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Disease is a major constraint on animal production and welfare in agriculture and aquaculture. Move-
ment of animals between farms is one of the most significant routes of disease transmission and is
particularly hard to control for pathogens with subclinical infection. Renibacterium salmoninarum causes
bacterial kidney disease (BKD) in salmonid fish, but infection is often sub-clinical and may go undetected
with major potential implications for disease control programmes. A Susceptible-Infected model of R.
salmoninarum in Scottish aquaculture has been developed that subdivides the infected phase between
known and undetected sub-clinically infected farms and diseased farms whose status is assumed to be
acterial kidney disease
quaculture
ndetected infection
odelling

known. Farms officially known to be infected are subject to movement controls restricting spread of
infection. Model results are sensitive to prevalence of undetected infection, which is unknown. However,
the modelling suggests that controls that reduce BKD prevalence include improve biosecurity on farms,
including those not known to be infected, and improved detection of infection. Culling appears of little
value for BKD control. BKD prevalence for rainbow trout farms is less sensitive to controls than it is for

d so d
Atlantic salmon farms an

ntroduction

Food production and security in agriculture, whether animals
r plant, can be undermined by diseases (Wilkinson et al., 2011).
hese diseases can be very expensive to society, with examples
uch as tuberculosis control from the United States at $3.5 BN and
oot and mouth disease in Europe at D6 BN (Horan et al., 2010).
quacultural production is similarly affected by disease (Murray
nd Peeler, 2005), and losses can also run into billions of dollars,
or example those due to white spot disease of shrimp (Hill, 2002).

Human activity plays a major role in the introduction and spread
f such diseases in agricultural systems (Wilkinson et al., 2011).
ne important activity for spreading disease is the movement of
nimals between farms (Fèvre et al., 2006), such movements are
xtensive in many production systems, both in terms of the num-
ers of and the distances that animals are moved (Green et al.,
011). Targeted controls on the spread of disease aim to prevent
ransmission from infected sites by imposing movement controls
n them and, in more extreme cases, culling animals, which also

revents transmission to other farms through the environment.
ninfected farms may improve biosecurity and limit inputs when
ware of the presence of a potential disease problem, conversely
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farms whose operators are confident that risk is low, because
probability or consequence of infection is low, may relax their
biosecurity and welfare measures (Hennessy, 2007).

Imposition of targeted controls requires knowledge of the distri-
bution of a pathogen. Diseased animals frequently exhibit clinical
signs that indicate presence of the pathogen by visual inspection
and so allow passive reporting of problems by farmers who are in
daily contact with their animals. Confirmation of the pathogen usu-
ally requires laboratory diagnostic testing, but action can be taken
immediately on suspicion if deemed necessary. However, infec-
tions generally go through an incubation phase during which the
host appears healthy. This subclinical infection may be short lived
(e.g. foot and mouth disease virus (FMDV)) or last for a prolonged
period (e.g. Myobacterium bovis the agent of bovine tuberculosis).
Detection of infection during this phase requires an active pro-
gramme of field sampling, often carried out by vets or official health
inspectors. Such farm visits can also detect animals with clinical
signs that have not been reported and allow inspectors to interact
with farmers to improve passive reporting rates. Active sampling
is necessarily limited by resources (Cannon, 2009) and risk-based
surveillance allows populations at the greatest risk of receiving or
transmitting infection to be targeted (Stärk et al., 2006). A partic-
ularly useful form of risk-based surveillance is contact tracing of

farms that have received or sent animals to a known infected farms
(Eames and Keeling, 2003). Delays in detection of infection can be
disastrous, even the relatively short period before movement con-
trols were imposed allowed FMDV to become spread to regions

ghts reserved.
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hroughout Great Britain (GB) as a result of the movement of ani-
als (Green et al., 2006) and the control of bovine tuberculosis

pread in England and Wales is problematic due to the prolonged
ubclinical infection (Gilbert et al., 2005).

