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A B S T R A C T   

Aflatoxins (AFs) are secondary metabolites produced by the fungus Aspergillus flavus, of which 
Aflatoxin-B1 (AFB1) appears to be the most cancerogenic and of the highest toxicity. AFB1 causes 
serious effects on several organs including the liver. Morin is a flavonol that exists in many fruits 
and plants and has diverse biological properties including anticancer, anti-atherosclerotic, anti-
oxidant, anti-inflammatory, immunomodulatory, and multi-organ protective activities. The pre-
sent study aims to evaluate the potential protective effects of morin against acute AFB1-induced 
hepatic and cardiac toxicity in rats. Forty rats were divided into five groups (n = 8) as follows: 
control received the vehicle, morin was orally administered 30/mg/kg body weight (MRN30), the 
AFB1 was administered orally at a dose of 2.5 mg/kg, twice on days 12 and 14 of the experiment 
for the 3rd, 4th, and 5th groups., AFB1-MRN15 was orally given morin at a dose of 15 mg/kg 
body weight, and AFB1-MRN30 orally received morin at 30 mg/kg body weight. The results 
indicated a significant decrease in serum AST, ALP, LDH, GGT, CK, CK-MB, 8-OHdG, IL-1β, IL-6, 
TNF-a levels in MRN30 compared to AFB1, and AFB1-MRN15 groups. However, the results 
indicated non-significant differences in the serum levels between MRN30, control, and AFB1- 
MRN30 groups. Meanwhile, regarding the hepatic and cardiac parameters, there were signifi-
cant differences in the levels of MDA, NO, GSH, GSH-Px, SOD, and CAT in MRN30 compared to 
AFB1, and AFB1-MRN15 groups, overall implying the protective effects of morin. To conclude, 
morin at a dose of 30 mg/kg b. wt. showed significant enhancements in acute AFB1-induced 
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hepatic and cardiac toxicity in rats, which could play a role in limiting the public health hazards 
of AFs.   

1. Introduction 

Aflatoxins (AFs) are a type of secondary metabolite having high toxicity and low molecular weight [1]. AFs were first discovered in 
1960 after the “Turkey X disease” epidemic when about 100,000 turkeys in England died after being fed groundnut meal from Brazil on 
a poultry farm in London [2,3]. AFs are produced by Aspergillus flavus, and Aspergillus parasiticus [1]. Aspergillus flavus produces four 
compounds belonging to the AF class, which are aflatoxin B1 (AFB1), AFB2, AFG1, and AFG2 [4,5]. As these compounds significantly 
contaminate these animals’ food supply, there is a major concern regarding food contamination worldwide, particularly for 
human-consumed food sources [5]. According to the Food and Drug Administration (FDA), the action levels of AF range between 20 
and 300 ppb, apart from AFM1, which is as low as 0.5 ppb in milk for human consumption. This range depends on the intended use and 
the grain, grain by-product, feed, or other products [6]. 

Generally, the isolated and identified AFs now exceed 20, out of which AFB1 appears to be of the highest toxicity, and the In-
ternational Agency for Cancer Research listed it as a human class I carcinogen [7,8]. AFB1 gets through humans via the respiratory 
tract and mouth, leading to the weakening of the body’s antioxidant capacity [9], immunity [10], and internal organs damage, 
particularly the liver [11]. AFB1 induced liver damage through an imbalance between the body’s antioxidant defense system and 
reactive oxygen species (ROS), leading to the liver’s hydropic degeneration, fatty vacuolar degeneration, and bile duct proliferation. 
Moreover, death receptors FAS, TNFR1, and related genes are upregulated, while the inhibitory apoptotic proteins XIAP and BCL-2 are 
downregulated [12]. Moreover, the cardiac damage is presented as mitochondrial dysfunction, ROS generation, and apoptosis, likely 
involved in the nuclear factor erythroid 2-related factor 2 signal pathway in broiler cardiomyocytes [13,14]. 

