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Abstract

Objective: Stroke is a leading cause of long-term motor disability. Stroke

patients with severe hand weakness do not profit from rehabilitative treatments.

Recently, brain-controlled robotics and sequential functional electrical stimula-

tion allowed some improvement. However, for such therapies to succeed, it is

required to decode patients’ intentions for different arm movements. Here, we

evaluated whether residual muscle activity could be used to predict movements

from paralyzed joints in severely impaired chronic stroke patients. Methods:

Muscle activity was recorded with surface-electromyography (EMG) in 41

patients, with severe hand weakness (Fugl-Meyer Assessment [FMA] hand sub-

scores of 2.93 � 2.7), in order to decode their intention to perform six differ-

ent motions of the affected arm, required for voluntary muscle activity and to

control neuroprostheses. Decoding of paretic and nonparetic muscle activity

was performed using a feed-forward neural network classifier. The contribution

of each muscle to the intended movement was determined. Results: Decoding

of up to six arm movements was accurate (>65%) in more than 97% of

nonparetic and 46% of paretic muscles. Interpretation: These results demon-

strate that some level of neuronal innervation to the paretic muscle remains

preserved and can be used to implement neurorehabilitative treatments in 46%

of patients with severe paralysis and extensive cortical and/or subcortical

lesions. Such decoding may allow these patients for the first time after stroke to

control different motions of arm prostheses through muscle-triggered rehabili-

tative treatments.
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Introduction

Stroke is one of the main causes of long-term motor dis-

ability worldwide and in more than 85% result in func-

tional deficits in motor control.1 Currently, about 75% of

patients affected by a stroke survive 1 year or more and this

proportion will increase in the coming years due to

improving quality of care. Furthermore, of stroke survivors

showing no active upper limb motion at hospital admis-

sion, ~14% recover completely, 30% partially and 56%

show little or no recovery.2 The holistic, comprehensive,

interactive approach of an interdisciplinary team is the

hallmark of stroke rehabilitation.3 For motor recovery in

the chronic phase of stroke rehabilitation intensive motor

therapy interventions are necessary. To promote the effects

of physical therapy researchers and clinicians suggest inten-

sive exercise and augmented feedback,4 Constraint Induced

Movement Therapy (CIMT),5 exercise in virtual environ-

ments with feedback to assist skill learning.6 However, it

has been estimated that only 20% to 25% of stroke patients

have wrist or finger movements needed for CIMT.7

Chronic stroke survivors with severe hand weakness show

limited residual muscle activity in the upper arm extensor

muscles and no residual finger extension. Currently, there

is no accepted and efficient rehabilitation strategy available,

with the exception of brain machine interfaces.8

Dysfunction in a muscle involved in a movement

results in an abnormal synergistic muscle pattern.9 Sadly,

such dysfunction leads to a reduction in muscle use

(learned nonuse) and muscle atrophy. These factors add

to spasticity and weakness resulting in impaired affected

upper and lower extremity use. In order to overcome the

absence of appropriate control of paretic muscles in

stroke patients new rehabilitation therapies based on the

combination of robotics and brain control of upper limb

assistive technology10–13 have been proposed showing to

improve neurorehabilitation.8,14–20 One problem of this

approach is that the accuracy to detect intention or

movement by noninvasive brain signals is limited.21–24

On the other hand, surface electromyography (sEMG)

activity has been successfully used for the accurate decod-

ing of many dexterous movements25–29 for prosthesis’

control, making it an attractive tool as a source of control

for motor restoration robotics or orthotics.

In this study, we aim at characterizing the feasibility to

decode residual EMG activity recorded by sEMG when 41

chronic stroke patients defined as severely paretic attempt

seven different forearm and upper arm movements, a

required first step to allow successful use of these signals

as controllers of multimotion mechanical orthosis for

rehabilitation.