In this paper we model a case study of subclinical spread of
nfection in an animal production system: the bacterial pathogen
enibacterium salmoninarum (Toranzo et al., 2005), the cause of
oth chronic subclinical infection and bacterial kidney disease in
he farmed salmonid population of Scotland. The epidemiology of
KD in Scotland reviewed in detail by Murray et al. (2011) and
allace et al. (2011) is summarised in the following text, and this

pidemiology informs the basis of the model structure described
ubsequently. We use the modelling to explore the role of this sub-
linical infection on the response of BKD prevalence to alteration in
odel parameters; this analysis includes the effect of uncertainty

s to the prevalence of subclinical infection on these responses.
he model is used to investigate the effects of potential applied
ontrols on BKD prevalence and thus identify strategies that con-
rol or reduce the current prevalence of disease. Ideally disease
ontrol strategies should be selected that balance costs of controls
nd impacts of disease (Peddie and Stott, 2003), unfortunately we
ack systematic costings of these and the modelling outputs are of
se to aid policy decisions rather than to directly confirm optimal
ontrols.

ethods

he system: Scottish aquaculture and epidemiology of BKD

Scottish farmed Atlantic salmon (Salmo salar) production was
44,247 tonnes in 2009 (Walker, 2010) and industry figures show
010 production to be worth £500 M at farm gate value and
1 BN retail value (SSPO, 2011); salmon was Scotland’s largest
ingle food export product. Scottish production of rainbow trout
Oncorhynchus mykiss) was also substantial at 6766 tonnes in 2009
Walker, 2010). About 90% of Scottish salmonid fish farms are
almon and 10% trout (Walker, 2010); very small numbers of brown
rout (Salmo trutta) and Arctic char (Salvelinus alpinus) are also
armed. Aquaculture is a major employer and investor both at the
cottish level, but more particularly in many regional communities
here there are relatively few alternative sources of employment.

Scottish aquaculture has been affected by a range of disease
roblems and infectious diseases account for about a third of all
he losses to production from marine salmon farms (Soares et al.,
011), other losses being to production processes, adverse environ-
ents and predators. One of the diseases infecting both salmon and

rout farms is bacterial kidney disease (BKD) (Bruno, 2004; Murray
t al., 2011). This disease is caused by the pathogen R. salmoninarum,
hich is found in Western Europe (including GB, but not Ireland),
orth America, Japan and Chile (Toranzo et al., 2005).

In Scotland R. salmoninarum is spread between farms primarily
ith the movement of fish (Austin and Rayment, 1985; Murray

t al., 2011). Although bacteria are shed into the aquatic envi-
onment particularly from clinically diseased fish (McKibben and
ascho, 1999), they survive poorly in the water and so are unlikely
o be transported except over short distances (Austin and Rayment,
985). Outbreaks of BKD tend to reflect patterns of transport within
ompanies (Murray et al., 2011). R. salmoninarum can also be trans-
itted vertically with eggs (Evelyn et al., 1986), however this

equires the high infection loads associated with clinical disease
nd no Scottish broodstock farm has yet tested positive.
Both salmon and trout are moved extensively in a complex
etwork of contacts between farms (Green et al., 2009; Jonkers
t al., 2010). These movements occur throughout GB and ova
re imported from sources worldwide, although imports of live
cs 3 (2011) 171–182

salmonid fish are limited to a few from BKD free areas of the EU
(Walker, 2010) (mostly the Republic of Ireland). The movement
of fish between farms is an essential requirement of the produc-
tion cycle, both biologically and economically. Fish are moved from
hatcheries to ongrowing farms, and all salmon, and some trout, are
moved from freshwater farms to marine farms as they smolt. Move-
ments of fish tend to involve large numbers and so even pathogens
present at low levels within the population are likely to be trans-
ported (Fenichel et al., 2008).

BKD is notifiable within the United Kingdom (UK), so it is a legal
requirement to report suspicion or confirmation of the presence
of this disease (Munro, 2007). Suspicion also applies with contact
tracing of farms that have received or deliver fish to the infected
farm within 6 months or are in the same locality (subcatchment of
a river or within tidal excursion distance at sea). On report of suspi-
cion, official fish health inspectors (FHI) visit the farm; in addition
FHI routinely inspect all farms annually. Under the control regime
that applied up until 2010 the FHI took samples from 150 fish at
suspect sites, and, every other year, 30 fish from sites visited for rou-
tine inspection. Recently the policy has changed (Richards, 2011),
such that sampling only occurs if the FHI observe signs consistent
with BKD when visiting farms whether for a routine or targeted
inspection.

