Random forests may alleviate multicollinear‐
ity with a randomized subset of explanatory variables when grow‐
ing each tree branch (Cutler et al., 2007). However, it is uncertain if 
MaxEnt differs in performance between using a subset of indepen‐
dent and all original environmental variables (Fukuda & De Baets, 
2016; Merow et al., 2013). Few studies have compared the predic‐
tive accuracy among multiple ML methods such as MaxEnt, RFs, and 
SVMs with correlation removal and orthogonal transformation.

The Eastern Wild Turkey (Meleagris gallopavo silvestris; hereafter 
wild turkey) is the largest galliform in North America (Dickson, 1992). 
Wild turkeys select a variety of habitats, but are strongly associated 
with forests (Davis et al., 2017; Wang, 2018). Habitat selection by 
wild turkey in Mississippi has been well studied at the population and 
within‐home‐range levels (Chamberlain, Leopold, & Burger, 2000; 
McKinney, 2013; Miller & Conner, 2007; Miller, Leopold, Hurst, & 
Gerard, 2000). Wild turkeys exhibited an optimal response to in‐
creasing hardwood forests, with their relative abundance peaking 
at or leveling off (i.e., following a S‐shaped response curve beyond 
about 29% hardwood forest within landscapes) (Davis et al., 2017). 
The S‐shaped response curve of habitat use to increasing resource 
or habitat available is a form of nonlinear functional response of hab‐
itat or resource selection (Mysterud & Ims, 1998). To our knowledge, 
no study of wild turkey habitat assessment using either rigorous sta‐
tistical models or ML methods on a regional scale (>100,000 km2), 
such as the entire state of Mississippi (ca. 125,443 km2), has been 
reported in the literature. In this study, we first developed statewide 
habitat suitability maps with a large sample size of presence data 

(e.g., 600–700 presence locations) using MaxEnt, RFs, and SVMs. 
Second, we compared predictive performances of MaxEnt, RFs, and 
SVMs between correlation removal and principal component ap‐
proaches to multicollinearity. Ecological studies have not exploited 
extensively the excellent performances of SVMs in pattern identifi‐
cation and recognition and the capacity to analyze large amounts of 
data and complex relationships (Huettmann et al., 2018).

2  | METHODS

2.1 | Study area

Mississippi is located in the southeastern United States (US; 
30.18341–34.99627 N, 91.63314–88.10944 W). Mississippi has a 
flat topology with elevation ranging from 0 to ca. 245 m a. s. l. Mean 
annual temperatures ranged from 16.67 to 18.33°C, and mean an‐
nual precipitation ranged from 127 to 165.1 cm. About 48% of land 
within Mississippi was covered by forests, including hardwood for‐
ests (i.e., deciduous trees as the dominant form of vegetation), pine 
forests, and pine‐hardwood mixed forests. The Mississippi Alluvial 
Valley region in westcentral Mississippi was dominated by agricul‐
ture, with only ca. 19% of land being covered by remnant bottom‐
land hardwood forests (See Davis et al., 2017 for the description of 
vegetation).

2.2 | Presence data

We acquired 763 presence locations of wild turkey from the follow‐
ing sources: (a) wild turkey trapping locations in January, February, 
and March of 2009 and 2010 (n = 17); (b) male bird harvest loca‐
tions in March and April of 2014 (n = 74) and 2015 (n = 91); (c) brood 
surveys of females and young of the year birds in June, July, and 
August of 2014 (n = 288) and 2015 (n = 202); and (d) random sight‐
ings across the state throughout the year (n = 91). Cooperative tur‐
key hunters recorded the geographic coordinates (longitude and 
latitude) of harvest locations on data sheets, which were designed 
and distributed by the senior author before the turkey hunting sea‐
sons (from mid‐March to 01 May), using a hand‐held global position‐
ing system (GPS) unit. Impromptu sightings occurred when wildlife 
biologists of the Mississippi Department of Wildlife, Fisheries, and 
Parks (MDWFP) conducted routine work. Geographic coordinates 
of other sighting locations were determined using high‐resolution 
(15 m) Google Earth© Map (http://www.earth.google.com). Brood 
surveys were conducted by the MDWFP wildlife biologists in June, 
July, and August. Wild turkey broods with females were detected 
~100–150 m from observers. Geographic coordinates of detected 
broods were recorded using a hand‐held GPS unit. Location errors 
(i.e., distance between detected broods and observers) were less 
than the 250‐m resolution of the land cover and land use (LCLU) 
maps used in our study. Additionally, frequency, edge density, and 
distance of land covers were generated as averages within a 1,785‐m 
circular buffer, which is the radius of average annual home range 
of wild turkeys in Mississippi (Davis et al., 2017). Thus, the effects 

