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Purpose: Precision oncology, such as next generation sequencing (NGS) molecular
analysis and bioinformatics are used to guide targeted therapies. The laboratory
turnaround time (TAT) is a key performance indicator of laboratory performance. This
study aims to formally apply statistical process control (SPC) methods such as CUSUM
and EWMA to a precision medicine programme to analyze the learning curves of NGS and
bioinformatics processes.

Patients and Methods: Trends in NGS and bioinformatics TAT were analyzed using
simple regression models with TAT as the dependent variable and chronologically-
ordered case number as the independent variable. The M-estimator “robust” regression
and negative binomial regression were chosen to serve as sensitivity analyses to each
other. Next, two popular statistical process control (SPC) approaches which are CUSUM
and EWMA were utilized and the CUSUM log-likelihood ratio (LLR) charts were also
generated. All statistical analyses were done in Stata version 16.0 (StataCorp), and
nominal P < 0.05 was considered to be statistically significant.

Results: A total of 365 patients underwent successful molecular profiling. Both the robust
linear model and negative binomial model showed statistically significant reductions in TAT
with accumulating experience. The EWMA and CUSUM charts of overall TAT largely
corresponded except that the EWMA chart consistently decreased while the CUSUM
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analyses indicated improvement only after a nadir at the 82nd case. CUSUM analysis
found that the bioinformatics team took a lower number of cases (54 cases) to overcome
the learning curve compared to the NGS team (85 cases).

Conclusion: As NGS and bioinformatics lead precision oncology into the forefront of
cancer management, characterizing the TAT of NGS and bioinformatics processes
improves the timeliness of data output by potentially spotlighting problems early for
rectification, thereby improving care delivery.
Keywords: precision medicine, computational biology, next generation sequencing, precision
oncology, bioinformatics
INTRODUCTION

Precision oncology refers to the use of therapeutics expected
to benefit patients who harbor specific molecular or
histopathological biomarkers (1). Due to the known
complexity of cancers and the expanding body of knowledge of
oncogenesis, molecular profiling, such as next generation
sequencing (NGS) molecular analysis and bioinformatics, is
being used to identify genetic mutations (2, 3), which may
guide the deployment of targeted therapies (4, 5). As precision
oncology remains a cornerstone in treating cancer patients and
has been proven to improve outcomes (6, 7), its application is
likely to be imperative in cancer research, clinical practice and
patient care in the years to come. However, a critical element to
this enterprise is the laboratory turnaround time (TAT), which
refers to the time from sample receipt to the return of molecular
results (8).

The Integrated Molecular Analysis of Cancers (IMAC) study
was conducted to establish the prevalence and range of
mutations in Asian patients with advanced cancers (9) to
further develop and understand the value of targeted molecular
profiling and gene sequencing in clinical decision making. TAT
is a key performance indicator of laboratory performance (8) and
a shorter TAT indicates that actionable information is being
provided in a timely fashion (10), which expedites the decision-
making process in management and treatment. Furthermore, a
shorter TAT allows for the prudent use of resources in public
health as patients can be discharged more quickly and require
less hospital in-patient services (11). However, NGS labs are
often hampered by various logistical and technical difficulties
(12) and bioinformatics challenges (13).

However, the quantification of the learning curves for next
generation sequencing labs has yet to been described in
literature. As such, a first step in measuring the real-time
efficiency and identify ing bott lenecks in NGS and
bioinformatics pipelines could be to adopt statistical process
control (SPC) methods such as cumulative sum (CUSUM) (14),
or exponentially weighted moving average (EWMA) (15), to
monitor the temporal parameter stability and identify structural
breakpoints in TAT. CUSUM is a sequential analysis technique
which monitors change detection, particularly deviation from a
performance standard (16–18), and has been widely used in a
range of healthcare settings, from describing the learning curves
2

of surgical or procedural skills (19–24), to clinical audits (25–27),
and quality-assurance studies (22, 28–32). Similar to CUSUM,
EWMA control charts have been widely used for measuring and
monitoring healthcare outcomes (33, 34). EWMA analysis has
been shown to detect smaller shift sizes that occur especially
during the earlier period of monitoring (35).