Until 2010 samples were tested using enzyme-linked
immunosorbent assay (ELISA) and confirmed using bacterial
culture; since 2011 quantitative polymerase chain reaction (qPCR)
has been used as the sole test on animals with clinical signs. Anal-
ysis of these diagnostic methods indicated that although they are
sensitive at detecting and specific at confirming R. salmoninarum
in the presence of clinical BKD (Bruno et al., 2007), both ELISA and
culture have relatively poor sensitivity for confirmation of subclin-
ical infection (Hall et al., 2011) because bacterial colonies are few
and localised in such fish (Austin and Rayment, 1985). However,
the R. salmoninarum qPCR is a considerably more sensitive test for
subclinical infection (Hall et al., 2011). When low test sensitivity is
combined with low levels of infection within infected populations
and further reduced sensitivity in pooled samples, analysis shows
that the routine sampling as practiced in Scotland up until 2010
was of negligible value in detecting subclinical infection (Hall et al.,
2011).

If a farm tests positive it is placed under movement restrictions
(Munro, 2007), first a Thirty Day Notice (TDN) and then, if infec-
tion was confirmed, a Designated Area Order (DAO). DAOs are now
called Confirmed Designation Notices (CDNs) but the term DAO
will be used in this manuscript as it applied at the time for which
data are presented. These TDNs and DAOs prohibited movement
from the farm, except for the case of non-diseased fish to other
similarly infected farms (Munro, 2007), restrictions have recently
been lifted on movements to trout farms in areas containing no
salmon farms (Richards, 2011). Movement of clinically disease fish
is banned under welfare legislation. Previously, restrictions were
lifted from a farm after 150 fish have tested negative on two occa-
sions by ELISA by FHI, now only one sample of 150 fish by qPCR
is required because of the greater sensitivity found for this test.
Restrictions can also be lifted (now and under the old regime) if the
farm has been depopulated, disinfected and fallowed.

The first ever report of BKD was in Scottish wild salmon and
was referred to ‘Dee disease’ (Mackie et al., 1933; Smith, 1964),
BKD is a significant cause of wild fish mortality in other coun-
tries to this day (Fenichel et al., 2009). However, BKD has not been
reported from Scottish wild freshwater fish since the 1960s. Exten-
sive ELISA screening of wild fish by FHI and researchers in Scotland

since the 1960s has returned only negative results (for example
4520 wild freshwater fish were sampled between 1989 and 2004
alone (Wallace et al., 2011)). In 2003 an ELISA positive was obtained
from a single herring (Clupea harengus) taken from within a cage
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ig. 1. Structure of the model: S = susceptible; U = unknown infected; K = known
nfected; D = clinically diseased with BKD.

olding salmon with advanced clinical BKD (unpublished result).
ecent qPCR sampling of 2703 Scottish freshwater fish gave posi-
ive results for two pools of stickleback (Gasterosteus aculeatus), one
ool of minnow (Phoxinus phoxinus) and 3 (likely escaped) rainbow
rout pools; the positive samples were obtained close to infected
arms and none had signs of BKD (Wallace et al., 2011). Low lev-
ls of infection were also found in England and Wales (40 by qPCR
nd 2 by culture out of 946 fish sampled) by Chambers et al. (2008).
hese wild fish might sometimes act as a reservoir, particularly if R.
almoninarum were eradicated from farms. Given this low level of
nfection and its chronic nature it is reasonable to assume that BKD
as little impact on Scottish wild fish populations and they have

ittle role in BKD transmission between farms so it is reasonable
ot to include them explicitly in the model, although they may be
elevant to parameter values concerned with transmission and per-
istence of infection and potential roles are noted when the model
arameter values are considered.

Given the low level of R. salmoninarum infection in Scottish wild
sh, we do not include these in the modelling. The situation in
cotland is in contrast to North America, where the dynamics of
KD in managed wild salmonid populations have been modelled

or the Great Lakes by Fenichel et al. (2009) and the Snake River in
ashington State by Hamel (2001).
Previous BKD control strategies in the UK were underpinned

y European Union (EU) Addition Guarantees (AG) that banned
mports of fish and ova to the UK from areas of the EU affected
y BKD (Munro, 2007). However, these AG were dependent on an
ffective eradication programme and, while controls had kept the
revalence of BKD low, eradication was not occurring in GB (see
ig. 2 later), although Ireland (including Northern Ireland) retains
G for BKD. Furthermore a conflict of interest between salmon

armers, who supported the existing controls, and trout farmers,
ho did not, meant that alternative control strategies needed to be

nvestigated (Richards, 2011) for their likely effect on the preva-
ence of BKD.