Patients and Methods

Subject recruitment

Forty-eight right-handed and six left-handed chronic

stroke patients with no active finger extension, Fugl–Meyer

Assessment (FMA) hand scores of 2.5 � 1.5 (max score 24

points) and age 55.01 � 11.3 years, were recruited8 (see

Table 1). From the 48 patients, seven patients had to be

excluded from the final analysis for technical reasons

(poor signal to noise ratio; N = 2) and insufficient trials

left after artifact removal (N = 5) (see Data S1 for an

extensive explanation of the exclusion criteria). A modified

version of the upper limb FMA was performed 1 day

before the EMG recording30 (for extended explanation see

Data S1). A summary of patient groups demographic and

functional data are presented in Table 1.

Written informed consent was obtained from all

patients. The study was approved by the ethics committee

of the Faculty of Medicine of the University of T€ubingen

(Germany).

Experimental design

The patients were placed on a comfortable chair while dif-

ferent auditory and visual cues were presented correspond-

ing to six different forearm and upper arm movements: (1)

shoulder flexion, (2) external rotation of the shoulder, (3)

upper limb supination, (4) extension of the elbow, (5) wrist

extension and (6) finger extension (Fig. 1C). These move-

ments were selected because of their relation with the upper

limb motor skilled movements used in the FMA scale.

An instruction of 3 sec was shown with three pictures

of the movement to perform (beginning, half and end of

movement) (Fig. 1C). Subsequently, two “Ready” and one

final “GO” cue were presented for 1 sec each. After the

“GO” cue, the patients had 6 sec to perform the move-

ment, reach the final position and maintain posture before

a “Relax” cue was presented. During each movement,

the patients were presented with a classical music piece

(different for each movement) increasing in volume

throughout the entire 12 sec of each trial (instruc-

tions + ready + movement) (see Fig. 1B). This was used

as a rhythmic-melodic motivational tool. A silent intertrial
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Table 1. Group demographic and functional data.

No. Age Handiness Affected limb Lesion location Months since stroke FMA hand/24 FMA arm/30 cFMA/54

48 55.01 � 11.3 42R/6L 15R/33L 21 cort-sub

27 sub

72.3 � 56.2 2.5 � 1.5 8.53 � 5.9 11.04 � 6.6

FMA, Fugl–Meyer Assessment; cFMA, combination FMA.

Number of participants, mean and standard deviation of age, handedness, affected arm, lesion location, mean and standard deviation of months

since stroke and hand, arm and a combination hand and arm of the Fugl–Meyer upper limb motor scores. R and L stand for right and left, respec-

tively. Cort stands for cortical and sub stands for subcortical stroke. cFMA stands for the motor part of the modified upper limb Fugl Meyer

Assessment (cFMA) (Hand and arm parts combined having a maximum score of 54 points). Coordination speed and reflexes were not included

because of the severity of the paralysis.

(A)

(C)

(B)

11

2

3

Rest period
random 2 to 3.5 s

Instructions Movement

Ready 1
Ready 2

GO Stop

...

4 s 2 s 6 s

...

Figure 1. Experimental design. (A) Surface electromyography (EMG) electrodes placed on muscles involved in the six movements used during

Fugl–Meyer Assessment test. (B) Experimental timing. After a randomized resting period (2 to 3.5 sec) a 4 sec instruction interval occurred in

which patient was presented with three figures (items 1, 2 and 3) representing the movement to perform. A feed-forward multilayer perceptrons

(MLPs) neural network with varying numbers of hidden layer neurons was used to decode the muscle activity. To overcome the intertrial

difference in trajectory, classification was performed on 19 time windows from �1.5 to 7 sec relative to the “GO”. (C) From left to right:

shoulder flexion, external rotation of the shoulder, supination, extension of the elbow, wrist extension and finger extension. Immediately after the

instructions period, two ready cues with 1 sec interval were presented to the patient before the “GO” cue appeared and the patient started to

perform the movement at a comfortable pace. Patients were instructed to maintain the final posture until a “Stop” cue appeared.
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period between 4 and 7 sec allowed the patients to return

to the starting position (hands resting on their lap)

(Fig. 1C item 1). Patients were instructed to perform each

movement with both arms simultaneously maintaining

their gaze on the screen, in order to avoid neglecting the

nonaffected hand (or less affected31) due to a concentra-

tion shift toward the affected arm. Compensatory move-

ments were discouraged. The experiment was divided into

blocks. One block implies 60 trials, 10 for each of the six

different movements. On average patients underwent

between 4–6 blocks with a total amount of 40–60 trials per

movement condition. An interblock rest break interval of

5–10 min was used in order to avoid muscle fatigue.