http://www.earth.google.com
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of possible location errors (<200 m) were minimized by the spatial 
resolution of the landscape variables used in this study. We treated 
different sources of presence data equally because all types of data 
indicated the presence of wild turkeys in a certain life stage.

A total of 663 nonduplicated locations were used for HSI map‐
ping. To reduce spatial redundancy of presence locations, we ran‐
domly sampled presence locations with distances between any 
pairs of locations being >2 km using the R package spThin (Aiello‐
Lammens, Boria, Radosavljevic, Vilela, & Anderson, 2015). The 
random selection by spThin resulted in 453 presence locations be‐
tween any pairs of which distance was >2 km (Figure 2). Mean daily 
maximum movement distance of wild turkeys ranges from 1 to 2 km 
(Marable, Belant, Godwin, & Wang, 2012). Four hundred fifty‐three 
locations were used as training data for HSMs. The remaining 210 
nonduplicated presence locations were used as test/validation data 
for MaxEnt, RFs, and SVMs to evaluate predictive performance.

2.3 | Landscape data preparation

We created 27 landscape variables from the 2011 National Land Cover 
Database (NLCD) satellite imagery classified by the Multi‐Resolution 
Land Characteristics Consortium (http://www.mrlc.gov/). Mississippi 
LCLU types included 15 classes: open water, developed open space, 
developed low intensity, developed medium intensity, developed high 
intensity, barren land, hardwood forest, pine forest, mixed forest, 

shrub/scrub, grassland/herbaceous, pasture/hay, cultivated crops, 
woody wetland, and emergent herbaceous wetlands (Fry et al., 2011). 
The four classes of the type "developed" and "barren land" were com‐
bined to a single class, “developed.” We further combined hardwood 
forest with woody wetland into hardwood forest and grassland with 
pasture/hay as grassland to create nine LCLU classes.

We generated 250‐m LCLU raster maps (or layers) by resam‐
pling from the original 30‐m LCLUs to reduce computational bur‐
dens. We then derived three landscape variables for each of the 
nine LCLU classes: distance to the nearest grid cell (m), relative 
frequency (0–1.0), and edge density (m/ha), producing a total of 27 
landscape variables (hereafter the original data [OD]). Distance lay‐
ers were generated using the program Biomapper module DistAn 
(Hirzel, Hausser, Chessel, & Perrin, 2002). Frequency and edge 
density layers were generated in a radius of seven 250 m × 250 m 
grid cells using the Biomapper module CircAn (Hirzel et al., 2002). 
The radius of seven grid cells is equivalent to the average home 
range of wild turkeys in Mississippi (ca. 1,000 ha; Marable et al., 
2012; Davis et al., 2017). Graf, Bollmann, Suter, and Bugmann 
(2005) found that landscape variables averaged over an annual 
home‐range buffer had the best predictive performance for caper‐
caillie (Tetrao urogallus) habitat suitability modeling compared to 
other spatial scales.

We fit MaxEnt to the presence location data, and fit RFs and 
SVMs to the same presence locations and the same number of 
pseudo‐absence locations with the 27 original landscape variables, 
orthogonally transformed landscape data, and collinearity‐removed 
data separately to assess the impact of multicollinearity on the HSM 
performance. We used principal component analysis (PCA) to trans‐
form the original 27 landscape variables to principal components 
(hereafter PC data), which were orthogonal to one another, to avoid 
multicollinearity among original landscape variables. PC data were 
generated using the geographic information system (GIS) software 
IDRISI 15.0 (Clark Labs, Worcester, Massachusetts, USA), which 
generates the raster images of PCs in the same file format as pro‐
grams CircAn and DistAn.

