
Research Article
Identification of Mutator-Derived lncRNA Signatures of Genomic
Instability for Promoting the Clinical Outcome in
Hepatocellular Carcinoma

Xiaolong Tang,1,2 Yandong Miao,1 Jiangtao Wang,1 Teng Cai,1 Lixia Yang,3

and Denghai Mi 1,3

1The First Clinical Medical College, Lanzhou University, Lanzhou City, Gansu Province, China
2The Second Department of Gastrointestinal Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong City,
Sichuan Province, China
3Gansu Academy of Traditional Chinese Medicine, Lanzhou City, Gansu Province, China

Correspondence should be addressed to Denghai Mi; mi.dh@outlook.com

Received 25 May 2021; Revised 13 August 2021; Accepted 28 October 2021; Published 11 November 2021

Academic Editor: Po-Hsiang Tsui

Copyright © 2021 Xiaolong Tang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Background. Accumulating evidence proves that long noncoding RNA (lncRNA) plays a crucial role in maintaining genomic
instability. However, it is significantly absent from exploring genomic instability-associated lncRNAs and discovering their
clinical significance. Objective. To identify crucial mutator-derived lncRNAs and construct a predictive model for prognosis
and genomic instability in hepatocellular carcinoma. Methods. First, we constructed a mutator hypothesis-derived
calculative framework through uniting the lncRNA expression level and somatic mutation number to screen for genomic
instability-associated lncRNA in hepatocellular carcinoma. We then selected mutator-derived lncRNA from the genome
instability-associated lncRNA by univariate Cox analysis and Lasso regression analysis. Next, we created a prognosis model
with the mutator-derived lncRNA signature. Furthermore, we verified the vital role of the model in the prognosis and
genomic instability of hepatocellular carcinoma patients. Finally, we examined the potential relationship between the model
and the mutation status of TP53. Results. In this study, we screened 88 genome instability-associated lncRNAs and built a
prognosis model with four mutator-derived lncRNAs. Moreover, the model was an independent predictor of prognosis and
an accurate indicator of genomic instability in hepatocellular carcinoma. Finally, the model could catch the TP53 mutation
status, and the model was a more effective indicator than the mutation status of TP53 for hepatocellular carcinoma
patients. Conclusion. This research adopted a reliable method to analyze the role of lncRNA in genomic instability.
Besides, the prognostic model with four mutator-derived lncRNAs is an excellent new indicator of prognosis and genomic
instability in hepatocellular carcinoma. In addition, this finding may help clinicians develop therapeutic systems.

1. Introduction

Liver cancer is one of the leading causes of cancer death in
many countries, accounting for 8.2% of total cancer mortal-
ity [1]. More than 90% of all liver cancer cases are hepatocel-
lular carcinomas (HCCs) [2]. Now, tangible advancements
have been made in HCC treatment, including chemotherapy
and immunotherapy [3]. However, the prognosis of patients
with HCC did not increase with the progression of treat-
ment. The median survival of advanced HCC patients is

about nine months, and the 5-year overall survival (OS) rate
is only 10% [4]. It is known to all that HCC is quite a com-
plicated disease identified by molecular and clinical hetero-
geneity, as well as its progression and treatment response
to treatment [3]. Hence, robust and exact prognostic bio-
markers or risk models must be developed to help clinicians
formulate therapeutic systems.

Genomic instability often relates to tumor-prone pheno-
types and required for the acquisition of tumor-initiating
mutations [5]. More importantly, many researchers
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indicated that genomic instability accumulation refers to
patients’ tumor progression and prognosis [6, 7]. Even
though genomic instability mechanisms have not been
wholly discovered, abnormal epigenetics has been reported
related to genomic instability [8], indicating molecular sig-
nature’s capability as a quantitative analysis for genomic
instability. In one such event, Bao et al. screened two
lncRNAs through The Cancer Genome Atlas (TCGA) data-
base and established an effective prognostic model with a
genomic instability signature in breast cancer [9]. Further-
more, Wang et al. formed a miRNA network associated
with DNA damage response and identified a 10-miRNA sig-
nature related to genome instability and prognosis in ovar-
ian cancer [10]. Many studies have shown that gene
instability can promote the occurrence and development
of HCC [11, 12]. However, little research has concentrated
on forming a prognostic model based on genomic instability
genes in HCC.

