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Estimating within-study covariances
in multivariate meta-analysis with
multiple outcomes
Yinghui Wei*† and Julian PT Higgins

Multivariate meta-analysis allows the joint synthesis of effect estimates based on multiple outcomes from
multiple studies, accounting for the potential correlations among them. However, standard methods for
multivariate meta-analysis for multiple outcomes are restricted to problems where the within-study correlation
is known or where individual participant data are available. This paper proposes an approach to approximating
the within-study covariances based on information about likely correlations between underlying outcomes.
We developed methods for both continuous and dichotomous data and for combinations of the two types. An
application to a meta-analysis of treatments for stroke illustrates the use of the approximated covariance in
multivariate meta-analysis with correlated outcomes. Copyright © 2012 John Wiley & Sons, Ltd.
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1. Introduction

Meta-analysis combines the results from multiple studies that addresses similar research questions, and
is frequently applied to randomized trials to investigate the effects of specific interventions. In many
cases, studies report results for more than one outcome, or report repeated measures on a particular
outcome [1], and it is not uncommon for these outcomes to be correlated. For example,

(a) Correlation may arise from correlated outcomes measured on the same participants, such as math
and reading scores in school examinations [2], or probing depth and attachment level in the
treatment of periodontal disease [3]. Later in the paper, we discuss an example from a meta-
analysis of the effects of vasoactive drugs on acute stroke [4], involving the correlated outcomes
of systolic and diastolic blood pressures.

(b) Correlation may arise when one event is nested within another [4,5]. The example later in the paper
reports outcomes of ‘death’ and ‘death or disability’, the former being nested within the latter.

(c) Correlation may arise from outcomes measured repeatedly on the same participants, such as
survival rates at 3-year follow-up and at 5-year follow-up after treatment for breast cancer [6].

(d) Correlation may arise when one outcome is a surrogate marker for another, such as CD4+ cell
count as a surrogate marker for AIDS [7].

The effects of interventions are measured using treatment effect estimates, such as standardized
differences in means, or odds ratios, applied separately for each outcome. When the outcomes are
correlated, the treatment effect estimates are also correlated within a study. These dependencies between
treatment effect estimates are ignored if multiple univariate meta-analyses are performed, as is typically
done in practice.

A multivariate meta-analysis approach may be used to incorporate these nonzero within-study
correlations, thereby improving the precision of the analysis compared with using a univariate approach.
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Kirkham et al. [8], Riley et al. [9], and Riley [10] have demonstrated such improvements in precision,
although in practice the improvements can be small. In contrast, Kirkham et al. [8] have demonstrated
a notable advantage of a multivariate approach when there is selective nonreporting of outcomes on the
basis of the statistical significance of the treatment effect estimates. Specifically, by exploiting the corre-
lation between reported and nonreported outcomes, one can substantially reduce biases due to selective
reporting. Such outcome reporting bias is now well documented in the medical literature [11, 12], so
multivariate approaches to meta-analysis have a promising future. The multivariate approach also allows
correlations in treatment effects across studies to be estimated as part of a random-effects model. This
facilitates the computation of joint prediction regions for treatment effects in new studies, as is used in
bivariate meta-analysis of diagnostic accuracy studies [13].

A standard multivariate meta-analysis approach assumes that the within-study variances and
covariances for the treatment effect estimates are known. A well-recognized problem in the implemen-
tation of multivariate methods is how to estimate the within-study covariances, because they are rarely
available in published study reports [10,14–16]. Our objective in this paper is to develop an approach to
estimation of within-study covariances between treatment effect estimates. In particular, we introduce,
derive, and apply a series of asymptotic estimators of within-study covariance for different treatment
effect measures. In Section 2, we briefly review the multivariate meta-analysis model as it applies to
correlated outcomes. In Section 3, we derive approximate formulae for within-study covariance. In
Section 4, we discuss practical issues, and in Section 5, we perform a simulation study to investigate
the properties of our methods. In Section 6, we apply our methods to data from a systematic review of
trials of vasoactive drugs for acute stroke. We close with discussion in Section 7.