he model

A simple model is presented following the principles of
nderson and May (1979) in which the population is divided into
ninfected susceptible (S) and infected farms. In this case the

nfected farms are subdivided into diseased (D) or sub-clinically
nfected farms. The sub-clinically infected farms are further divided

nto ‘known’ cases (K) and ‘undetected’ cases of infection (U)
ecause targeted controls can only be imposed on known cases
Fig. 1). The unit of population in this model is the farm; a farm
ith 1% and a farm with 90% of fish infected are both considered
Fig. 2. Percentage of Scottish salmonid farms with DAOs 2004–8: for all farms (thick
solid line); for salmon (dashed line); or rainbow trout (thin solid line).

‘infected’ farms. ‘Prevalence’, thus here refers to proportion of farms
and ‘level’ to proportion of fish within a population that are infected
or diseased. The population modelling is density independent with
the variables representing the proportions of farms in each category
and so S + U + D + K = 1.

Fenichel et al. (2009) used similar categories (susceptible (S),
exposed (U) and infectious (D)) to model wild fish with R. salmoni-
narum infection although these apply at the individual fish rather
than the farm level. In their case there was no possibility of know-
ing the status of individual fish, nor any way to target management
on infected fish should they be known, so they had no category
equivalent to K.

Taylor et al. (2011) used a similar approach to our model of S, I
and C when modelling koi herpesvirus (KHV) in English and Welsh
carp (Cyprinus carpio). They divided their infected population into
controlled C and uncontrolled I farms, with only the latter spreading
infection to susceptible S farms, so C = K + D in our model.

Our BKD model’s variables each have a steady state value that
they reach for baseline parameter values. For example U* is the
proportion of farms with undetected infection, U, at steady state
and similarly D*, K* and S* are the steady-state values of D, K,
and S (ignoring the trivial solution S* = 1, U* = K* = D* = 0). When
model parameters are changed this leads, with enough time, to a
new steady-state. The new steady states under these scenarios are
denoted as U+, D+, K+ and S+.

The model variables interact through processes of transmission
of and recovery from infection and onset and abatement of clinical
disease and unknown infection may become known through con-
tact tracing or direct surveillance (Fig. 1). All these interactions are
driven by model parameters described below and listed in Table 1.

Susceptible populations can develop infection through contact
with any of the infected populations (U, K or D). Transmission
follows the format ˇUUS, ˇKKS or ˇDDS a standard format for epi-
demiological models (Anderson and May, 1979) that has previously
been used to model pathogen transmission between fish farms
(Murray, 2006; Taylor et al., 2011). Pathogen transmission leads
to transformation from S to U (i.e. the subclinical infection in these
populations is initially unknown, but see later for contact tracing).
In the case of R. salmoninarum most transmission is likely to be
through movements of fish (Murray et al., 2011); movement con-
trols, DAOs, are a key part of BKD controls (Munro, 2007), which
are applied where infection is officially known (K or D farms). So
while some transmission may occur from D farms by bacteria are
shed into the water, transmission of this pathogen is largely halted
for D or K farms by imposition of DAOs.

The model does not explicitly include vertical transmission,
although this can occur (Evelyn et al., 1986) there is no evidence

of it doing so in Scotland (Murray et al., 2011). Should it occur,
the existing model formulation would apply to vertical transmis-
sion within Scotland; imports might re-introduce infection from an
external country should eradication occur.
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Table 1
Model variables and parameters. Initial steady states are based on the current situa-
tion for the entire industry and values selected are described in the text. Calculated
values refer to parameters calculated using formulae in Appendix 1 given the initial
steady state. Modelled new steady-state values are model outputs after one or more
parameters are altered and the model is run until stabilised.