Morin is a flavonol extracted as a yellow pigment from plants that belong to the Moraceae family [15]. Morin has anti-inflammatory 
[16], antibacterial [17], antioxidant [16], anti-atherosclerotic [18], and anti-stress effects [19]. Tian et al. showed that morin could 
suppress TLR4/NF-κB and activate Nrf2 and HO-signaling pathways, thereby protecting lipopolysaccharide-caused acute hepatic 
injury in mice [20]. Gao et al. investigated the protective role of morin in chicks for hepatic and renal injury with aflatoxicosis [21]. 
Morin ameliorated cardiac toxicity in bisphenol-S and diethyl Phthalate co-exposed rats through inhibitory activities on inflammation 
and oxidative stress [22]. However, there is no data regarding morin’s role against acute AFB1-induced acute oxidative Hepato-and 
cardiotoxicity in mammals including rodents. Therefore, this study aims to investigate the role of morin in acute AFB1-induced hepatic 
and cardiac toxicity in rats. 

2. Materials and methods 

2.1. Chemicals 

We purchased the pure AFB1 and morin powder from Sigma-Aldrich Chemical Co. (St. Louis, MO, USA). All kits that tested serum 
biochemistry, oxidative stress indicators, and antioxidant status were supplied by Biodiagnostics Co. (Cairo, Egypt), except the kits 
used to assess DNA damage, proinflammatory cytokines, and lactate dehydrogenase (LDH). Cayman Chemical (Co., MI, USA) supplied 
the kits for measuring 8-hydroxy-2′-deoxyguanosine (8-OHdG), R&D (Mannheim, Germany) supplied ELISA kits for measuring 
interleukin-6 (IL-6), IL-1β, and tumor necrosis factor-alpha (TNF-α), while Randox Laboratories (Ltd., Crumlin, UK) supplied the kits 
for assessing LDH. 

2.2. Animals and experimental design 

All animal treatments and experimental procedures were certified by the Faculty of Veterinary Medicine’s Ethical Committee, 
University of Suez Canal, Ismailia, Egypt (Approval number 201936). A total of 40 mature male Wistar Albino rats (weighted 190 ± 10 
g and aged 10 weeks) were obtained from the Egyptian Organization of Biological Products and Vaccines. 

One week before the start of the experiment, rats were reared in cages with adequate ventilation at a temperature of 25 ± 2 ◦C, a 
range of relative humidity between 40 and 50 %, and 12 h of light and dark cycle. A nutritionally complete commercial pellet and 
running water were provided on demand. 

After a week of acclimation, the rats were randomly allocated to one of five groups (eight in each one); (I) received saline as control, 
(II) received morin (30 mg/kg) orally for 14 days [23], (III) received AFB1 (2.5 mg/kg, orally) twice on days 12 and 14 [24], (IV) 
received AFB1 (2.5 mg/kg, orally) twice on days 12 and 14, and morin (15 mg/kg) orally for 14 days, and (V) received AFB1 (2.5 
mg/kg, orally) twice on days 12 and 14, and morin (30 mg/kg) orally for 14 days [23]. 

2.3. Blood collection and serum and tissue preparation 

On day 15, retro-orbital venous plexus blood was drawn under the effect of isoflurane inhalation then all rats were sacrificed for 
further hepatic and cardiac tissue collections. After centrifuging blood at 3000×g for 15 min, sera were kept at 20 ◦C for biochemical 
analysis of hepatic and cardiac function enzymes as well as pro-inflammatory cytokines (IL-6, IL-1β, and TNF-α) analysis, in addition to 
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DNA damage biomarker (8-OHdG) product. For additional investigations of tissue oxidative biomarkers, the heart and liver were 
dissected and washed thoroughly with saline to remove blood clots and RBCs. After that, we homogenized the tissues in 5–10 mL of ice- 
cold buffer per gram tissue and centrifuged these tissues at 5000 rpm for 30 min. The supernatant was tubed and stored at − 80 ◦C for 
spectrophotometric analysis. 