2. Multivariate random-effects meta-analysis

The conventional random-effects multivariate meta-analysis model based on treatment effect estimates
has a hierarchical structure with multivariate normal distributions at each of two levels, corresponding to
within-study and between-study components. We let m denote the number of outcomes of interest and
use O™s to denote a vector of observed treatment effect estimates from study s. Because several outcome
variables are measured on the same individual within a study, the entries in O™s may be correlated and we
assume the vector follows a multivariate normal distribution:

O™s �MVN .™s;†s/ with †s D

2
66664

s2s1 �w12ss1ss2 � � � �w1mss1ssm

�w21ss1ss2 s2s2 � � � �w2mss2ssm

:::
:::

: : :
:::

�wm1ss1ssm �wm2ss2ssm � � � s2sm

3
77775 ;

where ™s is the vector of underlying true treatment effects for the outcomes within study s. We assume
these to be normally distributed and centered around ™ D .�1; �2; : : : ; �m/T , the true average treatment
effects across studies for the set of outcomes:

™s �MVN .™;�/ with�D

2
66664

�211 �b12�11�22 � � � �b1m�11�mm

�b21�11�22 �222 � � � �b2m�22�mm

:::
:::

: : :
:::

�bm1�11�mm �bm2�22�mm � � � �2mm

3
77775 :

The matrix †s refers to within-study covariance. Its diagonal entries are the sampling variances s2sj
for the treatment effect estimates for each outcome j , and off-diagonal entries represent the covariance
between treatment effect estimates for pairs of outcomes within the study, reflecting the correlation that
arises when several outcomes are measured on the same participants within the study. The matrix �
represents the between-study covariance. Heterogeneity variances �2jj (j D 1; : : : ; m) for true treatment
effects comprise the diagonal elements. The off-diagonal elements reflect the correlation arising when
the same outcomes are also measured by other studies. When the within-study correlations �w:: and
between-study correlations �b:: are all zero, the model is equivalent to several separate univariate
random-effects models.
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The objective of a multivariate random-effects meta-analysis is to estimate the mean treatment effects
across studies, ™ D .�1; �2; : : : ; �m/, and the between-study covariance matrix, �. The full specifica-
tion of the multivariate model requires knowledge of the within-study correlations, �w::. Given values
for these correlations, the estimation methods for the model are straightforward using, for example,
SAS Proc Mixed [17], the Stata program mvmeta [18] with estimation options including (restricted)
maximum likelihood estimate and method of moments [19], or a Bayesian approach in WinBUGS [20].

3. Estimating within-study covariance

The methods described in Section 2 assume that the within-study covariance matrix is known. If the
within-study correlation coefficients between treatment effects are not known, they might be borrowed
from studies that provide individual participant data; examples include application to rheumatoid arthritis
data [21] and periodontal disease data [17, 21, 22]. When individual participant data are not available,
multivariate meta-analysis can be carried out by assuming a plausible value for each unknown correlation
coefficient [16,17]. These plausible values might be derived using clinical considerations. Alternatively,
a recent proposal is to use the empirical correlation coefficient observed between treatment effect esti-
mates across studies [8]. Furthermore, a Bayesian framework can be used in which prior distributions
are placed on the correlation coefficients; Nam et al. [23] used a noninformative uniform, U[-1,1],
distribution [10].

Most imputation approaches have been based on imputing the correlation between treatment effect
estimates and assuming this correlation to be identical for every study. For example, if each study
contributes odds ratio estimates for two correlated outcomes, a correlation coefficient between the
estimated treatment effects (as log odds ratios) would be imputed and the same value would be used
for each study. In contrast, in this paper, we focus on the correlation between the outcomes themselves.
The distinction is that the outcome is the direct measurement on the participants, whereas the treatment
effect is a quantity that describes the benefit or harm of the treatment when compared with control.
There are two potential advantages to evaluating within-study correlation at the outcome level. First,
these correlations are more likely to be known from external sources than correlations between treatment
effects, and if not, then plausible values for them are more readily provided than between treatment effect
estimates. Second, these correlations are more natural descriptors of inherent similarities and allow
the correlations between treatment effect estimates to vary according to other measurable features of
the study.

We consider both continuous and dichotomous outcomes, which are the most common in meta-
analysis. We begin with the covariance between two estimates of mean differences, because this can
be derived in closed form. For the other covariances, we implement a bivariate delta method. From here
forward, we drop the subscript s for study.

3.1. Covariance between two mean differences

Consider a study with Nt and Nc participants in treatment and control groups, respectively. Each group
reports measures on both outcome 1 and outcome 2. Note that not all participants need necessarily
contribute data on both outcomes. We use n1t , n2t , and n12t to denote the number of participants who
report outcome 1, of those who report outcome 2, and of those who report both outcome 1 and outcome 2,
respectively, in the treatment group. These numbers are such that n12t 6 n1t 6Nt and n12t 6 n2t 6Nt .
In a similar way, we define n1c , n2c , and n12c for the control group.