Data collection

Surface EMG (sEMG) data were acquired using a Brain-

Amp 32-channel amplifier from Brain Products GmbH,

Munich Germany (10 patients) and a BrainAmp 16 bipo-

lar EMG fMRI compatible amplifier from the same com-

pany (38 patients). Bipolar Ag/AgCl electrodes were used

for surface EMG data acquisition and placed on the mus-

cles involved in the six movements to be performed: (1)

extensor carpi ulnaris (2) extensor digitorum (3) on the

flexor carpi radialis, palmaris longus, flexor carpi ulnaris

(flexion) (4) long head of the biceps (flexion) (5) the

external head of the triceps (6) anterior portion of deltoid

muscle (7) lateral portion of deltoid muscle and (8) pos-

terior portion of deltoid over the teres minor and infra-

spinatus muscles (see Fig. 1A). When using the 32

channels unipolar amplifier, reference was placed at the

olecranon. Ground was placed over the paretic side clavi-

cle. The EMG electrodes impedance was always kept

under 20 KΩ. The sampling rate was 2500 Hz. Auditory

and visual cues were presented using E-prime software

(Sharpsburg, PA, USA).

EMG-decoding

Compensatory movements

Although the patients were asked to avoid compensatory

movements, different compensation strategies to reach

the end point of each movement were observed. There-

fore, trials where the trajectories showed an absence

of muscle activity (due to patients’ loss of attention

to the task) or extreme variations were rejected (Data

S1).

Decoding design

After the EMG was preprocessed (Fig. 2A and B upper

panel) the waveform length (WL),32 a time domain fea-

ture of the EMG signal providing a measure for signal

amplitude and frequency, was calculated (Data S1)

(Fig. 2A and B middle panel) and used to train the

classifier.

A feed-forward multilayer perceptrons (MLPs) neural

network with varying numbers of hidden layer neurons

was used. To overcome the intertrial difference in trajec-

tory, classification was performed on 19 time windows

from �1.5 to 7 sec relative to the “GO” (Fig. 1B) and the

highest decoding accuracy across windows was considered

as the decoding accuracy for that movement (for more

details see Data S1).

The decoding was performed for each upper limb sepa-

rately for three categories of movements depending on

the main muscles involved: (1) forearm muscles (hand

and finger movements), (2) upper arm muscles (elbow

and shoulder movements) and (3) all upper limb muscles

(hand, fingers, elbow and shoulder movements). Further-

more, for each of these three movement categories we

performed a classification using electrodes on: (1) forearm

only (hand and wrist muscles), (2) upper arm only

(biceps, triceps and shoulder muscles) and (3) entire arm

(see an example of forearm movement decoding using

forearm muscles in Fig. 2A and B lower panel). This was

used to isolate the effect of different movement strategies

and to perform a separate analysis for the paretic muscles.

The same number of trials per movement category was

selected for classification. In order to guarantee that pri-

marily the EMG activity of the main muscles involved in

each movement drove the classification, an analytic sensi-

tivity analysis of the neuronal network was performed

(see Data S1).

Figure 2. Electromyography (EMG) trajectories, feature extraction and classification from the extensor digitorum. The left and right columns

represent data on the affected and unaffected side, respectively. Eleven seconds of EMG data from 2 sec before and 9 sec after the “GO” cue

belonging to three finger extension tasks were concatenated. Vertical dashed lines represent the first ready cue and the red vertical line

represents the “GO” cue. We can observe in the right column how the EMG starts increasing a few milliseconds after the “GO” cue. Three main

figures are presented: preprocessed EMG, the waveform length and the output of the classifier. The output of the neural network indicates the

class with the highest probability to be occurring (in our case 0-rest, 1-finger extension, 2-wrist extension). When using data from the unaffected

hand the classifier assigned the highest probability correctly to rest and finger extension. (A) However, in the affected hand the classifier cannot

decode finger extension and detects rest as the class with the highest probability to be occurring in a patient without residual muscle activity. (B)