2.4. Serum biochemistry 

Serum liver damage indicators (gamma-glutamyl transferase [GGT], alkaline phosphatase [ALP], aspartate transaminase [AST], 
and alanine transaminase [ALT]) were measured according to the techniques reported by Vazquez-Medina et al. [25], Tietz et al. [26] 
and Reitman et al. [27], respectively. Serum concentrations of creatine kinase (CK), CK-MB, and lactate dehydrogenase (LDH) were 
determined using the techniques of Szasz et al. [28], Würzburg et al. [29], and Babson et al. [30], respectively. 

2.5. Oxidative DNA damage markers and proinflammatory cytokines assessment 

Following the instructions supplied by the manufacturer, we assessed DNA oxidation by the amount of 8-OHdG in the serum and 
the proinflammatory cytokines IL-6, IL-1β, and TNF-α using ELISA kits. 

2.6. Tissue antioxidant status and oxidative stress markers 

The levels of nitric oxide (NO) and malondialdehyde (MDA) -markers for lipid peroxidation-were measured spectrophotometrically 
according to Green et al. [31] and Mihara et al. [32], respectively. Other tissue markers, including glutathione (GSH), GSH peroxidase 
(GSH-Px), catalase (CAT), and superoxide dismutase (SOD) were determined based on the methods by Beutler et al. [33], Paglia et al. 
[34], Aebi [35], Nishikimi et al. [36], respectively. 

2.7. Statistical analysis 

SPSS 26.0 was used to conduct the analysis. One-way analysis of variance (ANOVA) was performed to figure out whether the results 
were statistically significant, and Tukey’s multiple range test was utilized to compare individuals. Data were described as mean with 
standard error (SE), and statistical significance was determined by a p-value of less than 0.05. 

3. Results 

3.1. Role of MRN on tissue serum biochemical parameters in AFB1-intoxicated rats 

The analysis revealed a significant decrease with MRN30 compared to AFB1 in the serum liver enzyme levels AST, ALT, ALP, and 
GGT (54.1 %, 48,77 %, 53.7 %, and 46.7 %, respectively), and in LDH, CK, and CK-MB (39.8 %, 43.7 and 35.9 %, respectively). 
Moreover, there was a significant decrease, with AFB1-MRN15 and AFB1-MRN30 compared to AFB1, in the levels of AST (77.9 % and 
59.5 %, respectively), ALT (74.58 % and 54.15, respectively), ALP (75.3 % and 55.5 %, respectively), and GGT (73.8 %, and 52.4 %, 
respectively), LDH (70.3 % and 46.2 %, respectively), CK (68 % and 49 %, respectively), and CK-MB (60 %, and 40 %, respectively). 
The control group also showed a significant decrease in all serum parameters compared to AFB1. Also, there were insignificant dif-
ferences between the control, MRN30, and AFB1-MRN30 groups with all serum parameters, but a significant difference in the control, 
as well as MRN30, when compared to AFB1-MRN15. Table 1. 

Table 1 
Role of morin on tissue serum biochemical parameters, DNA damage and proinflammatory cytokines levels in AFB1-intoxicated rats.  

Parameters Groups 

Control MRN30 AFB1 AFB1-MRN15 AFB1-MRN30 

AST U/L 50.18a ± 0.68 49.22a ± 1.08 90.94b ± 2.03 70.85c ± 1.75 54.12a ± 1.52 
ALT U/L 27.04a ± 0.92 26.9a ± 0.84 55.16b ± 3.27 41.14c ± 0.81 29.87a ±1.03 
ALP U/L 56.5a ± 0.68 55.54a ± 1.08 103.51b ± 3.3 77.92c ± 1.75 57.41a ± 2.43 
LDH U/L 191.86a ± 3.5 189.76a ± 3.64 476.99b ± 9.74 335.15c ± 12.34 220.32a ± 7.29 
GGT U/L 3.03a ± 0.11 2.98a ± 0.08 6.38b ± 0.33 4.71c ± 0.13 3.34a ± 0.13 
CK U/L 91.17a ± 4.25 88.76a ± 6.79 203.03b ± 4.89 137.43c ± 3.5 99.35a ± 2.46 
CK-MB U/L 34.68a ± 0.9 33.55a ± 0.88 93.44b ± 2.81 55.81c ± 0.77 37.4a ± 0.9       