We assume that the outcome variable yjai for participant i , outcome j , and arm a is marginally
normally distributed:

yjai �N
�
�ja; s

2
ja

�
; j D 1; 2; aD t; c; i D 1; : : : ; njt :

Given a known correlation coefficient � between the two outcomes themselves, and assuming it is the
same in both treatment groups, the following give the analytical form for the covariance between mean
differences (MD1;MD2):

cov. Ny
1t
� Ny1c ; Ny2t � Ny2c/D

1

n1tn2t

X
iDi 0

cov.y1ti ; y2ti 0/� 0� 0C
1

n1cn2c

X
iDi 0

cov.y1ci ; y2ci 0/

D
1

n1tn2t

X
iDi 0

�s1ts2t C
1

n1cn2c

X
iDi 0

�s1cs2c :

(1)
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Therefore,

cov.MD1;MD2/D
n12t

n1tn2t
�s1ts2t C

n12c

n1cn2c
�s1cs2c : (2)

We describe some simplifying assumptions in Section 4.1.

3.2. Bivariate delta method

Estimation of covariances other than between two mean differences requires the use of the delta method
[24], because an analytic solution is not possible. A bivariate delta method considers two functions of a
common set of random variables, and we can use this to compute asymptotic covariance matrix of the
two functions by first-order Taylor expansion approximation.

Consider a vector X D .X1; X2; : : : ; Xp/T of p random variables, with mean � D .�1; �2; : : : ; �p/
and p � p variance–covariance matrix †�. Let f1.X/ and f2.X/ denote functions of X. We can

approximate the variance of YD .f1.X/; f2.X//
T through first-order Taylor expansion,

var.Y/D† �rf T†�rf; (3)

where rf is the p � 2 matrix of partial derivatives of functions fi with respect to Xj evaluated at the
point E.Xi /,

rf D

2
666664

@f1

@X1

@f2

@X1
:::

:::

@f1

@Xp

@f2

@Xp

3
777775 : (4)

To implement these ideas, we identify Y with the pair of treatment effect estimates
�
O�1; O�2

�
for which the

covariance is required. Computation of the asymptotic covariance matrix between these two treatment
effect estimates, expressed as the functions of basic statistics f1.X/ and f2.X/, requires specification
of functions f1 and f2 and the distribution of random variables X, which need to be either estimated or
known asymptotically. The approximation error of the bivariate delta method is the remainder from the
first-order bivariate Taylor expansion. The remainder is a function of X2 and the second derivative of the
two functions f1.X/ and f2.X/ with respect to X. The analytical expression has a complex form and can
be difficult to derive in practice as it depends on the specification of f1.X/, f2.X/, and X. Instead, we
assess the approximation error using Monte Carlo simulation in Section 6.

3.3. Covariance between two log odds ratios

Treatment effects for dichotomous outcomes in meta-analysis are usually measured using odds ratios,
risk ratios or risk differences. If two dichotomous outcomes are considered, occurrences of events are
likely to be associated, so the covariance between the two treatment effect measures will be nonzero.
In this section, we consider the odds ratio, which provides a relatively straightforward application of
the bivariate delta method to the derivation of a covariance. We first consider the general case of two
different dichotomous outcomes and then consider the special case that one outcome is nested within the
other. Trikalinos and Olkin [25] have derived an approximate covariance matrix for two dichotomous
outcomes that are mutually exclusive of each other.

We write a pair of log odds ratios as functions of the random vector XD . Op1c ; Op1t ; Op2c ; Op2t /T . In the
notation of Section 3.2, we take

f1.X/D ln Op1c � ln.1� Op1c/C ln.1� Op1t /� ln Op1t

and

f2.X/D ln Op2c � ln.1� Op2c/C ln.1� Op2t /� ln Op2t :

We then use the bivariate delta method to obtain the covariance matrix for Y D .f1.X/; f2.X//
T and

hence the desired covariance between the two log odds ratios.
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The expectation of X is simply the vector of true risks, .p1c ; p1t ; p2c ; p2t /T . The covariance of X is
given by

†� D

2
6664

var. Op1c/ 0 cov. Op1c ; Op2c/ 0

0 var. Op1t / 0 cov. Op1t ; Op2t /

cov. Op1c ; Op2c/ 0 var. Op2c/ 0

0 cov. Op1t ; Op2t / 0 var. Op2t /

3
7775 ;

where we assume that outcomes from different treatment arms are measured on different participants
and are therefore independent, so that cov . Op:t ; Op:c/D 0. The diagonal entries are given by

var. Opja/D
1

nja
pja.1� pja/; aD t; c (5)

for outcomes j D 1 or 2. We show in Section A1 of our supplementary materials‡ that the covariance
term is

cov. Op1a; Op2a/D
n12a

n1an2a
�
p
p1a.1� p1a/p2a.1� p2a/; aD t; c: (6)

Implementing the bivariate delta method (Equation (3)), we obtain

cov .lnOR1; lnOR2/D
1

p1t .1� p1t /p2t .1� p2t /
cov.p1t ; p2t /

C
1

p1c.1� p1c/p2c.1� p2c/
cov.p1c ; p2c/:

(7)

In practice, the probabilities (risks) would be substituted by their maximum likelihood estimates
Opjt D Sjt=njt and Opjc D Sjc=njc , where Sjt and Sjc are the numbers of participants with the outcome
j event in the treatment and control groups, respectively. By substituting (6), and writing Fjt and Fjc
for the respective numbers without the event, we can write the covariance (7) as

cov .lnOR1; lnOR2/

D
�n12c
p
n1cn2c

s�
1

S1c
C

1

F1c

��
1

S2c
C

1

F2c

�
C

�n12t
p
n1tn2t

s�
1

S1t
C

1

F1t

��
1

S2t
C

1

F2t

�
:

(8)

We can derive an alternative to Equation (8) for the case when one outcome is nested within the other,
for example, when jointly analyzing ‘death’ and ‘death or disability’. In Section A2 of our supplementary
materials, we show that if outcome 1 is nested within outcome 2, the covariance term for this special
case is

cov. Op1t ; Op2t /D
1

Nt
p1t .1� p1t /�

1

Nt
p1tpat (9)

with pat being the probability of additional events. Similarly, we derive the formulae for the control
group. The following then provides the desired covariance:

cov .lnOR1; lnOR2/D

�
1

S2t
C

1

F2t

�
�
a0t
F1t

�
1

S2t
C

1

F2t

�
C

�
1

S2c
C

1

F2c

�
�
a0c
F1c

�
1

S2c
C

1

F2c

�
(10)

where a0tD atC.n1t� n2t /�.S2t � S1t /=.n2t� S1t / and a0cD acC.n1c�n2c/�.S2c � S1c/=.n2c�S1c/
with at and ac denoting observed additional numbers of events for outcome 1 rather than 2 in treatment
and control groups, respectively. Note that formula (10) is a function of occurrences of events in the two
treatment groups and is free of imputation of between-outcome correlation coefficients.

‡Supporting information may be found in the online version of this article.
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3.4. Covariance between two standardized mean differences

Returning to the case of continuous outcome measures, a common metric used in meta-analysis is
the standardized mean difference (SMD). Here, we provide the derivation of the covariances between
two estimates of Hedges’ g [26], which is an unbiased estimate of the SMD. Hedges’ g is computed
as the mean difference divided by the pooled standard deviation, multiplied by a small-sample bias
correction factor:

gj D
1

J.vj /
�
Nyjt � Nyjc

sjp
with J.vj /D

�
�vj
2

�
r
vj
2
�
�
vj�1

2

� ; j D 1; 2 ;

where sjp is the usual a pooled standard deviation for outcome j , given by

sjp D

s
.njt � 1/s

2
jt C .njc � 1/s

2
jc

njt C njc � 2
;

and vj D njt C njc � 2. The constant small-sample correction factor, J.vj / can be approximated by
J.vj /D 1� 3

ı�
4vj � 1

�
[27].

Formulae for the covariance between two estimates of Hedges’ are available for the situation in which
complete data are observed for both outcomes [27–30]. We derive the covariance between two SMDs for
the more general case that allows different numbers of participants to contribute to different outcomes.
Setting Dj D Nyjt � Nyjc , we write XD

�
D1; 1

ı
s1p ;D2; 1

ı
s2p

�
, so that the two SMDs can be written

as functions of X: f1.X/DX1X2=J.�1/ and f2.X/DX3X4=J.�2/.
We then use the bivariate delta method to obtain the covariance matrix for Y D .f1.X/; f2.X//

T

and hence the desired covariance between the two SMDs. The expectation of X is given by E.X/ D
.�1t ��1c ; 1=J.v1/�1; �2t ��2c ; 1=J.v2/�2/

T , because E
�
1=sjp

�
D 1=J.vj /�j , as White and

Thomas derived [28]. In the covariance matrix for X, the diagonal entries are given by the variances
of mean differences and variances of inverses of the sample variances:

var.Dj /D

�
1

njt
C

1

njc

�
�2j and var

�
1

sjp

�
D

1

�2j

�
vj

vj � 2
�

1

J.vj /2

�
:

White and Thomas [28] again derived the latter. We assume that mean differences are uncorrelated with
variances, so that some off-diagonal entries are zero. The nonzero entries are then

cov.D1;D2/D �12

�
n12t

n1tn2t
C

n12c

n1cn2c

�
�1�2; (11)

according to (2), and

cov

�
1

s1
;
1

s2

�
D

k12
p
k1k2

�2
1

�1�2

s
v1

v1 � 2
�

1

J.v1/2
�

s
v2

v2 � 2
�

1

J.v2/2
; (12)

as demonstrated in Section A3 of our supplementary materials, where k12, k1, and k2 are functions of
the sample sizes as defined in Table I. Application of Equation (3) of the bivariate delta method gives
the covariance between the two SMDs as

cov .SMD1; SMD2/

D �

�
n12t

n1tn2t
C

n12c

n1cn2c

�
C

k12
p
k1k2

�2ı1ı2J.v1/J.v2/

s�
v1

v1 � 2
�

1

J.v1/2

��
v2

v2 � 2
�

1

J.v2/2

�
:

3.5. Covariance between a standardized mean difference and a log odds ratio

Finally, we consider the covariance between an SMD (outcome 1) and a log odds ratio (outcome 2). The
derivation proceeds in a similar way. Writing XD

�
D1; 1

ı
s1p ; Op2c ; Op2t

�
, we presented the expectation

of X in the previous two sections. In the covariance matrix, var . Ny1/ and var
�
1=s1p

�
are given in
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Section 3.3, and var . Op2t / and var. Op2c/ are given by (5). We show in Section A4 of our supplementary
materials that

cov .D1; Op2a/D�
n12a

n1an2a
�s1a

p
Op2a.1� Op2a/; aD t; c: (13)

Implementing the bivariate delta method, we obtain

cov .SMD1; lnOR2/D J.v1/
1

s1p

n12c
p
n2c

n1cn2c
�s1c

s
1

S2c
C

1

F2c
CJ.v1/

1

s1p

n12t
p
n2t

n1tn2t
�s1t

s
1

S2t
C

1

F2t
:

3.6. Generalization to other types of outcomes measures

In Table I, we present estimators for covariance for all combinations of mean difference, SMD, log
odds ratio, log risk ratio, and risk difference. We derived the covariances involving log risk ratios and
risk differences in the same way as those described previously. The computation of these covariances is
straightforward if trial level summary statistics are reported. The formulae can also be used if individual
patient data are available as an alternative to multivariate analysis of the raw data: we can extract the
summary statistics in the formulae from the detailed data, and hence, we can derive the estimation
of within-study covariances. This may be particularly attractive when dealing with a combination of
continuous and dichotomous outcome data.

4. Practical issues

4.1. Simplifications to the formulae based

We have expressed the formulae for the most general case of knowing the sample sizes (say for the
treatment group) of n1t , n2t , and n12t for participants who report outcome 1, outcome 2, and both
outcome 1 and outcome 2, respectively. Our formulae also allow for different standard deviations
in different treatment groups when continuous data are involved. Some simplifications will often be
made in practice. First consider the issue of sample sizes. In a study with no attrition, we have
n1t D n2t D n12t D Nt and n1c D n2c D n12c D Nc . Applying this, for instance, to the last covariance
presented, between an SMD and a log odds ratio, we obtain

cov .SMD1; lnOR2/D J.v1/
1

s1p

1
p
Nc
�s1c

s
1

S2c
C

1

F2c
C J.v1/

1

s1p

1
p
Nt
�s1t

s
1

S2t
C

1

F2t
:

Often, however, different participants are missing values for different outcomes. In this case, we will
typically not know the numbers n12t and n12c of participants who contribute to both outcomes. We can
make various assumptions to approximate the covariance in this case. First, we could assume that those
who report one outcome are a subset of those who report the other. Then, n12t D min .n1t ; n2t / and
n12c Dmin .n1c ; n2c/. The aforementioned covariance then simplifies to

cov .SMD1; lnOR2/

D J.v1/
1

s1p

p
n2c

max.n1c ; n2c/
�s1c

s
1

S2c
C

1

F2c
C J.v1/

1

s1p

p
n2t

max.n1t ; n2t /
�s1t

s
1

S2t
C

1

F2t
:

Second, we could assume that missingness of the two outcomes are independent, so that

n12t

Nt
D p.both outcome 1 and outcome 2 recorded/D

n1t

Nt
�
n2t

Nt
:

Hence, n12t D n1tn2t=Nt and n12c D n1cn2c=Nc , yielding the simplification

cov .SMD1; lnOR2/D J.v1/
1

s1p
�

p
n2c

Nc
�s1c

s
1

S2c
C

1

F2c
C J.v1/

1

s1p
�

p
n2t

Nt
�s1t

s
1

S2t
C

1

F2t
:

Participants known to contribute to neither outcome (e.g. early dropouts) may be omitted from the
denominators Nt and Nc .