Name Default value Description

S Model variable Proportion of farms uninfected
(susceptible)

U Model variable Proportion of farms sub-clinically
infected but not yet detected

K Model variable Proportion of farms known to be
sub-clinically infected

D Model variable Proportion of farms with clinical BKD
S* 1 − U* − K* − D* Initial steady-state value of S
U* Input Initial steady-state value of U
K* 0.005, 0.0125 or 0.1 Initial steady state value of K (salmon,

all farms, trout)
D* K* Initial steady state value of D = K*, half

DAOs
S+ Modelled New steady-state S after parameter(s)

altered
U+ Modelled New steady-state U after parameter(s)

altered
K+ Modelled New steady-state K after parameter(s)

altered
D+ Modelled New steady-state D after parameter(s)

altered
ˇU 0.2 Transmission coefficient from U
ˇK 0 Transmission coefficient from K

(controlled)
ˇD 0.04 Transmission coefficient from D

(controlled, except environmental
transmission)

G Calculated Average removal rate of infection
gU Calculated Removal rate of infection from U
gK Calculated Removal rate of infection from K
gD Calculated Removal rate of infection from D
y 2 Factor by which nK and nD are >nU

x Calculated Rate of onset of disease
r Calculated Rate of recovery from disease
q 0 Background surveillance (not effective)

(
c
f
b
h
S
c
f
a

a
(
p

m
d
p
o
P
c
m
i
a the transmission rate due to the transport of fish between farms (in
c 1 Contact tracing efficacy

Infection can be lost from infected farms at a rate gU, gK, or gD

these parameters are evaluated in Appendix 1). Loss of infection
ould occur through infection self resolving, or by fallowing the
arm either as part of ongoing biosecurity practices or specifically
ecause infection is present; the fish could even be culled (giving
igh gK and gD values). In this case U, K or D will return to susceptible
. Infection removal rates may differ because targeted fallowing or
ulling may be applied to known infected farms. Infection on U
arms is undetected, so any practices applied to increase gU must
lso be applied to uninfected S farms.

Disease can develop on sub-clinically infected farms (U or K) at
rate x, while diseased farms can revert to sub-clinical K at a rate r

the presence of infection on these farms is known because of their
ast disease history).

Subclinical infection can be detected by contact tracing or by
ore general surveillance of the population and either form of

etection converts U to K. Contact tracing is simulated as pro-
ortional to the rate of development of unexpected new cases
f disease (cxU), i.e. from unknown infected farms U not from K.
arameter q is the rate at which sub-clinical infections are dis-
overed through surveillance. This is dependent on the effort and
ethods used, but current methods appear ineffective at identify-

ng sub-clinical infection (Hall et al., 2011).The resultant equations
re:
dS

dt
= −ˇUSU − ˇK SK − ˇDSD + gUU + gK K + gDD (1)
cs 3 (2011) 171–182

dU

dt
= ˇUSU + ˇK SK + ˇDSD − cxU − gUU − xU − qU (2)

dK

dt
= rD + cxU + qU − xK − gK K (3)

dD

dt
= xU + xK − gDD − rD (4)

The model has been coded in R (R Development Core Team, 2009)
and the code is provided in Appendix 2.

Parameterisation

If we take an approximate value for model variables D and K
based on current prevalence of known infection and make some
assumptions concerning the existing control policies we can esti-
mate many of the basic parameters for the model (Table 1). The
analytical solutions of key parameters are detailed in Appendix 1
and are based on the assumption that the system is in steady state.

The number of farms with DAOs has been fairly stable; this
observed number gives the value of D + K when divided by the
number of active farms (Walker, 2010) (Fig. 2). Cases of BKD have
occurred for decades in salmonid farms at a low prevalence (Bruno,
1986, 2004) so reasonable stability has existed for a long time. For
the period 2004–8 approximately 2.5% of farms had DAOs, however
there was considerable difference between the trout and salmon
sectors with nearly 20% (17.6%) of trout but less than 1% (0.72%)
of salmon farms under DAOs at any one time. Some of these farms
had clinical BKD (D), but others did not (K). In this initial section
analyses for the entire industry are described (i.e. 2.5% prevalence,
K* = D* = 0.0125), later we describe the model’s implications for
control policies within salmon (1%, K* = D* = 0.005) and trout (20%,
K* = D* = 0.1) industries. The difference in prevalence supports the
generally weak connectivity between the salmon and trout indus-
tries in Scotland (Murray et al., 2011) and so it is reasonable to
assume that salmon and trout can be managed as separate com-
partments (Zepeda et al., 2008).

We do not know the number of undetected cases of infection, U
(this is not a tautology, because it is possible to know the prevalence
of undetected infection without knowing the specific farms that
are infected, if infection is dynamic). We therefore explore the full
range of possible values of the prevalence of undetected infection
(zero to one minus the proportion of farms known to be infected).