To our knowledge, this study is the first to formally apply
statistical process control (SPC) methods such as CUSUM and
EWMA to a precision medicine programme to characterize the
turnaround time for molecular report generation and analyze the
learning curve of NGS and bioinformatics in the precision
medicine era.
METHODS

Patients
The characteristics and eligibility criteria of patients recruited to
the Integrated Molecular Analysis of Cancers (IMAC) precision
medicine platform has been described previously (9). Briefly,
patients referred to the Developmental Therapeutics Unit (DTU)
at the National University Cancer Institute, Singapore (NCIS)
were offered participation in the IMAC programme if they were
above 21 years of age, and had a histologically confirmed
diagnosis of a solid malignancy or lymphoma, and had
adequate tumor tissue for genome characterization. The IMAC
protocol was approved by the National Healthcare Group-
Domain Specific Review Board (NHG-DSRB) and the
SingHealth Centralized Institutional Review Board and was
undertaken in adherence with the Good Clinical Practice
Guidelines. Written and informed consent was obtained from
patients before study entry. Genomic profiles were characterized
from a variety of pathological specimens (including tissue block
or frozen specimens, slides, or cytological samples such as smears,
and CT-guided or EUS guided, biopsy-imprint or FNA smear
cytology, and DNA) retrieved during routine clinical procedures
(e.g., surgery, biopsy, or ascites and pleural fluid drain).

Sequencing and Bioinformatics Analyses
As described previously (9), targeted next-generation sequencing
was performed using the AmpliSeq Cancer Hotspot Panel v2 on
an Ion Torrent/PGM system (Life Technologies, CA, USA) per
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the manufacturer’s instructions. We rejected samples with an
average sequencing depth <500, unfiltered DNA variants >100,
or uniformity of coverage <80% from bioinformatics analyses.
The pathogenicity of exonic non-synonymous alterations were
individually reported after reviewing published literature and
public curated databases (i.e., ClinVar for pathogenicity; My
Cancer Genome for variant frequency and exon number;
Ensembl GRCh37 for the protein domain). When phenotypic
information on rare variants were missing from ClinVar or
Catalogue of Somatic Mutations in Cancer (COSMIC)
databases, we interrogated Variant Call Format (VCF) files
with Variant Effect Predictor (VEP) version 75 to infer their in
silico pathogenicity (SIFT and POLYPHEN). As we did not
perform paired normal tissue profiling, we excluded variants
with minor allele frequency >5% among South East Asians in the
1000 Genomes Database. Since the evidence base for precision
oncology biomarkers was in constant flux, we did not utilize any
predetermined protocols to prioritize the actionability of
reported variants.

Learning Curve Analyses
We began analyses of trends in TAT using simple regression
models in which the dependent variable was the TAT and the
independent variable was the chronologically-ordered case
number. Two modelling approaches were chosen and serve as
sensitivity analyses to each other: (i) M-estimator “robust”
regression, in which a biweight loss function is minimized
through an iteratively-weighted least squares algorithm, thus
minimizing the impact of influential outliers; and (ii) negative
binomial regression, since the turnaround time (in days) could
constitute a form of ‘count data’ and therefore may be assumed
to follow a Poisson-related family distribution.

Next, to illustrate the application of statistical process control
(SPC) to the precision medicine paradigm, we exploited two
popular SPC approaches: CUSUM and EWMA. We did not use
risk-adjusted models as no predictors of TAT could be identified
despite using multivariable linear, quantile, or negative binomial
models, and evaluating a range of potential predictors (e.g., type
of specimen [tissue block vs other types of specimens such as pap
smears or fine needle aspiration], tumor content of specimen,
etc.). The CUSUM statistic was calculated as the running sum of
residuals (expected minus observed [Oj] outcome values) over
chronologically-ordered patients, as per the following equation:

Cj = o
j

k=1

(Ej − Oj)

in which the expected value (Ej) refers to the mean TAT. On the
basis of this equation, downward trends indicate that the
observed values exceed the expected value (i.e., turnaround
time for specimen greater than expected), whereas upward
trends indicate an improvement in performance.

CUSUM log-likelihood ratio (LLR) charts were also
generated, using clinically-selected thresholds of >6 weeks for
overall TAT, and >3 weeks each for the wet-lab and dry-lab
components of NGS respectively. To identify clinically-
meaningful signals, we chose an odds ratios of 1.20 (e.g., a 20%
Frontiers in Oncology | www.frontiersin.org 3
increase in the odds of overall turnaround time > 42 days) and
1/1.20 = 0.83 (i.e. a 17% decrease in the odds of overall
turnaround time > 42 days) as the alternative hypotheses.
However, the CUSUM chart was not reset when the control
limits were exceeded. The exponentially weighted moving
average (EWMA) chart has been proposed to provide an
ongoing local estimate of the average score that is purportedly
easier for clinical staff to interpret and understand (19, 20).
As such, we also illustrated the application of EWMA control
chart for monitoring trends in TAT. The mean of the first ten
observations were used to obtain the initial value for recursion,
and the EWMA was calculated by assigning lesser weight to
observations earlier in the series in a geometrically-declining
fashion (decay factor: 0.1), with a smoothing parameter of
alpha = 0.03. All statistical analyses were done in Stata version
16.0 (StataCorp), and nominal P < 0.05 were regarded to indicate
statistical significance. All scripts were uploaded at the Github
website (https://github.com/nicholassyn/Stata-codes-for-IMAC-
CUSUM-and-EWMA-analysis/tree/main).
RESULTS

Patient Information
A total of 365 patients with a variety of advanced malignancies
underwent successful molecular profiling using the AmpliSeq
Cancer Hotspot Panel v2 as part of the IMAC molecular
screening initiative (9). The molecular landscape and
histopathological characteristics of these patients have been
reported previously (9).