We used variance inflation factor (VIF) to remove landscape vari‐
ables which were highly correlated with other landscape variables, de‐
creasing the extend of multicollinearity (Neter, Kutner, Nachtsheim, 
& Wasserman, 1996). We used a VIF cutoff of 3.0 (>3.0) to exclude 
a variable (Graham, 2003; Zuur, Ieno, & Elphick, 2010). We used the 
R package uSDM to calculate VIFs of 27 landscape variables (Naimi, 
2017; Naimi, Hamm, Groen, Skidmore, & Toxopeus, 2014), and termed 
the resulting subset of landscape variables reduced data (RD).

2.4 | Habitat suitability models

MaxEnt models use a large number of randomly selected pseudo‐
absence locations as background locations to quantify available 
resources (Elith et al., 2011; Merow et al., 2013). We used 10,000 
randomly generated pseudo‐absence locations as recommended 
by Merow et al. (2013). We built MaxEnt models with the OD, PC, 
and RD data, respectively, using the R package Dismo with the 

F I G U R E  2   Spatial distribution of 453 presence locations 
of eastern wild turkey within the state of Mississippi, United 
States. The polygon is the boundary of Mississippi (in latitude and 
longitude). Black dots are nonduplicated location, with distance 
between any two locations being ≥2 km

http://www.mrlc.gov/
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default parameter settings of the program MaxEnt (Hijmans, Phillips, 
Leathwick, & Elith, 2017; Phillips et al., 2006).

Random forests and SVMs for 2‐class classification require ab‐
sence locations for HSM. Ecological niche factor analysis (ENFA) uses 
environmental conditions including landscape variables at presence 
locations to quantify the multi‐dimensional ecological characteris‐
tics of the occupied habitat (Hirzel et al., 2002). Then, ENFA applies 
the multivariate profile or kernel to the entire landscape to gener‐
ate a habitat suitability map without absence locations (Hirzel et al., 
2002). As a multivariate statistical approach, the ENFA method also 
accounts for multicollinearity among landscape variables (Hirzel et 
al., 2002). Instead of randomly selecting pseudo‐absence locations, 
we first used ENFA to generate habitat suitability maps of wild tur‐
keys only with 453 presence locations. Then, we randomly selected 
453 pseudo‐absence locations restricted to the areas of low HSI 
away from the presence locations of wild turkeys with an approach 
similar to Senay, Worner, and Ikeda (2013).

We used Box‐Cox transformation to normalize 27 landscape 
variables for ENFA (Hirzel et al., 2002). We conducted ENFA for 
generating a statewide habitat suitability map of wild turkeys using 
the function enfa in the R package adehabitatHS (Calenge, 2006). To 
generate 453 pseudo‐absence locations for training RFs and SVMs, 
we followed the methods of Hengl, Sierdsema, Radović, and Dilo 
(2009) to calculate a composite weight of the ENFA‐predicted HSI 
and gridded buffer distance to observed occurrence locations using 
regression‐kriging. Pseudo‐absence locations were randomly se‐
lected at the composite weight of each 250 m × 250 m grid cell, and 
were located in the grid cell of low HSI away from observed pres‐
ence locations (see Hengl et al., 2009 for the details). We generated 
453 background locations for training and 210 background locations 
for evaluating RFs and SVMs.

We fit RFs to the three sets of landscape data (i.e., OD, PC, and 
RD), respectively, with 453 presence locations (coded as 1’s) and 453 
selected pseudo‐absence locations (coded as 0’s) using the R package 
randomForest (Liaw & Wiener, 2002). We set the number of random 
trees (n) to 10,000. We used the default value of the parameter mtry 
(i.e., the number of randomly selected covariates). At last, RFs aggre‐
gate the results over 10,000 trees to make predictions, taking the 
majority of the votes of 10,000 trees for classification (Figure 1). We 
used RFs to classify a location to class presence or absence. We also 
used function partialPlot to plot the partial dependence of habitat oc‐
currence probability on the logit scale on hardwood forest proportion, 
distance to hardwood forests, and hardwood forest edge density.