Copyright © 2012 John Wiley & Sons, Ltd. Statist. Med. 2013, 32 1191–1205

1199



Y. WEI AND J. P. HIGGINS

It is often reasonable to assume that standard deviations are the same in the treatment and control
groups, and this offers a further simplification to the covariance formulae. For instance, the previous
covariance simplifies to

cov .SMD1; lnOR2/D J.v1/
p
n2c

Nc
�

s
1

S2c
C

1

F2c
C J.v1/

p
n2t

Nt
�

s
1

S2t
C

1

F2t
:

4.2. Positive semidefinite within-study variance matrix

Constraints on imputed between-outcome covariances need to be considered to ensure that the within-
study covariance matrix † is semipositive definite. We suggest checking whether the eigenvalues of
† are nonnegative. If this is the case, then † is semipositive definite; otherwise, the between-outcome
covariances ought to be re-imputed with a different set of correlation coefficients. For the special case of
two outcomes (bivariate meta-analysis), an alternative is simply to check that

� 16 �w12 6 1 (14)

where �w12 are the correlations in †. For the case of three outcomes (trivariate meta-analysis), we
can check that each correlation coefficient satisfies (14), and the determinant of † is nonnegative, that
is, that

1� �2w12 � �
2
w13 � �

2
w23C 2�w12�w13�w23 > 0: (15)

5. Simulation study

To further the proposed methodology, we conducted two simulation studies. Simulation studies from
previous authors [9, 16, 19, 29] have compared multivariate meta-analysis and univariate meta-analysis
on the basis of aggregated data. Those simulations assume known within-study correlation between
treatment effects.

Comparison of methods. To investigate whether imputing correlations at the outcome level can improve
the parameter estimates, we undertook a first simulation study with data simulated at the individual
patient level. Section B of our supplementary material provided the simulation procedures and results
for this study, and Supplementary Table B1 presented the characteristics of the simulations. We compare
four approaches in a bivariate scenario with a continuous outcome and a dichotomous outcome.
These approaches are: separate univariate meta-analyses, multivariate meta-analyses assuming zero
within-study covariance, multivariate meta-analysis with a common within-study correlation between
treatment effect estimates, and multivariate meta-analysis with a common within-study correlation
between outcomes (which may lead to different covariances between treatment effects). Across 36
scenarios in which numbers of studies, numbers of participants, within-study correlations, between-study
correlations, and between-study variances were varied, we observed very similar properties of treatment
effect estimates across the four approaches. The two approaches that allowed for within-study covariance
produced less biased estimates of the variance–covariance matrix, particularly when there is
heterogeneity across studies for both outcomes. Our methods outperformed the approach that assumes
the same covariance between treatment effects for every study, when the between-study correlation was
low, but not otherwise. Between-study variance–covariance matrices were not well estimated when there
only a few studies in the meta-analysis.

Approximation error. In a second simulation study, we assessed approximation error in our formulae.
In each investigation, we simulated correlated treatment effect estimates from 1000 studies using the
same methods as in the first simulation (to obtain treatment effects for dichotomous outcomes, we
dichotomized simulated normally distributed data). We computed the sample correlation coefficients
between treatment effects for the 1000 studies to be used as a reference. We then approximated the
within-study covariance for each study using relevant formulae in Table I. Dividing this by empirical
standard deviations for the treatment effects, we obtained approximated within-study correlation
coefficients. We then calculated the approximation error for each simulated study as the discrepancy
between the approximated correlation and the sample correlation.
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We repeated the procedures summarized above for 100 different correlation coefficients in the inter-
val (�1; 1). The Supplementary Figures B1–B3 give the mean squared errors from the simulations. We
further assessed the dependence of approximation errors on sample sizes (distinguished by colors in
these figures).

When both outcomes are dichotomous, our simulation shows that the formulae estimate the correla-
tion coefficients with high accuracy, with mean squared errors very close to zero (less than 0.005). When
one or both outcomes are continuous, the mean squared errors are bigger but less than 0.02. As noted in
Section 3, the theoretical magnitude of the errors is partially affected by the squares of the outcome
variables. It is thus expected that the errors are minimal when the effect sizes are small and larger when
the effect sizes are large. Regarding dependency on sample size, mean squared errors are inflated when
the number of participants is as small as 20, and the errors are less than 0.01 when sample size becomes
greater. This suggests that the formulae are good approximation to the correlation coefficient and are
most accurate for large studies. Future research on small-sample correction factors of the estimators will
be useful.

6. Application to a meta-analysis of vasoactive drugs for acute stroke

To illustrate the use of the methods described in this paper, we consider a meta-analysis of placebo-
controlled trials of vasoactive drugs for acute stroke [4]. We take data from a selection of trials that
contributed data on the four outcomes: systolic blood pressure (SBP, in mHg), diastolic blood pressure
(DBP, in mHg), death (D), and ‘death or disability’ (DD). Supplementary Tables C1 and C2 give the
raw data for this re-analysis. For trials with different sample sizes contributing to different outcomes,
we take n12t D min.n1t ; n2t / and n12c D min.n1c ; n2c/. We illustrate three analyses of these data,
taking first the two continuous outcomes, second the two dichotomous outcomes, and then the full set of
four outcomes. We implement all analyses (including univariate meta-analyses) using the Stata program
mvmeta with restricted maximum likelihood (REML) estimation [30].