The model uses an arbitrary time step such that the transmis-
sion coefficient ˇU = 0.2 over that time step (the value of ˇU used
to limit the time step is entirely arbitrary, but too large a value
could induce numerical instability and too small a value increases
computational overheads required to obtain steady-state). This use
of an arbitrary time step means that we do not need to know the
transmission coefficient over a given time, per day for example.
As most transmission of R. salmoninarum appears to be associated
with movement of fish between farms (Austin and Rayment, 1985;
Murray et al., 2011) and current policy is to impose movement
controls we assume there is no transmission from farms known to
be infected but without disease, ˇK = 0. Note that movements can
occur between infected farms without spreading infection, so an
outright movement ban is not necessarily implied by ˇK = 0. Fish
on clinically infected farms will shed bacteria into the water and
so some transmission is possible (McKibben and Pascho, 1999),
this transmission includes any due to wild or escaped fish acting
as vectors, but as noted earlier prevalence is very low (Wallace
et al., 2011). Under these movement controls water-borne trans-
mission continues and to represent his ˇD = 0.04, equal to 20% of
the absence of movement controls ˇD = 0.24). Water-borne trans-
mission is relatively weak for BKD, because R. salmoninarum does
not survive well in water (Austin and Rayment, 1985) relative to
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ther pathogens such as infectious pancreatic necrosis virus (IPNV)
McAllister and Bebak, 1997). The bacteria are associated with fish
aeces (Balfry et al., 1996) that are liable to sink close to their source
ather than be transmitted over long distances.

As the model variables represent proportions of the population
S + U + K + D = 1), the modelled transmission is density indepen-
ent. Since transmission is mostly associated with movements of
sh between farms, and there is no reason to assume these will

ncrease if there are more farms, density independent transmission
s a reasonable assumption. Density-independent transmission is
lso consistent with the steady-state of prevalence.

Under the assumption that prevalence of infection is in steady
tate, the rate of recovery from infection equals the rate of infec-
ion. The overall removal rate of infection from all infected farms
s G and this is subdivided into gU, gK and gD, rates for removal
f infection from the different farm types. The algebra to deter-
ine these parameters, while not complex, is involved, and so is

etailed in Appendix 1. We assume known infected or diseased
arms are twice as likely (y = 2) to have infection cleared by tar-
eted improved biosecurity practices relative to undetected farms
ubject to standard practices. The value of the removal of infec-
ion from undetected infected farms, gU, is calculated as a function
f prevalence of undetected infection U* (Fig. 3), and gK = gD = ygU.
ild fish might act as a reservoir of infection, if so this might limit

he ability to increase G but does not affect the default value because
t is calculated over the arbitrary time step.

Similarly, the rate of development of, x, and recovery from, r
isease can be derived for the steady state (Appendix 1) with values
alculated for the full range of prevalence of undetected infection
* (Fig. 3).

We assume that contact tracing for each new case of BKD reveals
n average one subclinical case (c = 1). Sometimes contact trac-
ng leads to several cases being confirmed (Bland, 2007) and on
ther occasions no source or new infections are detected. The back-
round rate of detection of sub-clinical cases is currently very low
q = 0) because of poor testing sensitivity (Hall et al., 2011), owing to
he small number and restricted distribution of bacterial colonies
resent in subclinical fish (Austin and Rayment, 1985), and due to

ow levels of infection on sub-clinically infected farms. We include
in the model to enable us to assess potential new management

cenarios based on improved sampling.
odels sensitivity analysis

We assess model sensitivity to our assumptions of parameter
alues by varying these values and determining their effects on the
cs 3 (2011) 171–182 175

steady-state values of the model variables. The default approach is
to vary parameters over the range of values of between −50% and
+50% of the values either specified (ˇU, y, c) or calculated for steady
state assumptions for a given scenario (G, r, x). However, some
parameters are by default zero (ˇK, q) or very low (ˇD). Two spe-
cial sensitivity analyses are carried out involving these low value
parameters. In one ˇK varies from 0 to 0.2 (ˇU) while ˇD varies from
0.04 to 0.24 (ˇU + 0.04); this represents a range of 100–0% effective
movement controls with the remaining 0.04 of ˇD representing
transmission through the environment which is not affected by
movement controls. The other special sensitivity analysis allows
the surveillance parameter q to vary from its default zero value up
to 0.1. The values of D+/D* as they vary in response to the parameter
changes, are plotted to give the relative change in the prevalence
of clinical disease the key output of the sensitivity analysis.