On the contrary, the output of the classifier was correctly assigned to rest and finger extension in the paretic limb of a patient with residual

muscle activity.
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Motor function and EMG- decoding

Since it has been proposed before that severity of motor

impairment influences decoding of muscle activity in

stroke patients,33 we separated the group of patients

according to the functional scores for hand (hFMA ≥5
severe group; hFMA <5 extremely severe group), arm

(aFMA ≥11 severe group; aFMA <11 extremely severe

group) and their combination (cFMA ≥16 severe group;

cFMA <16 extremely severe group) and calculated the dif-

ference in EMG decoding. EMG decoding results using

the electrodes placed on the main muscles involved in

each movement type (e.g. finger and wrist extension using

forearm electrodes) were used.

Data analysis and statistics

The acquired data were exported and processed offline in

MATLAB (The MathWorks) (Natick, MA, USA). All data

were reported as mean values � SD when indicated.

Decoding accuracies of the classifier were evaluated by the

percentage of correct answers of the classifier attempting

to decode each requested task (e.g.: Decoding of forearm

movements (pulling together the data for finger exten-

sion, wrist extension and rest) was done using forearm

electrodes (extensor carpi ulnaris, extensor digitorum,

and flexors). According to Figure 1B, each testing trial (of

the pulled data set) was divided into 19 windows. For

each window independently, classification accuracy was

evaluated across trials. The maximum accuracy found

across windows was used as the decoding accuracy for

that particular patient). Statistical evaluations were per-

formed using Mann–Whitney U-test (a nonparametric

test) with 95% CI.

Results

Contribution of each group of electrodes to
specific movement decoding

Decoding unaffected wrist and fingers extension yielded

superior results with electrodes placed on the forearm

only compared to electrodes placed on the upper arm in

87.80% of the patients, as expected (Table 2). In the

affected limb, 48.78% of the patients presented superior

results decoding wrist and finger extension movements

using forearm electrodes only, compared to when using

upper arm electrodes only. This implies that the most

paretic muscles (hand and wrist extensors) presented

either minimal to no residual EMG activity or no detect-

able EMG activity in 51.22% of the patients. On the other

hand, when using EMG data recorded from fore- and

upper arm muscles combined (all muscles), finger and

wrist extension motions were better decoded in 97.56%

and 100% of all patients for nonparetic and paretic arm,

respectively compared to using only forearm electrodes

(Table 2).

A similar effect was observed during elbow and shoul-

der movements. Although in this case, the EMG activity

on the unaffected arm was better decoded using elec-

trodes placed on forearm and upper arm muscles (all

muscles), than using electrodes placed in upper arm only

in all patients, indicating a positive effect of forearm mus-

cle activity in the decoding of elbow and shoulder move-

ments. On the affected arm, the effect was similar and for

92.68% of the patients, the muscle activity during elbow

and shoulder movements, was decoded better using EMG

signals recorded from all electrodes, compared to upper

arm electrodes only. Decoding of elbow and shoulder

movements led to better results in 100% (unaffected arm)

and 97.56% (affected arm) of the patients, when using

EMG activity from only upper arm muscles and from

all electrodes, compared to when using forearm muscle

activity only.

Forearm movements

We classified the EMG activity to be related to either: (1)

finger extension, (2) wrist extension or (3) rest (decoding

chance level 33%). Patients presented no residual hand

extension. However, wrist and finger extension in the

affected limb could be classified with an accuracy of

55.79 � 14.78%, 56.57 � 14.15% and 64.56 � 15.44%

when using EMG activity recorded from forearm muscles

Table 2. Percentage (%) of patients where decoding accuracies using the main group of muscles involved in each group of movements were

above decoding accuracies using unrelated muscles.

Decoding forearm movements

using forearm muscles >

Decoding upper arm movements

using upper arm muscles >

Decoding all movements using all

muscles >

Using upper arm

muscles Using all muscles

Using forearm

muscles Using all muscles

Using forearm

muscles

Using upper arm

muscles

Affected side 48.78 9.76 100.00 7.32 97.56 92.68

Unaffected side 87.80 29.27 97.56 7.32 100.00 100.00
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only, upper arm muscles only and all fore- and upper

arm muscles, respectively. On the unaffected side, the

decoding resulted in higher accuracy values as expected

(see Table 3). We considered a performance of 65% as

the lowest required for a reliable control of an orthotic

device using discrete decoding online for a minimum of

3–7 classes (since it is around two times the chance level

of our classifier with the lowest number of classes or

movements to decode [33%]). Decoding accuracies above

65% were observed in 21.95% and in 51.22% of all

patients when classifying forearm movements using

EMG data acquired at affected and unaffected forearms,

respectively.