Overall Learning Curve
Overall, there was a median of 27 days (IQR: 19-43) between the
receipt of the sample to the generation of the molecular report.
As indicated in Figure 1A, both the robust linear model (Robust
b= -0.0346; 95% CI: -0.0479 to -0.0212, p<0.0001) and negative
binomial model (IRR=0.9987; 95% CI: 0.9982 to 0.9992,
p<0.0001) showed statistically significant reductions in TAT
with accumulating experience. The EWMA chart of overall
TAT (Figure 1B) showed that TAT consistently decreased
from 0 to 365 cases, although interjected by a transient
increase in TAT between 250 to 310 cases. CUSUM analyses of
overall TAT indicated that from 0 to 82 cases, there was a
worsening trend and the chart reached its nadir at 82.
Subsequently, the CUSUM chart showed an improving trend
from 82 to 365 cases with the exception of a deteriorating trend
from 265 to 310 cases. The deteriorating phase corresponds
largely with the findings in the EWMA chart which showed an
increase in TAT from 250 to 300 cases (Figures 1C, D).

Learning Curve of NGS Assays
(Wet-Lab Component)
There was a median of 13 days (IQR: 9-21) from the receipt of
the sample to the NGS assay result. Interestingly, robust
regression of NGS assay TAT versus case numbers did not
reveal any statistically-significant temporal trend; in fact,
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negative binomial regression unexpectedly indicated a possible
increase in TAT over time (Figure 2A). EWMA analyses also
indicated that the moving average TAT estimate was higher at
almost all timepoints as compared to the initial ~20 cases
(Figure 2B). CUSUM analyses corroborated these findings,
and demarcated three time periods: an initial increase in TAT
up to 85 cases (nadir at 82 cases), followed by a decrease in TAT
up to 265 cases, and then a subsequent increase in TAT up till the
365th case. Notably, the increase in NGS turnaround time at the
262nd case approximately corresponds with a period of
transition and changes in key lab personnel (Figures 2C, D).
Learning Curve of Bioinformatics Analyses
(Dry-Lab Component)
There was a median of 10 days (IQR: 8-13) from NGS result to
generation of the bioinformatics report. As demonstrated in
Figure 3A, the TAT for bioinformatics analyses decreased
significantly over time. This was supported by the EMWA
analysis, which shows a rapid decrease in TAT up to the 110th
case, followed by a more gradual pace of decrease subsequently
(Figure 3B). The CUSUM analyses, however, revealed that
between the 0th to 54th case, there was an initial increase in
TAT, only after which did the turnaround time for
bioinformatics analyses begin to improve (Figures 3C, D).
Frontiers in Oncology | www.frontiersin.org 4
DISCUSSION

Learning curve analysis has been widely used in surgery (29, 36–
41), due to its usefulness in presenting the performance of
surgeons using various outcome measures relative to their
cumulative case loads (18, 42–44). This enables the objective
quantification of caseloads required for surgeons to surmount
their learning curves and spotlights performance deviation that
necessitates intervention (18, 36, 45). In oncology, precision
medicine has been shown to achieve improved therapeutic
outcomes and is becoming increasingly prevalent (46). NGS
allows for sequencing of the whole genome to identify
molecular aberrations instead of a singular biomarker, coupled
with bioinformatics, targeted approaches could be identified to
treat cancers and advance the effectiveness of personalized
medicine in the years to come (47). However, the complex
nature of NGS and bioinformatics are barriers to their
ubiquitous use due to logistical and technical difficulties (9). In
order to improve lab performances, the characterization of
learning curve in NGS and bioinformatics could prove useful
in facilitating greater adoption of precision oncology and
accelerate the move towards comprehensive genomic profiling
(48). To our knowledge, this is the first paper to characterize the
learning curves of both NGS and bioinformatics, two key
components in precision oncology.
A B

DC

FIGURE 1 | Overall Turnaround Time. (A) Scatter and regression fit of overall turnaround vs case load. (B) Exponential weighted moving average of overall turnaround
time. (C) CUSUM of overall turnaround time. (D) CUSUM log-likelihood ratio chart for overall turnaround time > 3 weeks.
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The RA-CUSUM analysis found that the bioinformatics team
took a lower number of cases (54 cases) to overcome the learning
curve compared to the NGS team (85 cases) and this difference
could be attributed to more experienced personnel and smoother
workflows with bioinformatics analyses. The CUSUM showed an
overall decrease in the TAT as caseloads increased for both NGS
and bioinformatics (Figure 2C and Figure 3C). For
bioinformatics, the improving trend also corresponded with the
decrease in overall turnaround time in the EWMA chart for
bioinformatics (Figure 3B), likely due to the increased efficiency
of the bioinformatics team as they gained experience. However, for
NGS, there was an overall increasing trend in TAT reflected by the
EWMA (Figure 2B). This overall increase was attributable to the
change of main pathologist operating the NGS equipment (262nd

case) and the number of cases analyzed subsequently did not
reflect the full learning curve of the NGS team.