We used the Gaussian radial basis kernel for SVMs. We fit SVMs 
to the three sets of landscape data (i.e., OD, PC, and RD), using 
the function svm of the R package e1701 (Meyer et al., 2018) and 
the same training data of 453 presence and 453 pseudo‐absence 
locations.

2.5 | Accuracy assessment of HSI models

We evaluated the predictive accuracy of ENFA, RF, MaxEnt, and 
SVM predictions using the same test data (210 nonduplicated 

presence locations) with the continuous Boyce index (CBI; Boyce, 
Vernier, Nielsen, & Schmiegelow, 2002; Hirzel, Lay, Helfer, Randin, 
& Guisan, 2006). The CBI is a Spearman correlation between the 
predicted‐to‐expected (P/E) ratio of the habitat suitability value and 
mean HSI (Hirzel et al., 2006). The CBI ranges from −1 to 1, with 0 
being equivalent to random predictions and a negative value indicat‐
ing a wrong model (Hirzel et al., 2006).

We also used area under the curve (AUC) index from receiver 
operating curve (ROC) to assess the accuracy of ENFA, MaxEnt, RFs, 
and SVMs (Hilden, 1991; Liu, White, & Newell, 2011). The ROC is 
a curve of true positive rate (i.e., sensitivity) against false positive 
rate (i.e., 1‐specificity). The AUC ranges from 0 to 1, with 0.5 being 
equivalent to random predictions (Hilden, 1991). Accuracy is greater 
with a higher AUC (Liu et al., 2011). We used the function evaluate of 
the R package Dismo to calculate the AUC values for ENFA, MaxEnt, 
RFs, and SVMs.

We also determined the HSI threshold by maximizing the sum of 
the true positive rate and true false negative rates of each habitat 
suitability model using the function evaluate. We generated Boolean 
maps of suitable habitat, having the value 1 or 0 for a grid cell with its 
suitability index being greater or less than the threshold.

3  | RESULTS

The first 15 principal components (PCs) explained 90% of variability 
in the original 27 landscape variables. The variable inflation factors 
(VIF) of 14 original landscape variables were greater than the cutoff 
of three and were excluded from the reduced data (RD, Appendix 
Table A1).

The AUC and CBI of the ENFA were 0.861 and 0.573, respec‐
tively, suggesting good fit. Maximum entropy, RFs, and SVMs with 
the PC all had excellent predictive accuracies (AUC and CBI >0.9) 
with RFs slightly over performing MaxEnt and SVMs (Table 1). 
Continuous Boyce indices indicated that all three classifiers per‐
formed equally well for the original data (OD) and RD data compared 
to the PC data (CBI >0.9). Nevertheless, AUC values demonstrated 
a slightly lower predictive performance of MaxEnt and SVMs for the 
OD data than the PC data, with the AUC value being 0.88 and 0.87, 
respectively, for the OD data (Table 1).

The three ML algorithms and ENFA predicted similar spatial 
distribution patterns of wild turkey habitats across Mississippi 
although the ranges of relative probabilities differed among 
methods (Figures 3, 4). Environmental niche factor analysis had 
excellent CBI values. Thus, pseudo‐absence locations generated 
by the regression‐kriging based on ENFA were primarily located in 
less suitable areas.