Numerous studies have demonstrated that long noncod-
ing RNA (lncRNA) is widely expressed in human tissues and
plays a crucial role in epigenetic regulation, and it can be
used as potential biomarkers in various diseases, including
cancer [13]. For example, Zhang et al. reported that lnc-
Ip53 regulates the acetylation of p53 protein through a neg-
ative feedback loop, thereby regulating the growth and drug
chemoresistance in HCC [14]. Li et al. reported that
LINC00624 segregates the HDAC6-TRIM28-ZNF354C
transcriptional corepressor complex apart from the specific
genomic loci as a molecular trick, and it can likely be a reme-
dial target in HCC [15]. Furthermore, accumulating evi-
dence proved that lncRNA plays a vital role in genomic

instability. Recently, a study suggested that NORAD, a novel
lncRNA, can be activated by DNA damage and interact with
NARC1 to maintain genomic instability [16]. Although
several reports suggested that lncRNA is associated with
genomic instability, genome instability-associated lncRNA
and their clinical value in cancer remain primarily
uninvestigated.

To research the probability that lncRNA can be an index
of genomic instability and prognostic, here, we formed a
new prognostic model combining lncRNA expression and
somatic mutation. We found that the model constructed
by lncRNA is a stable measure to estimate the level of geno-
mic instability and prognosis of HCC patients, and genomic
stability had a negative relationship with prognosis in HCC.
Moreover, we demonstrated that the model constructed by
genomic instability-associated lncRNA is more sensitive
than TP53 mutation status to prognosis. TP53 is an impor-
tant therapeutic target in HCC [17], suggesting that the
model constructed by genomic instability-associated
lncRNA is a powerful prognostic model and might help cli-
nicians develop therapeutic systems. The flow diagram of the
study design and analysis is shown in Figure 1.

2. Materials and Methods

2.1. Data Sources. Somatic mutation information, RNA-
sequencing datasets, and clinical feature of HCC were
obtained from the TCGA database (https://portal.gdc
.cancer.gov/, v27.0-fix). The matrix files of somatic mutation
and RNA-sequencing for different samples were collated and
annotated onto the genome through R software (version
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Figure 1: The flow diagram of the study design and analysis.
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4.0.2). Based on the human gene annotation file (http://asia
.ensembl.org/index.html), the profiles of lncRNA were
acquired from all the RNA-seq datasets.

2.2. Bioinformatics Analysis

2.2.1. Screening for Genomic Instability-Associated lncRNA.
To screen genomic instability-associated lncRNA in HCC,
we constructed a mutator hypothesis-derived calculative
framework combing lncRNA expression level and somatic
mutation status. First, we count the somatic mutation num-
ber of every patient. Second, we sorted patients according to
the number of somatic mutations, from highest to lowest.
Third, the top 25% and the bottom 25% of the patients are
defined as the genomic instability (GI) group and genomic
stability (GS) group, respectively. Fourth, we screened differ-
entially expressed instability-associated lncRNA between the
two groups using the Wilcox test with R package “limma”
[18]. We set the criteria as ∣log fold change ∣ greater than 1
and false discovery rate- (FDR-) adjusted p value less than
0.05. R package “pheatmap” was used to analyze the
instability-associated lncRNA and draw a heatmap [19].

2.2.2. Prognosis Model of Mutator-Derived lncRNA
Signature. To further screen the instability-associated
lncRNA that correlated with OS, univariate Cox regression
analysis and the least absolute shrinkage and selection oper-
ator (Lasso) regression analysis were used (p < 0:01). With
the coefficients from the multivariate regression analysis
and the expression level of lncRNA, we calculated the
genome instability-derived lncRNA signature (GILncSig) of
each patient by the following formula:

GILncSig patientð Þ = 〠
n

j=1
coef j ∗ xj ð1Þ

GILnSig represents the prognostic risk score for HCC
patients, coef represents the coefficient, and xj represents the
expression level of every prognostic mutator-derived lncRNA.
We chose the median GILncSig as a cutoff value, and HCC
cohorts were separated into the high-risk group and the low-
risk group. The Kaplan-Meier (K-M) analysis was employed
to assess the survival rate and median survival for each group
through R package “survival” and “survminer” [20]. We used
the R package “survival ROC” to draw the receiver operating
characteristic (ROC) curve for investigating the sensitivity
and specificity of the survival prediction by the GILncSig
[21]. Area under the curve (AUC) was delivered as an index
of prognostic accuracy. Then, we dragged the risk curve and
survival state figure together to elucidate the relationship
between GILncSig and survival. Through univariate and mul-
tivariate Cox regression analyses, we verified whether GILnc-
Sig was an independent prognostic factor in HCC.