Upper arm movements

We classified the EMG activity to be related to either: (1)

shoulder flexion, (2) external rotation of the shoulder, (3)

supination, (4) elbow extension, or (5) rest (decoding

chance level 20%). Upper arm movements in the

affected limb could be decoded with an accuracy of

37.20 � 15.25%, 55.70 � 15.49% and 62.52 � 16.61%

when using EMG activity recorded from forearm muscles

only, upper arm muscles only and all muscles, respec-

tively. On the unaffected side, the decoding resulted in

higher accuracy values as expected (see Table 3). Decod-

ing accuracies above 65% were observed when classifying

five arm movements using EMG data acquired at paretic

and nonparetic upper arm muscles in 26.83% and in

43.90% of all patients measured, respectively.

Forearm and upper arm movements

We classified the EMG activity to be related to either: (1)

shoulder flexion, (2) external rotation of the shoulder, (3)

elbow extension, (4) supination, (5) wrist extension, (6)

finger extension or (7) rest, (decoding chance level

14.29%). These movements in the affected limb could be

decoded with an accuracy of 31.93 � 12.86%, 39.57 �
14.21% and 47.09 � 15.10% when using EMG activity

recorded from forearm muscles only, upper arm muscles

only and all muscles, respectively. On the unaffected side,

again, the decoding resulted in higher accuracy values as

expected (see Table 3). Decoding accuracies above 65%

were observed when classifying 7 upper limb movements

using EMG data acquired at paretic and nonparetic upper

arm muscles in 14.63% and in 46.34% of all patients

measured, respectively.

Significant muscle activity

In this section, we were expecting to observe the highest

contribution (weights) of the different EMG electrodes in

the decoding of muscle activity in the electrodes placed

over the main muscles involved in each movement (i.e.

electrodes over forearm extensors during wrist and finger

extension, over biceps during pronation/supination, over

triceps during elbow extension and over deltoid during

shoulder flexion and external rotation of the shoulder) in

order to guarantee that remaining contraction control of

the paretic muscle was still present.

We observed in 78.05% of all patients that during hand

and fingers extension the electrodes placed on the paretic

forearm extensors muscles presented higher contribution

in the decoding compared to the paretic flexors ruling

out the possibility of flexor activity being the main or

only decodable EMG activity. This was observed on the

unaffected arm in 73.2% of the patients. However, only

40% of these patients who showed higher contribution of

electrodes placed over extensors compared to electrodes

placed over flexors during finger and wrist extension in

the affected hand, showed the same in the unaffected

hand. These results could be due to the use of 19 win-

dows for the decoding and choosing automatically the

Table 3. Decoding accuracies (in %).

Electrodes

Movements Forearm Upper arm All Chance level

Affected side Forearm 55.79 � 14.78 56.57 � 14.15 64.56 � 15.44 33

Upper arm 37.20 � 15.25 55.70 � 15.49 62.52 � 16.61 20

All 31.93 � 12.86 39.57 � 14.21 47.09 � 15.10 14.3

Unaffected side Forearm 70.41 � 14.35 62.36 � 15.18 83.44 � 8.35 33

Upper arm 41.45 � 18.09 65.35 � 14.17 74.89 � 10.83 20

All 42.85 � 15.73 47.32 � 16 65.82 � 14.81 14.3

Mean and standard deviations (SD) of decoding accuracies when decoding forearm, upper arm and complete arm movements. Results are divided

depending on the placement of the electrodes used for the decoding: forearm (extensor carpi ulnaris and digitorum and flexor carpi radialis, palm-

aris longus and flexor carpi ulnaris), upper arm (long head of the biceps, external head of the triceps and anterior, lateral and posterior portion of

deltoid muscle) and all combined.
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one with the best decoding accuracy which could happen

when patients started to close their hands if the timing

was not respected and patients returned to start/resting

position before the end of the trial.