MRN30; morin 30 mg, MRN15; morin 15 mg, AFB1; aflatoxin B1, AST; aspartate transaminase, ALT; alanine transaminase, ALP; alkaline phosphatase, 
LDH; lactate dehydrogenase, GGT; gamma-glutamyl transferase, CK; creatine kinase, CK-MB; creatine kinase-MB. 
Data are expressed as mean ± standard error (n = 8). 
Values with different alphabetic superscripts within the same row differ significantly (p < 0.05). 
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3.2. Role of MRN on tissue serum DNA damage and proinflammatory cytokines levels in AFB1-intoxicated rats 

Regarding oxidative DNA damage markers, there were significant decreases with MRN30, AFB1-MRN15, and AFB1-MRN30 
compared to AFB1 in the levels of 8-OHdG (43.8 %, 76.3 %, and 51 %, respectively). Also, for the proinflammatory cytokines, a 
significant reduction was observed in MRN30, AFB1-MRN15, and AFB1-MRN30 compared to AFB1 in the levels of IL-1β (26.1 %, 46.2 
%, 33.1 %, respectively), IL-6 (39.1 %, 67.9 %, and 48.6 %, respectively), and TNF-a (32 %, 60.2 %, and 39.3 %, respectively). Fig. 1 
(A-D). 

3.3. Effect of MRN on hepatic tissue oxidative stress and antioxidant status in AFB1-intoxicated rats 

When comparing MRN30, AFB1-MRN15, and AFB1-MRN30 to AFB1, the results showed significantly lower levels of MDA (45.1 %, 
79.3 %, and 51.9 %, respectively), NO (51.7 %, 69.7 %, and 56.7 %, respectively). On the other hand, they showed higher levels of GSH 
(234.2 %, 170 %, and 221.7 %, respectively), GSH-Px (243.4 %, 189.2 %, and 244.3 %, respectively), SOD (271.5 %, 171.6 %, and 
220.3 %, respectively), and CAT (236.8 %, 164 %, and 204.4 %, respectively). The control group also showed similar patterns in these 
parameters compared to AFB1; but the results revealed non-significant differences between the control, MRN30, and AFB1-MRN30 
groups, except in MDA, which showed a significant decrease with MRN30 than AFB1-MRN30 (87 %), and a significant higher CAT 
level (115.9 %). Moreover, there were significant differences in the control, as well as MRN30 compared to AFB1-MRN15. Fig. 2 (A-F). 

3.4. Effect of MRN on cardiac tissue oxidative stress and antioxidant status in AFB1-intoxicated rats 

When comparing MRN30, AFB1-MRN15, and AFB1-MRN30 to AFB1, the results indicated significantly lower levels of MDA (42 %, 
60.9 %, and 47 %, respectively), NO (49.8 %, 65.6 %, and 53.5, respectively), while higher levels of GSH (176.3 %, 138.1 %, 167.8 %, 

Fig. 1. Protective effects of morin on tissue serum DNA damage and proinflammatory cytokines levels in AFB1-intoxicated rats. 
Legend: 
A) 8-OHdG, 8-hydroxy-2′-deoxyguanosine; B) IL-1β, interleukin-1β; C) IL-6, interleukin 6; and D) TNF-a, tumor necrosis factor-alpha. 
Data are presented as mean ± SE (number of each group = 8). 
Columns labeled with different letters differ significantly (p < 0.05). 
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respectively), GSH-Px (261.9 %, 162.7 %, 244 %, respectively), SOD (215.4 %, 153.6 %, and 188.5 %, respectively), and CAT (276.3 %, 
194.9 %, and 250.8 %, respectively). Similarly, the control group had similar patterns in these parameters compared to AFB1. 
However, there were non-significant variations between the control, MRN30, and AFB1-MRN30 groups, except for the higher 