The partial‐dependent effect of hardwood forest proportion on 
the occurrence probability of wild turkeys was nonlinear, increasing 
with increasing proportion and reaching an asymptote beyond 0.20 
(Figure 5a). The RF models with the OD and RD data demonstrated 
the similar partial‐dependent effects of hardwood edge density 
(Figure 5b, c) and distance to hardwood forests (Figure 5d, e).
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4  | DISCUSSION

This study assessed the effectiveness of two different methods of 
correlation removal and principal component approaches to address 
multicollinearity on the predictive performance of Maximum en‐
tropy (MaxEnt), random forests (RFs), and support vector machines 
(SVMs) for habitat suitability modeling. Neither multicollinearity nor 
correlation removal reduced the predictive performance of MaxEnt, 
RFs, and SVMs substantially. Additionally, partial‐dependent effects 
of distance to hardwood forest and hardwood forest edge den‐
sity are consistent between the RF models using the original data 
with multicollinearity and the reduced data of independent predic‐
tors. The occurrence of wild turkeys exhibited an increase and then 
level‐off with increasing hardwood proportion and edge density (i.e., 
functional response of habitat selection). Low amounts of hardwood 
forest and edge density appeared to limit the habitat use of wild tur‐
keys. Nevertheless, the benefits of increasing hardwood forests and 
edge density leveled off or became saturated at high levels, consist‐
ent with the prediction of the functional response hypothesis for 
animal habitat selection (Mysterud & Ims, 1998).

Machine learning (ML) has various algorithms to combat the 
curse of dimensionality and multicollinearity including regulariza‐
tion and bagging. MaxEnt developed by Phillips et al. (2006) used 
the L‐1 regularization to account for multicollinearity in habitat/
landscape variables. Our findings indicated that regularization with 
the MaxEnt default setting was sufficient to account for multicol‐
linearity of the original data set of 27 landscape variables, of which 
14 variables exhibited multicollinearity (Appendix Table A1). Despite 
the high predictive performance of MaxEnt models demonstrated in 
this study, to understand relationships between habitat selection by 
animals and landscape structure, the complexity and multicollinear‐
ity of MaxEnt models may need to be adjusted for robust, general 
inferences (Morales, Fernández, & Baca‐González, 2017). Francis et 
al. (2017) determined the optimal complexity of MaxEnt models for 
American beaver by selecting variables with Akaike's information 
criterion and relative contribution to model fit, tuning the β parame‐
ters for regularization, and removing correlative variables following 
Jueterbock, Smolina, Coyer, and Hoarau (2016). Francis et al. (2017) 
and this study have demonstrated the excellent predictive perfor‐
mance of HSMs using the PCs of landscape variables as predictors. 
However, the main disadvantage of using PC is the difficulty to in‐
terpret the effects of landscape structure on habitat selection, as a 
PC is a linear combination of original landscape variables.

Random forests may outperform SVMs and MaxEnt in ecological 
classification primarily because of the bagging algorithm (Breiman, 

2001; Cutler et al., 2007), although no substantial performance dif‐
ferences were found among the three algorithms in this study. This 
study demonstrated excellent predictive performance of RFs with 
the original data of collinearity. Random forests may alleviate multi‐
collinearity through bagging, which reduces the variance and bias of 
models simultaneously (Breiman, 2001; Cutler et al., 2007). Bagging 
has been increasingly used in ecological niche and species distribu‐
tion modeling (Drake, 2014, 2015). Our findings suggested that the 
relationship between habitat selection and hardwood forest edge 
density was consistent between the simple and complex RF models 
(Figure 5), making RFs a useful tool for exploratory studies of the 
effects of environmental factors on spatial distributions of wildlife 
without facing difficulties of variable selection. Nevertheless, the 
collinearity of predictors may bias the outcome of variable selection 
(i.e., removing or retaining a variable) of RFs, diluting the relative im‐
portance of the variables of interest by redundant/overfitting vari‐
ables (Murphy, Evans, & Storfer, 2010; Strobl, Boulesteix, Zeileis, & 
Hothorn, 2007). Furthermore, we here demonstrated the effective‐
ness of the three ML algorithms for multicollinearity of predictors for 
species distribution models (SDMs) with only one case study; thus, 
future studies may need to test and confirm the effectiveness of ML 
algorithms for multicollinearity in SDMs for different data and differ‐
ent ecosystems.