2.2.3. Survival Analysis According to GILncSig in Different
Clinicopathological Features. To further investigate the rela-
tionship between GILncSig and clinicopathological features
of HCC, the K-M analysis was used based on GILncSig in
different groups divided by clinicopathological features.

2.2.4. Exploitation of the Nomogram. It is well known that
age, gender, stage, and grade relate to patients’ survival with
HCC. Thus, we chose age, gender, stage, grade, and GILnc-
Sig that we established to perform a nomogram through
the R package “rms.” We used calibration traces to check
the stability between the real and predicted survival rates.
The consistency index (C-index), spreading from 0.5 to
1.0, was considered to calculate the model’s efficiency for
predicting a truthful prognosis. Analyses of 0.5 and 1.0 of
the model perform a chance of randomness or outperfor-
mance on prognostic survival.
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Figure 2: Screening for genome instability-associated lncRNAs (GIlncRNAs). (a) The heatmap of 88 genome instability-associated lncRNAs
(GIlncRNAs). The left cyan is the genomic stability (GS) group, and the right red is the genomic instability (GI) group. (b) The unsupervised
clustering of HCC patients through the expression model of 88 genome instability-associated lncRNAs. The left red is the genomic
instability- (GI-) like group, and the right cyan is the genomic stability- (GS-) like group. (c) The boxplot of somatic mutation in the GS-like
and GI-like groups, and the somatic mutation in the GS-like group is significantly lower than the GI-like group. (d) The TP-53 expression
level in the GS-like and GI-like groups, and the TP-53 expression level in the GS-like group is significantly higher than the GI-like group.
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2.2.5. Validation of the Relationship between GILncSig and
Genomic Instability. We performed the heatmap, somatic
mutation number, and the level of UBQLN4 (a driver of
genomic instability [22]) together according to the risk score
to better elucidate the relationship between GILncSig and
genomic instability. R package “limma” was performed to
analyze further the differences in somatic mutation number
and level of UBQLN4 between the high-risk and low-risk
groups. To more distinctly inspect the variation between
the two groups’ mutation patterns, we formed a waterfall
map through R package “maftools” [23].

2.2.6. Functional Enrichment Analysis of GILncSig Model. To
uncover the gene functions and biological pathways of the
GILncSig model, we illustrated several significant Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) terms via Gene Set Enrichment Analysis
(GSEA) (version 4.1.0) analysis [24–26]. Based on the
GILncSig, we separated the patients into two groups. Mean-
while, we organize the expression and annotation profiles as
required by GSEA and put them into GSEA. The functional
enrichment analysis was shown by R package “plyr,”
“ggplot2,” “grid,” and “gridExtra.”

2.2.7. Comparison with TP53 Mutation Status. Since TP53 is
a recognized tumor suppressor gene [17], we further com-
pared the effects of GILncSig and TP53 mutation status on
survival through the K-M analysis and AUC value of the
ROC curve based on the R package “survival,” “survminer,”
and “timeROC.” First, we, respectively, examined the effect
of risk score on prognosis in the high-risk and low-risk
groups. Second, we, respectively, examined the effect of
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Figure 3: Prognosis model of mutator-derived lncRNA signature. (a) The six prognostic-related GIlncRNAs calculated by univariate Cox
regression. (b, c) The process of Lasso regression that we screened out two of the six prognostic-related GIlncRNAs. (d) The four
mutator-derived lncRNAs were finally selected and their coefficients. (e–h) The K-M analysis of four mutator-derived lncRNAs. (i) The
K-M analysis of HCC patients based on the GILncSig, and the OS of patients in the low-risk group is significantly better than patients in
the high-risk group.

7Computational and Mathematical Methods in Medicine



0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

False positivrate 

Tr
ue

 p
os

iti
ve

 ra
te

1-year

Risk score (AUC=0.706)
Age (AUC=0.454)
Gender (AUC=0.506)
Grade (AUC=0.475)

Stage (AUC=0.743)
T (AUC=0.752)
M (AUC=0.508)
N (AUC=0.508)

(a)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

Risk score (AUC=0.682)
Age (AUC=0.430)
Gender (AUC=0.454)
Grade (AUC=0.495)

Stage (AUC=0.734)
T (AUC=0.728)
M (AUC=0.521)
N (AUC=0.511)

3-year

(b)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

5-year

Risk score (AUC=0.677)
Age (AUC=0.517)
Gender (AUC=0.434)
Grade (AUC=0.528)

Stage (AUC=0.723)
T (AUC=0.716
M (AUC=0.517)
N (AUC=0.507)

(c)

Figure 4: Continued.
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TP53 mutation status on prognosis in the high-risk and low-
risk groups. At last, we built the time-dependent ROC curves
to further compare the predicted outcome of GILncSig and
TP53 mutation status.