6.1. Bivariate meta-analysis of two correlated continuous outcomes

We impute a correlation coefficient of 0.71 between SBP and DBP, on the basis of external evi-
dence [31]. We estimated the covariance between treatment effects on SBP and DBP using Equation (2);
Supplementary Table C3 presented the values obtained for each study. Results of the bivariate meta-
analysis are provided in Table II and illustrated in the bottom left of Figure 1 alongside results from
standard univariate meta-analyses of the two outcomes separately. There is some evidence that SBP and
DBP were lower in the treatment group than in the control group. However, the difference is under 3 mHg
for both outcomes, which may not be clinically important. There is a slight increase in the precision of
estimated treatment effects in the bivariate model than in the univariate model, and the amount of hetero-
geneity is reduced by a small amount for SBP. The correlation between treatment effects across studies
is high at 0.973. Very high estimated correlations are a common finding in applications of multivariate
meta-analysis: correlation is often estimated to be 1 or �1 [14].

6.2. Bivariate meta-analysis of nested dichotomous outcomes

We can compute covariances between treatment effects for D and DD using Equation (10) without the
need for knowledge of correlation between the two outcomes. Results are provided in Table III and

Table II. Estimated treatment effects and standard errors from meta-analyses of systolic
blood pressure (SBP) and diastolic blood pressure (DBP), based on univariate and bivariate
random-effects models. We computes within-study correlation using Equation (2) with
correlation of 0.71 assumed between SBP and DBP measurements [31].

Univariate meta-analyses Bivariate meta-analysis

Mean difference in SBP �2:89 (1.47) �2:57 (1.40)
Mean difference in DBP �2:45 (1.03) �2:44 (1.03)
Heterogeneity SD for SBP 4.20 3.96
Heterogeneity SD for DBP 3.48 3.49
Correlation across studies – 0.974

SD: standard deviation.

Copyright © 2012 John Wiley & Sons, Ltd. Statist. Med. 2013, 32 1191–1205
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Figure 1. Estimated treatment effects and 95% confidence interval (CI) for systolic blood pressure (SBP; solid
lines in left panel), diastolic blood pressure (DBP; dashed lines in left panel), death (D; solid lines in right panel),
and death or disability (DD; dashed lines in right panel), based on separate univariate models (UM); bivariate
model (BM) for SBP and DBP with covariance estimated from formula (2); bivariate model for D and DD
with covariance estimated from formula (10); and multivariate model (MM) for all four outcomes, with imputed

correlations (0.1,0.2,0.3,0.4,0.5) for remaining correlations.

Table III. Estimated treatment effects and standard errors from meta-analyses of death (D)
and ‘death or disability’ (DD), based on univariate and bivariate random-effects models. We
computed within-study correlation using Equation (10).

Univariate meta-analyses Bivariate meta-analysis

Log OR for D 0.080 (0.099) 0.075 (0.098)
Log OR for DD 0.044 (0.096) 0.042 (0.095)
Heterogeneity SD for D 0.000 0.000
Heterogeneity SD for DD 0.000 0.000
Correlation across studies – 0.969

OR: odds ratio; SD: standard deviation.

illustrated in the bottom right of Figure 1. There is a lack of statistical evidence for treatment effects on
D and DD. Again, we observe a slight increase in precision in the bivariate analysis and a high estimated
between-study correlation. There is no discernable heterogeneity in either of these outcomes.

6.3. Multivariate meta-analysis of four outcomes

Some knowledge of the within-study correlations, either due to knowledge of correlations between out-
comes or due to the nesting of one outcome within another, may motivate the aforementioned bivariate
meta-analyses. We consider now the possibility of a multivariate meta-analysis of all four outcomes.
Note that high-dimensional multivariate meta-analyses incorporate large numbers of parameters in the
between-study covariance matrix and may involve more parameters than can reasonably be estimated
from the data. However, we pursue this four-dimensional analysis to illustrate how a sensitivity analysis
can be performed on the basis of between-outcome correlation coefficients.