Support vector machines use the L‐2 regularization, minimizing 
the loss function of classification and regularizing term, which con‐
trols model complexity, based on statistical learning theory without 
requiring statistical distribution assumptions (Abe, 2005). Support 
vector machines generalize the inference/classification results only 
on the Vapnik–Chervonenkis (VC) dimension h, a reduced dimen‐
sionality of input data, to achieve sparsity. This study demonstrated 
robust predictive performance of SVMs to landscape data of col‐
linearity like Drake et al. (2006). Additionally, the deterministic ap‐
proaches may make SVMs faster and less costly in computation than 
RFs. Support vector machines are less popular than MaxEnt and RFs 
in the literature of species distribution models (Huettmann et al., 
2018). Future studies may consider single‐class SVMs, a variant of 
SVMs for single‐class data, as a true presence‐only model for esti‐
mating species distributions (Mack & Waske, 2017).

Maximum entropy, RFs, and SVMs predicted the similar general 
patterns of wild turkey habitat distributions in Mississippi (Figures 
3, 4). For instance, the region dominated by agriculture, grasslands 
such as the Black Prairie belt, and urban or developed areas had less 
suitable wild turkey habitats compared to the forested regions in 
Mississippi. However, boolean maps indicated that RFs and SVMs 
predicted more continuous habitats than MaxEnt models (Figure 4). 

Data set MaxEnt‐CBI RF‐CBI SVM‐CBI MaxEnt‐AUC RF‐AUC SVM‐AUC

PC 0.99 0.99 0.93 0.92 0.95 0.90

OD 0.97 0.91 0.97 0.88 0.92 0.87

RD 0.99 0.98 0.98 0.90 0.95 0.93

Notes. Symbol “OD” stands for the original data, “PC” for principal component, and “RD” for 
reduced data with correlated covariates being removed.

TA B L E  1   The area under curve (AUC) 
and continuous Boyce index (CBI) of 
maximum entropy (MaxEnt), random 
forests (RF), and support vector machines 
(SVM) for the habitat suitability of wild 
turkeys in Mississippi, USA
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The MaxEnt predictions captured isolated suitable habitats in the 
batture land east of the Mississippi River and along the river drain‐
ages (the upper right panels of Figures 3,4). Despite the similar 
patterns demonstrated by the three ML algorithms, the ranges 
of habitat suitability differed between MaxEnt and the other two 
methods probably because MaxEnt used much more randomly se‐
lected background locations than RFs and SVMs. Fukuda and De 
Baets (2016) demonstrated that data prevalence may affect the esti‐
mated range of habitat suitability and habitat suitability assessment. 
Ensemble approaches to integrating multiple HSMs into habitat suit‐
ability assessments may improve the robustness of HS predictions 
(Araújo & New, 2007).

Occurrence probabilities of wild turkey were also limited by low 
hardwood forest edge density below about 30 m edge/ha (Figure 5). 
Davis et al. (2017) found that the presence of diverse land covers, 
arranged in proximity to one another, enhanced relative abundance 
of wild turkeys, with increasing forest edges. Wild turkeys need agri‐
cultural fields, pastures, and forest openings for courtship and brood 
rearing (Hurst & Dickson, 1992; Speake, Lynch, Fleming, Wright, & 
Hamrick, 1975). Braunisch and Suchant (2007) found that small for‐
est openings and small fields had positive effects on forest‐dwelling 
capercaillie (Tetrao urogallus). In our study, hardwood forest edge 
density served as a surrogate for the relative simultaneous access 
to both hardwood forests and different land covers that wild tur‐
keys may have found within their home ranges. Landscapes of <20% 

or >30% hardwood forests may lack diversity, which reduced hard‐
wood edge density, and thereby negatively affected the occurrence 
probability and potential abundance of wild turkey.