3. Results

3.1. Identification of Genomic Instability-Associated
lncRNAs. To screen genomic instability-associated lncRNAs,
through sorting the patients by the cumulative number of
mutations, we found that 93 patients were in the top 25%,
which was the genomic instability (GI) group. 90 patients
were in the bottom 25%, which was the genomic stability
(GS) group. Based on the SAM method, a total of 88
lncRNAs were identified after we compared the lncRNA
level between the two groups (Supplementary Table 1).
The lncRNAs contained 32 upregulated and 56
downregulated genes (Figure 2(a)). To confirm whether the
function of these lncRNAs relates to genomic instability, we
clustered all HCC samples into two groups, the genomic
instability- (GI-) like group and genomic stability- (GS-) like
group, with 88 differentially expressed lncRNAs by
unsupervised hierarchical clustering analysis (Figure 2(b)).
The somatic mutation count was significantly higher in the
GI-like group clustered as high mutation than the GS-like
group clustered as low mutation (p = 3:2e − 08; Figure 2(c)).
Then, we compared the expression level of TP53 between the
two groups, and the expression of TP53 in the GI-like group
was significantly lower than that in the GS-like group
(p = 0:00017; Figure 2(d)). These results suggested that the
somatic mutation pattern between the GI-like and GS-like
groups was significantly different, indicating that these
lncRNAs selected above are related to genomic instability.

Therefore, we chose these 88 lncRNAs as the candidate for
genome instability-associated lncRNAs (GIlncRNAs) for
further research.

3.2. Prognosis Model of Mutator-Derived lncRNA Signature
and Survival Analysis. To further filtrate for prognostic-
related GIlncRNAs, firstly, we enrolled the univariate Cox
regression analysis to assay the relationship between expression
levels of GIlncRNAs and OS, and we found six GIlncRNAs
(Figure 3(a)). Subsequently, according to Lasso regression
results, two GILncRNAs were filtered out (Figures 3(b) and
3(c)). Then, using the multivariate Cox regression analysis,
the coefficients of the four GIlncRNAs were calculated
(Figure 3(d)). Finally, a mutator-derived lncRNA signature
(GILncSig) was established based on the GILncSig expression
level and coefficients. The computation of the risk score of
GILncSig was shown as follows: risk score = 0:1145 ×
expression of LUCAT1 + 0:0167 × expression of PRRT3 −AS
1 + 0:0942 × expression of MIR210HG + 0:0461 × expression
of ZFPM2 −AS1. All 4 GIlncRNAs were high-risk factors
due to their HR > 1 (Supplementary Table 2), and the K-
M analysis also showed that the expression of the four
GIlncRNAs had a significantly negative effect on survival
(Figures 3(e)–3(h)). Based on the GILncSig, the K-M
analysis demonstrated that the OS of patients in the low-
risk group is significantly better than patients in the high-
risk group (p < 0:001; Figure 3(i)). The time-dependent
ROC of GILncSig and other clinicopathological features
showed that the AUC of GILncSig of 1, 3, and 5 years
were 0.706, 0.682, and 0.677 (Figures 4(a)–4(c)). The
distribution of risk scores and survival time suggested that
patients’ survival time decreased as the GILncSig score
increased (Figures 4(d) and 4(e)). Compared with
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Figure 4: Validation of the relationship between the GILncSig and the prognosis. (a–c) The time-dependent ROC of GILncSig and other
clinicopathological features. (d, e) The distribution of the risk score and survival time. The dashed line presents the cutoff value, which
divides HCC patients into the low-risk and high-risk groups. Patients’ survival time decreased as the GILncSig score increased. (f, g) The
GILncSig is an independent prognostic predictor in HCC.
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\clinicopathology, such as age, gender, and stage, univariate
and multivariate Cox analyses showed that the GILncSig was
an independent prognostic predictor in HCC (Figures 4(f)
and 4(g)). These results suggested that the GILncSig may be
a reliable prognostic indicator in HCC.