Fig. 2. Protective effects of morin on hepatic tissue oxidative stress and antioxidant status in AFB1-intoxicated rats. 
Legend: 
A) MDA, malondialdehyde concentration; B) NO, nitric oxide concentration; C) GSH, reduced glutathione concentration; D) GSH-Px, glutathione 
peroxidase activity; E) SOD, superoxide dismutase activity; and F) CAT, catalase activity. 
Data are presented as mean ± SE (number of each group = 8). 
Columns labeled with different letters differ significantly (p < 0.05). 
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Fig. 3. Protective effects of morin on cardiac tissue oxidative stress and antioxidant status in AFB1-intoxicated rats. 
Legend: 
A) MDA, malondialdehyde concentration; B) NO, nitric oxide concentration; C) GSH, reduced glutathione concentration; D) GSH-Px, glutathione 
peroxidase activity; E) SOD, superoxide dismutase activity; and F) CAT, catalase activity. 
Data are presented as mean ± SE (number of each group = 8). 
Columns labeled with different letters differ significantly (p < 0.05). 
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significant levels of SOD (114.3 %) and a significantly higher CAT level (110.1 %) with MRN30 than AFB1-MRN30. Also, the results 
revealed significant differences with both the control and MRN30 groups compared to the AFB1-MRN15 group. Fig. 3 (A-F). 

4. Discussion 

The current study assessed the potential effect of morin against acute AFB1-induced hepatic and cardiac toxicity in rats. Our 
findings demonstrated that MRN at a dose of 30 mg/kg B. Wt. considerably enhanced the inflammatory response and oxidative damage 
and reduced antioxidant activities generated by AFB1 exposure. Notably, there were significant variations between the control and the 
AFB1-MRN15 groups. 

Reactive oxygen species (ROS) is a normal product produced in cellular metabolism, but overproduction causes oxidative stress 
[37]. DNA damage and amino acid oxidation are possible results of this oxidative stress [38]. In the AFB1 group, the DNA oxidation 
marker (8-OHdG) was significantly elevated than in other groups, and the lowest marker level was observed in the AFB1-MRN15 
group. The same results were observed in the proinflammatory cytokines, which confirmed that MRN at a dose of 30 mg/kg B. Wt. 

Fig. 4. Potential protective mechanisms of morin against AFB1-induced hepatic and cardiac toxicity in rats.  
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enhanced the inflammatory response and played a protective role against oxidative damage. Subash and Subramanian reported that in 
ammonium chloride (AC)- induced hyperammonaemia rats, morin significantly enhanced the antioxidants’ status and lowered the 
liver markers’ enzyme levels (serum AST, ALP, and ALT) when compared to the AC-treated group [39]. Rajput et al., in their recent 
comprehensive review of morin hydrate, reported morin’s anti-inflammatory, antiapoptotic, and antioxidant effects [19]. Of the re-
ported mechanisms, morin hugely decreased cyclooxygenase-2 (COX)-2 expression, 5-lipoxygenase (5-LOX), and inducible nitric oxide 
synthase (iNOS) genes. It also suppressed the phosphorylation pathway of the NF-қB (IқB-α, P65) proteins and the MAPK (ERK and p38) 
[40]. Moreover, its pretreatment attenuated the pro-inflammatory cytokines’ secretion. In addition, it diminished inflammation 
through NF-қB signaling and the NLRP3 inflammasome pathway [41]. 

Regarding hepatic and cardiac tissue oxidative stress and antioxidant status, there were significant differences in MDA, NO, GSH, 
GSH-Px, SOD, and CAT levels in the AFB1-MRN30 group compared to AFB1, and AFB1-MRN15 groups. Overall, our results highlight 
the antioxidant role of morin against AFB1-induced oxidative damage. 