When we grouped patients based on their hand impair-

ment severity (severe hFMA ≥5 or extremely severe hFMA

<5), almost all severely motor impaired patients (N = 6)

presented higher weights on extensor than on flexor fore-

arm muscles, both on unaffected (83.3%) and affected

side (83.3%). In the extremely severely motor impaired

patients (N = 35), we observed higher weights on exten-

sor than on flexor forearm muscles in 71.4% of the

patients in the unaffected arm and 77.1% of the patients

in the affected arm.

As expected during the decoding of all movements

using all electrodes, the electrodes placed on the upper

arm presented a larger overall contribution, likely due to

less impairment and the stronger more reliable EMG in

upper arm muscles. The electrodes on top of the main

muscles involved in each movement (e.g. triceps during

elbow extension) generated always the higher contribution

in all patients’ unaffected arm. This was also the case for

all patients’ affected arm during upper arm movements.

However, during finger and wrist extension decoding

using all electrodes, 70.7% of the patients presented

higher EMG electrode contribution on forearm muscles.

Functional scores and EMG decoding

Since it has been proposed before that severity of motor

impairment influences decoding of muscle activity in stroke

patients,33 we divided the patients into severe and extreme

severe groups based of their hFMA, aFMA and cFMA. We

found significantly better EMG decoding in severe com-

pared to extremely-severe patients during upper arm

(z = 2.3394; P = 0.019) and all (z = 2.1261; P = 0.0335)

movements when patients were divided in groups depend-

ing on their aFMA and cFMA scores confirming some preli-

minary results on moderately and severely affected stroke

patients.33,34 The difference in decoding between severe and

extremely severe cases was not significant for hand and fin-

ger movements using forearm electrodes only (z = 0.7931;

P = 0.4277) as expected due to our inclusion criteria of no

residual finger extension, which resulted in a low number

of patients in the severe group.

Discussion

The results of the present study indicate that severely

impaired chronic stroke patients retain residual muscle

activity in the paretic muscles and that this activity can

be decoded during six different movements and rest dem-

onstrating that some level of neuronal innervation

remains preserved despite severe upper limb impairment.

These findings may not only provide a basis for biofeed-

back training of the paretic muscles or similar procedures

pioneered by Basmajian,35 but also for the use of these

signals to control rehabilitation devices or assistive robot-

ics and functional electrical stimulation (meaning that

training of natural muscle pattern activity is possible).

We report that decoding of forearm movements involv-

ing the severely paretic muscles was accurate (above 65%)

in 46% of the patients (out of 41 patients). Furthermore,

we excluded EMG activity from muscles not involved in

the movement in most of the patients. However, in

29.3% of the patients, we found that decoding of forearm

movements was biased to upper arm muscle activity and

not forearm extensors, which indicates that in these

patients either there was no residual EMG activity on the

forearm extensor muscles or not enough sensitivity in our

method to detect it. Consequently, research into other

techniques such as high-density EMG arrays might be

necessary to resolve this issue.36

We observed significantly better EMG decoding in

severe compared to extremely severe patients during

elbow and shoulder and upper limb movements, when

patients were divided into two groups depending on their

FMA, confirming previous results on mild to moderately

affected stroke patients.33,34

The decoding results of forearm and upper arm move-

ments demonstrate that EMG could be used as a control

signal for rehabilitation (biofeedback, robotic, electrical

stimulation) of the affected limbs in half of the patients

with severe paralysis and extended cortical and/or subcor-

tical lesions strengthening residual functioning of neuro-

nal innervation.

Since it has been shown that electrical stimulation of

muscles can produce near-normal lower limb forces after

chronic stroke,37 we assume that muscle paralysis is not

the main cause of weakness but deterioration of the corti-

cal descending and ascending fibers and its respective

learned nonuse effect.38 Our results suggest that most of

our patients retained some corticomuscular connections

despite severely paretic muscles, which can be inferred by

the correct decoding of the residual muscle activity.