3.3. Survival Analysis According to GILncSig in Different
Clinicopathological Features. To further investigate the rela-
tionship between GILncSig and clinicopathological features
of HCC, all patients were classified according to their clini-
copathological features and then analyzed for survival based
on the GILncSig. For patients younger than 65, K-M survival
analysis revealed that the OS of patients in the low-risk
group was significantly better than patients in the high-risk
group (p < 0:001; Figure 5(a)). However, for patients older
than 65, there was no significant difference between the
high-risk and low-risk groups (p = 0:236; Figure 5(b)). For
male patients, the OS of patients in the low-risk group was
significantly better than patients in the high-risk group
(p < 0:001; Figure 5(c)). However, no significant difference
was found for female patients between the high-risk and
low-risk groups (p = 0:153; Figure 5(d)). For patients with
G1-G2, G3-G4, T1-T2, and T3-T4, K-M survival analysis
also showed that the OS of patients in the low-risk group
was significantly better than patients in the high-risk group
(p = 0:002, Figure 5(e); p = 0:018, Figure 5(f); p = 0:001,
Figure 5(g); p = 0:04, Figure 5(h)). These results suggested
that the GILncSig is a good indicator to predict the progno-
sis of HCC in males and patients younger than 65, but not in
females and patients older than 65.

3.4. Exploitation of the Nomogram. Through merging the
age, stage, gender, grade, and risk score, we enrolled a nomo-
gram to predict the possibilities of 1-, 3-, and 5-year OS.
Every factor was defined as a score that varies as its donation
to survival risk (Figure 6(a)). The calibration curve indicated
that the real survival time is consistent with the prognostic
survival time, and the C-index is 0.736 (Figures 6(b)–6(d)).
The results suggested that the nomogram is a reliable and
valid method to predict the prognosis of HCC.

3.5. Validation of the Relationship between the GILncSig and
the Genomic Instability. To validate the relationship between
the GILncSig and the genomic instability, we sorted the
patients according to their GILncSig score. We found that
the number of somatic mutations and the UBQLN4 expres-
sion level rise with the growing risk score (Figures 7(a)–
7(c)). Since UBQLN4 is a driver gene that can lead to gene
instability, we chose it as an indicator of gene instability detec-
tion. The comparative analysis results also suggested that the
number of somatic mutations and the UBQLN4 expression
level in the high-risk group was higher than that in the low-
risk group (p = 4:4e − 05, Figure 7(d); p = 0:0031,
Figure 7(e)). To more clearly observe the difference between
the two groups’ mutation patterns, we established a waterfall
map (Figures 7(f) and 7(g)). As seen from the waterfall map,
the somatic mutation frequency on the whole in the high-
risk group was 92.74%, higher than 75% of the low-risk group.
Besides, we found that the somatic mutation frequency of
TP53 was also significantly different between the two groups.
The mutation frequency of TP53 in the high-risk group was
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Figure 5: Survival analysis according to GILncSig in different clinicopathological features. (a–h) The K-M analysis according to GILncSig
for patients with various clinical features as younger than 65, older than 65, male, female, G1-2, G3-4, T1-2, T3-4. For patients younger than
65, male, G1-2, G3-4, T1-2, T3-4, K-M analysis revealed that the OS in the low-risk group was significantly better than the high-risk group.
However, for patients older than 65 or female, there was no significant difference in OS between the high-risk and low-risk groups.
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41%, which higher than 14% of the low-risk group. These
results suggested significant differences in mutation patterns
between the high-risk and low-risk groups, indicating that
GILncSig is significantly correlated with genomic instability.

3.6. Functional Enrichment Analysis of GILncSig Model. To
uncover the gene functions and biological pathways of the
GILncSig model, we illustrated several significant GO and
KEGG terms via GSEA analysis (Figures 8(a)–8(d)). The
main biological function and processes (BP) include DNA_
DAMAGE_CHECKPOINT, DNA_DEPENDENT_DNA_
REPLICATION, DNA_RECOMBINATION, and NEGA-
TIVE_REGULATION_OF_DNA_REPAIR. The main cellular
component (CC) includes CHROMOSOME_TELOMERIC_
REGION, DNA_REPAIR_COMPLEX, PROTEIN_DNA_
COMPLEX, and SITE_OF_DNA_DAMAGE. The main
molecular function (MF) contains CATALYTIC_ACTIVITY_
ACTING_ON_DNA, DAMAGED_DNA_BINDING, DNA_
POLYMERASE_BINDING, ENDONUCLEASE_ACTIVITY,
and EXONUCLEASE_ACTIVITY (Table 1). The main KEGG
enrichment analysis mainly covers the CELL_CYCLE, BASE_
EXCISION_REPAIR, DNA_REPLICATION, MISMATCH_
REPAIR, NUCLEOTIDE_EXCISION_REPAIR, and P53_SIG-
NALING_PATHWAY (Table 2). These results included many
GO and KEGG terms about gene instability, further ascertain-
ing that GILncSig has a close relationship with genomic
instability.