For morin’s hepatic protective role, it up-regulated the expression of Nrf2 and its NQO1 and HO-1 downstream factors while 
decreasing AST, ALP, ALT, α-SMA, and collagen I&III in liver fibrosis induced by carbon tetrachloride [42]. For the cardioprotective 
role, Prahalathan et al. stated that, in rats, morin (50 mg/kg) supplementation enhanced DOCA-caused cardiac injury through less-
ening LPO and improving SOD, CAT, and GPx levels [43]. Several mechanisms were discussed [19], which mostly imply 
anti-inflammatory, antioxidant, and antiapoptotic morin effects [44]. Regarding the anti-inflammatory effect of morin, TNF- is the 
most significant proinflammatory cytokine involved in activating NF-κB and causing the expression of IL-1β, IL-6, COX-2, iNOS, and 
other downstream inflammatory mediators [45]. Gao et al. showed that TNF-, IL-1, IL-6, and inflammatory mediators COX-2 and iNOS 
were all significantly increased by AFB1. Still, their expression was significantly decreased by the morin group, suggesting that morin 
could effectively reduce the inflammatory response caused by AFB1 [46]. 

Feeding animals with AF-contaminated food led to oxidative stress, as shown by the significant lipid peroxidation increase and 
enzymatic antioxidant decrease like SOD and GSH-Px [47–49]. AFB1 promotes lipid peroxidation in rat liver, which is closely linked 
with hepatic cell injury [50]. AFB1 induced oxidative DNA damage in rat liver, revealed by a time-and dose-dependent 8-OHdG in-
crease [50]. Moreover, AFs cause serious effects on the cardiovascular system, which could lead to cardiac damage [51]. In a study 
assessing morin’s role in AFB1-caused hepatic and renal injury in chicks, the results demonstrated that morin could defend against 
AFB1-caused hepatic and renal damage through heterophil extracellular traps release inhibition, oxidative stress regulation, and in-
flammatory response inhibition [21]. 

In line with this study’s results, it was suggested that morin might be of therapeutic value in preventing and treating several human 
disorders linked with oxidative stress [52]. This suggestion was built on morin showing protection of the lung fibroblast V79-4 cells 
from oxidative stress-caused DNA impairment and cell death through ROS generation suppression as well as malfunction of the 
mitochondria [52]. This mechanism was also connected with the activation of the Nrf2 the elevation of the expression of its down-
stream antioxidant gene, HO-1, which protects cells from the damaging effects of oxidative stress [52]. An in-vitro study reported 
morin’s protection of pancreatic β-cells against oxidative stress-caused DNA damage through the enhancement of the intracellular 
antioxidants SOD, and CAT, and via Nrf2/ARE signaling pathway activation [53]. Caselli et al. [15] stated that morin’s antioxidant 
activity is mainly because of the presence of a double bond between the carbon atoms (C2–C3) and the hydroxyl group that activates 
the double bond at the C3 position. Also, morin’s anti-lipid-peroxidation activity appeared to be related to the two hydroxyl groups 
present on the B ring’s 2′ and 4′ positions [54,55]. 

Depending on this study’s results, morin showed significant improvements in acute AFB1-induced serum, liver, and heart toxicity in 
rats through its anti-inflammatory and antioxidant effects Fig. 4. This study could pave the way for future research to build on by 
providing an experimental basis and theoretical reference for the potential applications of morin. All in all, this could open doors for 
decreasing the public health concern of AFB1 hazards. 

5. Conclusion 

Morin showed significant protective potential in acute AFB1-induced hepatic and cardiac toxicity in rats, as oral morin (30 mg/kg) 
had significantly better results with inflammatory response, oxidative damage, and antioxidant activities in AFB1 exposure. We 
recommend applying morin in oxidative stress-related disorders. Further studies are needed to provide more information about the 
epigenetic alteration effect of AFB1 and the possible application of morin. 
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