An important observation, of a second dip in performance
(after 262 cases), was made in the NGS CUSUM chart
(Figure 2C). This dip was also observed in the EWMA chart
(Figure 2B), as well as the overall CUSUM and EWMA in
Figure 1. In this period, two key personnel left the NGS
laboratory and there was a handover of work to new
manpower. The individual learning curves of transition to new
Frontiers in Oncology | www.frontiersin.org 5
personnel could explain this increase in TAT after 262 cases. The
NGS laboratory comprised two to three pathologists involved in
tissue quality control, and four to six in the genomics team
involved in accessioning, sample preparation, NGS and report
preparation. Meanwhile, the bioinformatics laboratory
comprised four to six members. While there were changes in
personnel in both laboratories, at any given point in time, there
was a team focused on IMAC formed by two to three
pathologists, two members in the genomics team, and one to
two members in the bioinformatics team.

Interestingly, clustering of cases in both NGS (Figure 2A) and
bioinformatics laboratories (Figure 3A) were observed. This
habitual clustering of consecutive cases suggests that
researchers tended to accumulate samples even after receiving
them, before analyzing them as a single batch. Batch processing
is a common practice to reduce cost and wastage or reagents, but
will consequently impact on TAT if the required number of
samples per batch does not materialize within a specified time-
frame. Batching samples can also lead to batch-to-batch
irregularities in results due to different laboratory conditions,
sample degradation and personnel changes (49). Some of these
inaccuracies can possibly be reduced by strict standardization of
sequencing protocols and training of lab staff.
A B

DC

FIGURE 2 | Turnaround Time for NGS Assays. (A) Scatter and regression fit of NGS turnaround vs case load. (B) Exponential weighted moving average of NGS
turnaround time. (C) CUSUM of NGS turnaround time. (D) CUSUM log-likelihood ratio chart for nGS turaround time > 3 weeks.
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Within healthcare contexts, the application of control charts has
largely been limited to procedural, particularly surgical disciplines
(36, 50). The IDEAL Framework for surgical innovation describes
five stages of evolution for new surgical therapeutic interventions -
Idea, Development, Exploration, Assessment, and Long-term Study
(51). This idea can be applied to the field of precision oncology to
better the process of finding gene sequences that cause cancers,
interpreting these results and finding targeted therapies for these
patients. CUSUM and EWMA scrutinizes the NGS and
bioinformatics process and assists in mapping the TAT and
finding areas of improvement in the evolving process of
precision oncology. While the findings of this paper are not
necessarily generalizable, it highlights the potential use of
statistical process monitoring for precision medicine. As more
centres use targeted therapies, analyses should be routinely
performed to monitor learning curves and find potential areas of
improvement in the process. In doing so, it is important to keep in
mind the regional differences which have the potential to influence
precision medicine including disparities in the clinical trial
landscape and infrastructure, and the sociocultural attitudes
towards genetic testing.

Limitations
This study is limited by the retrospective nature of the data and
the fact that the NGS was done in an academic rather than
Frontiers in Oncology | www.frontiersin.org 6
commercial laboratory where changes in a small number of lab
personnel and the need to batch cases together can impact on the
learning curve of the team and lead to an increase in TAT.
CONCLUSIONS

As NGS and bioinformatics lead precision oncology into the
forefront of cancer management, it is vital that the
implementation and management of NGS and bioinformatics
processes are monitored closely to improve the timeliness of data
output and care delivery. By characterizing the TAT using SPC
methods, including CUSUM and EWMA, we were able to
objectively evaluate how differences in workflows and changes in
manpower impacts the performance of precision oncology
laboratories. As precision oncology is increasingly adopted,
applying SPC prospectively can potentially help spotlight problems
early for rectification in NGS and bioinformatics processes.
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FIGURE 3 | Turnaround Time for Bioinformatics Analyses. (A) Scatter and regression fit of bioinformatics turnaround vs case load. (B) Exponential weighted moving
average of bioinformatics turnaround. (C) CUSUM of bioinformatics turnaround time. (D) CUSUM log-likelihood ratio chart for bioinformatics turnaround > 3 weeks.
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