3.7. The Predicted Outcome of GILncSig Was Better than
That of TP53 Mutation Status.We found that somatic muta-
tion patterns of TP53 were significantly different between
the high-risk and low-risk groups (Figures 7(f) and 7(g)),
suggesting that the GILncSig is related to TP53 mutation sta-
tus and GILncSig may be a biomarker for TP53 mutation. As
we know, TP53 mutation is one of the most common muta-
tions in HCC, affecting the progression and prognosis of

HCC. Likewise, we also found a significant difference in sur-
vival between patients of HCC with TP53 mutation and
without TP53 mutation in TCGA (p = 0:013; Figure 9(a)).
Hence, we further investigated whether the GILncSig could
predict prognosis better than TP53 mutation status. Interest-
ingly, when we applied GILncSig to patients with TP53 wild
type and TP53 mutation type, the GILncSig, respectively,
divided TP53 wild type and TP53 mutation type patients
into two groups with significantly different survival
(p = 0:016, Figure 9(b), p = 0:033, Figure 9(c)). However,
when we applied TP53 mutation status to patients with
high-risk score and low risk-score, the TP53 mutation status
can not divide the high-risk score or low-risk score patients
with different survival (p = 0:231, Figure 9(d); p = 0:633,
Figure 9(e)). Moreover, we found that the TP53 mutation/-
high-risk group’s survival curve was more similar to
TP53wild/high-risk group but not that similar to the TP53
mutation/low-risk group (Figure 9(f)). In addition, to further
verify the predicted outcome of GILncSig and TP53 mutation
status, we built the time-dependent ROC curves
(Figures 10(a)–10(c)). In 1 year, 3 years, and 5 years, the
AUC values of GILncSig were 0.727, 0.701, and 0.650, which
were superior to the TP53 mutation status of 0.617, 0.551,
and 0.507. Hence, these results suggested that the GILncSig
may have a better prognostic value than TP53mutation status.

4. Discussion

In this present study, we constructed a new prognostic model
with mutator-derived lncRNAs combining lncRNA expres-
sion and somatic mutation, which can accurately evaluate
genomic instability and prognosis in HCC. Besides, we dem-
onstrated that the model is more precise than TP53 mutation
status on prognosis. Considering TP53 is an important thera-
peutic target in HCC [17], we suggested that the model built
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Figure 6: Exploitation of the nomogram. (a) A nomogram for predicting 1-, 3- and 5-year OS based on clinicopathological features and
GILncSig in HCC. (b–d) Calibration plots for evaluating the agreement between the predicted and real OS for the prognosis model, and
it was used to assess the 1-, 3-, and 5-year OS.
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by the mutator-derived lncRNAs is a robust prognostic model
and might help clinicians develop therapeutic systems.

88 lncRNAs were found through combing lncRNA
expression level and somatic mutation status. Univariate
and Lasso Cox analyses selected four mutator-derived
lncRNAs from the 88 lncRNAs, including LUCAT1,
PRRT3-AS1, MIR210HG, and ZFPM2-AS1. After a detailed
review of the literature, we found that these four lncRNAs
have been reported related to cancer. LUCAT1 be known
as a promoter in pancreatic cancer, non-small-cell lung can-
cer, and colorectal cancer [27–29]. Fan et al. indicated that
PRRT3-AS1 could upregulate migration, proliferation, and
invasion of prostate cancer cells through the mTOR pathway
[30]. Besides, many recent studies reported that MIR210HG
and ZFPM2-AS1 are closely related to cancer progression in
various cancers via various ceRNA networks [31–36]. How-
ever, the relationship between these four lncRNAs and geno-
mic instability has not been fully discovered yet. These
discoveries may offer a basis for further research.

Our model constructed by 4 mutator-derived lncRNAs
can accurately predict the prognosis of HCC patients.
According to our model, the low-risk group had a longer
OS than the high-risk group. It is consistent with previous
similar studies that the model was built by lncRNAs in

HCC [37, 38]. In addition, the 1-, 3- and 5-year AUC values
of our model were more accurate than the model of Shen
et al. built by N6-methyladenosine- (m6A-) mediated mes-
senger RNA signatures [39]. Both univariate and multivari-
ate Cox analyses affirmed that the signature could be an
independent prognostic indicator compared with other crit-
ical clinicopathologic features. These results indicated that
GILncSig had a certain potential in predicting survival.