As in Section 6.1, we calculate covariances between SBP and DBP with Equation (2) by imputing a
correlation coefficient of 0.71 [31] and calculate the covariance between the two nested events D and
DD with Equation (10). In the absence of information about correlation coefficients for the other pairs of
outcomes, we impute them in five sensitivity analyses from a series of plausible values. We assume that
high blood pressure is mildly positively correlated with death and with ‘death or disability’, and impute
correlation coefficients between each pair of the continuous and dichotomous using values 0.1, 0.2, 0.3,
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0.4, or 0.5. We then compute covariances between treatment effects for continuous and dichotomous
outcomes using Equation (1.3) in Table I. Our formulae allow correlations between treatments effects to
vary from one study to another, as illustrated in Figure 2. In this example, the correlation varies the most
for the two nested events (D and DD) and the least for two mean differences (SBP and DBP).

Figure 2. Approximated within-study between treatment effects correlation coefficients based on stroke data [4],
from which we select 21 trials that reported all four outcomes. Horizontal dash lines denote imputed between-
outcome correlations. Black circles denote approximated between treatment effects correlation. D, death;

DD, death or disability; SBP, systolic blood pressure; DBP, diastolic blood pressure.

Figure 3. Estimated between-study correlation coefficients, based on four-dimensional multivariate meta-
analysis model (MM) with imputed correlation 0.71 between systolic blood pressure (SBP) and systolic blood
pressure (DBP), and various values (0.1,0.2,0.3,0.4,0.5) for correlations between SBP and death (D) or death or

disability (DD), and DBP and D or DD.

Copyright © 2012 John Wiley & Sons, Ltd. Statist. Med. 2013, 32 1191–1205
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We illustrate the overall effects from the four-dimensional multivariate analysis in Figure 1. The
overall treatment effect estimates appear to be consistent across imputed correlation coefficients.
Treatment effects for SBP and DBP change by less than 0.05, and those for D and DD range from 0.023
to 0.028 and from 0.061 to 0.064, respectively, on the log odds ratio scale. Between-study variance
estimates are also insensitive to the varying imputed correlations.

However, between-study correlations are affected in the sensitivity analysis. Figure 3 illustrates
estimates of between-study correlation for the five sensitivity analyses. Correlations between SBP and
DBP are consistently above 0.9, but the between-study correlation estimates for other pairs of outcomes
are substantially different in different sensitivity analyses. Between-study correlations change from high
positive correlation to high negative correlation as within-study correlations increase from 0.1 to 0.5.

7. Discussion

Multivariate meta-analysis can offer advantages over a univariate approach, particularly when there
are nonignorable missing data [8, 9, 16]. Multivariate meta-analysis of multiple outcomes requires
specification of within-study covariances. We have derived approximate formulae for such within-study
covariances for various pairs of treatment effect measures for situations in which individual patient data
are not available but correlations between outcomes can be specified. Our derivations are motivated by
the notion that correlations among outcome measures are often well understood. Nevertheless, sensitivity
analyses should typically accompany imputation of such values from external sources. Our simulation
studies assess whether imputing correlation at the outcome level can improve estimation compared with
alternative approaches. We conclude that when there is heterogeneity of effects across studies and high
correlation within studies, our approach outperforms others when there are complete data.

We have taken into account within-study missing data. Our formulae allow for different numbers of
participants to contribute to different outcomes. Not all participants randomized in a trial will necessarily
report on all outcomes, for example if different outcomes are measured at different time points in a trial
that suffers from attrition over time. The formulae simplify if the same participants can be assumed to
contribute to both outcomes.

We have considered both continuous and dichotomous outcomes, which are the most common types
of data in meta-analysis. We could derive covariances for other types of data in similar ways. Most of the
formulae were based on a bivariate delta method and so will be most accurate for large studies. This was
confirmed by our simulation studies, which found that approximation errors, although small in general,
were even smaller in large studies (more than 20 participants). An alternative approach is to place
prior distributions on correlation coefficients within a Bayesian framework. However, readily available
Bayesian approaches to multivariate meta-analysis are currently restricted to two outcome problems.
Addressing multiple outcomes introduces complications in trying to ensure a positive semidefinite
constraint on the variance–covariance matrix [23].

We have focused on within-study covariance estimation. However, estimation of the between-study
covariance matrix is a substantial problem that has been noted before [14] and is illustrated in our
application. The estimation problem is not unique to meta-analysis but a common problem in classi-
cal multivariate analysis. When the number of outcomes, p, is large relative to the number of studies, n,
estimation of the covariance matrix can be difficult unless p=n is small [32, 33]. In multivariate meta-
analysis with multiple outcomes, the number of outcomes p can easily become very large compared
with the number of studies, which is typically rather small in meta-analysis. We are unable to provide
specific guidance on how large n needs to be for reliable estimation of p outcomes in a multivariate
meta-analysis. More comprehensive simulation studies might be undertaken to examine this question.
Future research is also required to seek improved estimation of between-study covariance parameters or
to determine how model complexity can be reduced.
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