Descending pathways link the brain to the spinal cord,

allowing flexible transmission of commands for voluntary

movement to spinal motoneurons. However, not only the

influence of the mono-synaptically (i.e. corticospinal

tract) but also the influence of multisynaptically con-

nected spinal systems like reticulospinal39 and rubrospi-

nal40 tracts are important to evaluate the degree of

remaining voluntary muscle activity. Furthermore, medial

reticulospinal tracts and some corticospinal fibers (10%

to 15% of the fibers) do not cross to the other side

and may control the ipsilateral limb from the intact
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hemisphere. Accordingly, this evidence together with our

results suggest that some residual connections such as

corticospinal, reticulospinal and/or rubrospinal are intact

and contribute to the decoded residual EMG activity

observed in flexor and extensor muscles in severely

impaired stroke patients despite their inability to use

those muscles for skilled movements.

Limitations

One fundamental limitation to the use of this EMG-based

approach has been that only a few research groups have

explored the existence and control of residual muscle

activity of stroke patients0 paretic limbs.33,34 However,

these two studies did not control for muscle activity phys-

iologically unrelated to the intended movement but to

compensatory movements (e.g. contracting biceps when

trying to extend fingers), thus biasing the decoding with

involuntary pathological muscle activity. Furthermore,

they involved a low number of patients (33with n = 20;

with n = 12) from chronic33 and acute34 groups, consist-

ing mainly of mild to moderately impaired patients (i.e.
34with residual movement) reducing their findings statisti-

cal power. In these studies, high-density EMG electrodes

were used (large number of electrodes in a very reduced

area normally covering one muscle group only, e.g. fore-

arm extensors) reducing the number of muscles recorded.

Another important limitation in the use of EMG signals

is that they are sensitive to electrode placement, interfer-

ence from neighboring muscle signals, skin properties

(e.g. sweat on the skin, pulse) and are also dependent on

a person’s neurological condition. Furthermore, patients

with severe motor impairment after stroke exhibit an

abnormal, uncoordinated muscle activation pattern,41

thus if the EMG activity is not properly isolated from

interference from neighboring muscle signals and com-

pensatory activity, an EMG controlled robot could move

in an undesired way. Therefore, following our decoding

results (i.e. EMG activity from the upper arm usually not

related to wrist and hand extension influenced the decod-

ing results), activity from the specific main muscles

responsible for each particular movement only should be

used in the decoding of EMG activity in rehabilitation.

Additionally, in accordance with the experimental pro-

tocol, the addition of the classical music piece during the

time interval to perform the movement (6 sec) might

have resulted in a positive cofound increasing patients’

performance. Furthermore, the 6-sec time to perform the

task was chosen following empirical and subjective ques-

tioning of four test stroke patients. However, it might be

desirable to extend this time interval for patients requir-

ing longer time periods to properly perform impaired

movements. Nevertheless, this time was kept constant to

simplify signal processing and statistical analysis and to

avoid muscle fatigue.

Future directions

Although our EMG decoding results are based on offline

processing of the muscle signals, an online version of our

decoder could be easily implemented as demonstrated pre-

viously in healthy humans and amputees.26,42 After a cali-

bration session and the subsequent offline processing,

technical artifacts can be easily detected and eliminated

(e.g. improving impedance by changing the pregelled bipo-

lar electrodes and using frequency filters) and the motion

artifacts can be detected automatically during the rehabili-

tation task. It has been demonstrated that intra and inter-

session variability using bipolar surface EMG sensors range

from 3.8% to 18%,43,44 which should not cause a critical

decrease in decoding results. However, in a rehabilitation

scenario we would expect an increase of EMG activity in

time and therefore calibration between training sessions is

needed. Further work on this line should be accomplished

to provide severely paralyzed stroke patients with reliable

and stable EMG controlled assistive and rehabilitation

technologies45 (like it has been shown in amputees).46

Conclusion

Here, we show that it is possible to decode residual EMG

activity when severely affected chronic stroke patients

attempt seven different upper arm and forearm move-

ments, a first step to allow successful use of these signals

as controllers of multimotion mechanical prosthesis and a

demonstration of residual innervations to muscles that

cannot produce movements but whose pattern of contrac-

tion can be controlled by the patient.
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