We analyzed the GILncSig in different clinicopatholog-
ical characteristics groups. The results showed that the
GILncSig is an excellent indicator to predict the prognosis
of HCC in males and patients younger than 65. However,
it is somewhat surprising that GILncSig did not perform
the predictive function we expected in females or patients
older than 65. This different result in gender may be
partly explained by the fact that sex hormones have a cru-
cial role in the development of HCC [40, 41]. Recently,
Petrick et al. indicated that a doubling in the concentra-
tion of 4-androstenedione (4-dione), a hormone secreted
by women during ovulation, was associated with a 50%
decreased HCC risk [42]. Moreover, Wei et al. reported
that 17β-estradiol (E2) could interact with inflammasome
and may work as an inhibitor in HCC progression since
it triggers pyroptotic cell death and suppresses protective
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Figure 7: Validation of the relationship between the GILncSig and the genomic instability. (a–c) The distribution of risk score, somatic
mutation number, and UBQLN4 expression level. The dashed line presents the cutoff value, which divides HCC patients into the low-
risk group and the high-risk group. Patients’ somatic mutation number and UBQLN4 expression level increased as the GILncSig score
increased. (d, e) The boxplots of somatic mutation number and UBQLN4 expression level. The somatic mutation number and the
UBQLN4 expression level in the high-risk group were higher than in the low-risk group. (f, g) The waterfall maps with associated
mutation status of the high-risk and low-risk groups. The mutation frequency of TP53 in the high-risk group was 41%, which higher
than 14% of the low-risk group.
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Figure 8: Functional enrichment analysis of GILncSig model. (a) The biological function and processes (BP) enrichment analysis. (b) The
cellular component (CC) enrichment analysis. (c) The molecular function (MF) enrichment analysis. (d) The KEGG enrichment analysis.

Table 1: The main GO terms of GILncSig model.

GO Terms NES NOM p-val FDR q-val

BP

DNA_DAMAGE_CHECKPOINT 1.81 0.004 0.028

DNA_DEPENDENT_DNA_REPLICATION 1.87 0.002 0.023

DNA_RECOMBINATION 1.93 0.002 0.020

NEGATIVE_REGULATION_OF_DNA_REPAIR 1.92 ≤0.001 0.019

CC

CHROMOSOME_TELOMERIC_REGION 1.85 ≤0.001 0.021

DNA_REPAIR_COMPLEX 1.66 0.014 0.049

PROTEIN_DNA_COMPLEX 1.68 0.008 0.046

SITE_OF_DNA_DAMAGE 1.79 0.004 0.029

MF

CATALYTIC_ACTIVITY_ACTING_ON_DNA 1.75 0.012 0.046

DAMAGED_DNA_BINDING 1.69 0.008 0.057

DNA_POLYMERASE_BINDING 1.86 ≤0.001 0.030

ENDONUCLEASE_ACTIVITY 1.73 0.002 0.046

EXONUCLEASE_ACTIVITY 1.66 0.006 0.061

Table 2: The main KEGG terms of GILncSig model.

KEGG terms NES NOM p-val FDR q-val

CELL_CYCLE 1.81 0.002 0.048

BASE_EXCISION_REPAIR 1.67 0.014 0.097

DNA_REPLICATION 1.67 0.014 0.093

MISMATCH_REPAIR 1.63 0.030 0.107

NUCLEOTIDE_EXCISION_REPAIR 1.74 0.004 0.080

P53_SIGNALING_PATHWAY 1.60 0.023 0.114
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autophagy [43]. Although the mechanism by which sex hor-
mones contribute to the development of HCC remains
unclear, it may explain our different results in gender. The dif-
ferent results in age may be somewhat limited by the mecha-
nism that the burden of several DNA damage classes is
greater in older than in younger [44]. There are, however,
other possible explanations such as sample size, loss to fol-
low-up, or other causes, which need further exploration.

We built a nomogram, a reliable tool, to predict progno-
sis to quantify individual risk by merging and calculating
different risk factors [45, 46]. The most compelling finding
is that the risk score and stage contributed a large proportion
of the total point from the nomogram. However, age, gen-
der, and grade contributed a tiny proportion to the total
point. This result is consistent with the univariate and mul-
tivariate Cox analyses and conforms to the HCC’s essential
characteristics [2].

After a variety of indicators detection, the results indi-
cated that there is a close relationship between our model

and genomic instability. The tumor mutator phenotype
and UBQLN4 expression level, critical indicators of genomic
instability, are significantly correlated with the GILncSig.
UBQLN4 is a novel driver gene of genomic instability in
cancer. Recently, Jachimowicz et al. indicated that UBQLN4
shortens homologous recombination-mediated DSB repair
(HRR) activity by erasing MRE11 from damaged chromatin
and contributing to genomic instability [22].