The abundance–suitability relationship may be positive in 
wildlife, including birds and mammals (Weber et al., 2017). The 
positive relationship may be ascribed to the same environmental 
variables favorable to both the occurrence and abundance of wild‐
life (Weber et al., 2017). Association of wild turkeys with forests 
has previously been recognized (Chamberlain et al., 2000; Davis 
et al., 2017). During the nesting season, females typically asso‐
ciate with managed pine (Pinus sp.) or hardwood forests (Miller 
& Conner, 2005; Miller, Hurst, & Leopold, 1999), whereas males 
prefer hardwood and pine forests (Miller et al., 1999). Davis et al. 
(2017) identified a parabolic relationship between relative male 
turkey abundance and proportion of hardwood forest, with rel‐
ative abundance peaking in the habitat of 29% hardwood forest. 
This study used the presence data of male and female birds and 
found that the relative probability of occurrence of wild turkeys 
leveled off when the proportion of hardwood forest was more 
than 20%. The relationships illustrated from this study indicate 
that wild turkey populations in Mississippi may be limited by low 
amounts of hardwood forest at local scales. Nevertheless, abun‐
dance–suitability relationships may be complex (Dallas & Hastings, 
2018). For instance, abundance may be low or high in the habitat 
of high suitability, with suitability predicting the upper limit of 

F I G U R E  3   Habitat suitability maps of 
wild turkeys in Mississippi, USA, predicted 
by ecological niche factor analysis (ENFA, 
upper left panel), maximum entropy 
(MaxEnt, upper right panel), random 
forests (RF, lower left panel), and support 
vector machines (SVM, lower right panel)
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F I G U R E  4   Boolean maps of suitable 
wild turkey habitats in Mississippi, 
USA, predicted by ecological niche 
factor analysis (ENFA, upper left panel), 
maximum entropy (MaxEnt, upper right 
panel), random forests (RF, lower left 
panel), and support vector machines 
(SVM, lower right panel). Green color 
represents suitable areas above a habitat 
suitability index (HSI) threshold

F I G U R E  5   Partial plot of the partial 
dependence of the logit of occurrence 
probability of wild turkeys on (a) 
hardwood forest amount of full Random 
Forest models, (b) hardwood forest edge 
density of full Random Forest models, (c) 
hardwood forest edge density of simple 
random forest models, (d) distance to 
hardwood forests of full Random Forest 
models, and (e) distance to hardwood 
forests of simple random forest models in 
Mississippi, USA. The partial dependence 
was calculated with all other predictors 
being accounted for
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abundance or the carrying capacity of wild turkeys (Acevedo et 
al., 2017). Although we only presented the partial plots of RFs in 
this study, similar partial plots of SVMs and response curves or 
plots of MaxEnt can be used to examine the relationship between 
environmental variables and habitat suitability (Elith et al., 2011; 
Muñoz‐Mas, Fukuda, Pórtoles, & Martinez‐Capel, 2018; Phillips 
et al., 2006). Machine learning is a promising tool for species 
distribution modeling due to its nonparametric approaches and 
sparsity to overcome difficulties arising from high dimensions of 
environmental data and sparse data on occurrence, particularly in 
rare, threatened or endangered species.
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APPENDIX 1

TA B L E  A 1   Variance inflation factor (VIF) of 27 landscape variables and the step VIF (VIFstep) of 14 landscape variables with the variable 
of the highest VIF being removed at each step

Variables VIF VIFstep

Crop edge density 8.04 1.91

Distance to crop 6.71 NA

Crop frequency 23.88 NA

Developed edge density 4.34 NA

Distance to developed 2.29 2.1

Developed frequency 6.16 1.7

Wetland edge density 3.25 1.55

Distance to wetland 3.47 NA

Wetland frequency 1.91 1.52

Grassland edge density 19.79 NA

Distance to grassland 4.4 NA

Grassland frequency 14.18 1.42

Hardwood forest edge density 4.93 2.18

Distance to hardwood forest 2.51 1.87

Hardwood forest frequency 10.39 NA

Mixed forest edge density 13.73 NA

Distance to mixed forest 4.25 NA

Mixed forest frequency 8.82 1.85

Pine forest edge density 27.18 NA

Distance to pine forest 7.49 NA

Pine forest frequency 15.91 2.73

Shrubland edge density 31.38 NA

Distance to shrubland 4.75 NA

Shrubland frequency 16.58 2.42

Water edge density 3.25 1.43

Distance to water 3.99 NA

Water frequency 6.97 2.52

Note. Step VIF is calculated iteratively until all remaining variables have VIF of <3.0.