The GO analysis showed that the primary BP of the
GILncSig contains the DNA damage checkpoint, DNA-
dependent DNA replication, DNA recombination, and neg-
ative regulation of DNA repair. This finding is consistent
with the progress of genomic instability [47]. The main CC
mainly includes chromosome telomeric region, DNA repair
complex, protein DNA complex, and site of DNA damage.
And the MF mainly contains catalytic activity acting on
DNA, damaged DNA binding, DNA polymerase binding,
endonuclease activity, and exonuclease activity. The results
of CC and MF were also coherent with genomic instability.
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Figure 9: The K-M survival analysis suggested that the predicted outcome of GILncSig was better than that of TP53 mutation status. (a) The
K-M analysis of HCC patients with TP53 mutation and TP53 wild, and the OS in the TP53 wild group was significantly higher than the
TP53 mutation group. (b) The K-M analysis of the TP53 wild/high-risk group and the TP53 wild/low-risk group, and the OS in the
TP53 wild/low-risk group was significantly higher than the TP53 wild/high-risk group. (c) The K-M analysis of the TP53 mutation/high-
risk group and TP53 mutation/low-risk group. The TP53 mutation/low-risk group’s OS was significantly higher than the TP53
mutation/high-risk group. (d) The K-M analysis of the TP53 mutation/high-risk group and TP53 wild/high-risk group, and there was no
significant difference between the two groups. (e) The K-M analysis of TP53 mutation/low-risk group and TP53 wild/low-risk group,
and there was no significant difference between the two groups. (f) The K-M analysis of all four groups, and there were significant
differences between the four groups.
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Thus, it could conceivably be hypothesized that the func-
tional enrichment results of GILncSig were significantly
related to genomic instability. The KEGG pathway analysis
of the GILncSig mainly includes cell cycle, DNA replication,
mismatch repair, base excision repair, and nucleotide exci-
sion repair. Surprisingly, the p53 signaling pathway was
found in the results, which seems consistent with recent
reports that p53 is crucial in maintaining genomic stability
[48]. Moreover, Nakajima et al. indicated that p53 mutation
could induce genetic instability and aggressive behavior in
HCC [49]. Therefore, it was evident that GILncSig has a
close relationship with genomic instability and cancer, sug-
gesting that GILncSig is a credible model in predicting geno-
mic instability and prognosis of HCC.

Our results showed that according to GILncSig, the pro-
portion of TP53 mutations was significantly higher in the
high-risk group than in the low-risk group, indicating that
the GILncSig could catch the TP53 mutation status. More-
over, our results suggested that GILncSig has a better prog-
nostic value than TP53 mutation status in HCC. These
results were similar to those of Siqi et al., who also found that
the model built by lncRNAs could hold TP53 mutation status
and have a greater prognostic significance than TP53 in breast
cancer [9]. Hence, this finding further illustrates lncRNA’s crit-
ical role in maintaining genomic instability and the urgency of
exploring lncRNA’s mechanism in epigenetics [50].

Some weaknesses need to be noted regarding the present
study. A limitation of this study is that the results may have a
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Figure 10: The AUC value of the time-dependent ROC curve suggested that the predicted outcome of GILncSig was better than that of
TP53 mutation status. (a–c) The time-dependent ROC of GILncSig and TP53 mutation status in 1 year, 3 years, and 5 years. All AUC
values of GILncSig were superior to TP53 mutation status.
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particular deviation since the number of patients in this
analysis is not large. Another vulnerability source assumes
that we need more independent datasets to confirm the
GILncSig to demonstrate its robustness and reproducibility.
Moreover, we should manage more functional experiments
to indicate the potential molecular mechanisms for predict-
ing the effect of genomic instability-associated lncRNAs.

5. Conclusions

We constructed a mutator hypothesis-derived calculative
framework to screen genomic instability-associated lncRNAs.
It contributes a vital means for further researching the rela-
tionship between lncRNA and genomic instability. Four
genomic instability-associated lncRNAs were identified as
mutator-derived lncRNAs for the survival of HCC patients.
The mutator-derived lncRNA signature was a significant inde-
pendent factor compared with other important clinical fea-
tures in HCC. Therefore, the four mutator-derived lncRNAs
and their signature might be molecular biomarkers of progno-
sis. Moreover, theymay have important implications for geno-
mic instability and even have the potential to help clinicians
develop therapeutic systems in HCC.
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