Management scenarios

Scenarios are derived to assess the potential impacts of man-
agement policy changes. The scenarios are evaluated for each of
the initial assumptions of base-line prevalence (entire industry
2.5%, salmon 1%, or trout 20%). The scenarios are listed in Table 2.
The standard output is the change in relative prevalence of dis-
ease ([D+/D*] − 1), but changes for other outputs are presented for
scenarios III and IV.

The first scenario is to abandon existing movement controls so
that transmission from infected farms is increased to that from
uncontrolled farms. This scenario is simulated by setting ˇK = ˇU

and ˇD = ˇU + 0.04 since this low-level water-borne transmission
from farms with clinical disease remains.

The second scenario is to improve the rate of removal of infec-
tion. This can be done using a general improvement in biosecurity
practice such as fallowing farms regularly, irrespective of the
known infection status. This is simulated by doubling G (i.e. gU, gK

and gD) so removal of infection is increased from all farms regard-
less of knowledge of their infection status.

A third scenario of stamping out infection is also based on
removal of infected farms, but to specifically and heavily target
known infected farms, so that gK and gD are increased by a fac-
tor of 5, while gU remains unchanged. Stamping out will reduce the
number of BKD cases since these are targeted for destruction, how-
ever more important is the incidence of new cases x[U + K], because
this will reflect the ongoing impact of infection.

The fourth scenario is to enhanced surveillance effort such that
background surveillance q = 0.02. This value of q is 10% of transmis-
sion rate when all farms are susceptible, S = 1, (i.e. R0) and is chosen
to illustrate a moderately powerful level of surveillance. Sensitivity
analysis indicates higher values of q are likely to lead to eradication,
but these would require the frequent testing of large samples with
highly sensitive diagnostic methods. Increased surveillance works
by putting more farms under movement restriction, and this has a
significant (although unquantified) impact on industry profitabil-
ity therefore the change in the relative number of farms with DAOs
(K + D) is presented as well as the change in prevalence of disease.

Results

Model sensitivities

Model sensitivity of changed disease prevalence to parameter
change is highly dependent on the initial prevalence of undetected

infection, U* (Fig. 4). The new disease prevalence, D+, is divided
by the pre-change disease prevalence, D*, to make the sensitivity
responses comparable for trout and salmon. These results are pre-
sented on a log scale, because otherwise limited areas of parameter



176 A.G. Murray et al. / Epidemics 3 (2011) 171–182

Table 2
Management scenarios investigated.

Number Description Parameters changed Output relative change in:

I Abandon movement controls ˇK = 0.2, ˇD = 0.24 Disease prevalence
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II Improve general biosecurity
III Targeted culling
IV Improve surveillance

pace exhibiting extreme changes can obscure smaller changes.
enerally sensitivity of ln(D+/D*) is far higher if the prevalence of
ndetected infection (U*) is low rather than high (Fig. 4).

The model is sensitive to transmission from undetected farms
U (Fig. 4I) and rate of removal of infection, G (Fig. 4III). These are
arameters that alter the amount of disease spread from unde-
ected infected farms which cannot be subject to targeted controls.
t low prevalence of undetected infection a small decrease in ˇU or

ncrease in G could lead to eradication of R. salmoninarum. In spite
f sensitivity to ˇU, the model shows little sensitivity to transmis-
ion from known sub-clinical or diseased farms ˇK or ˇD (Fig. 4II),
xcept at very low prevalence of undetected infection, because of

he relatively high transmission from these undetected farms, ˇU.
he model shows relatively little sensitivity to the factor by which
emoval from known sub-clinically infected or diseased farms is
aster than removal from undetected farms, y (Fig. 4IV). The values

ig. 4. Sensitivity analysis results for the model in terms of the value of ln(D+/D*) und
ransmission); (II) ˇK and ˇD (efficacy of movement controls); (III) G (change in gU , gK , and
rom disease); (VII) c (contact tracing); (VIII) q (background surveillance). Most paramet
wo analyses (II and VIII) are over specific value ranges. Under II ˇK is varied over the rang
f anthropogenic spread) and under VIII the value of q is varied from 0 to 0.1.
gU × 2, gK × 2, gD × 2 Disease prevalence
gK × 5, gD × 5 Disease incidence
q = 0.02 Disease prevalence and DAOs

of ˇK, ˇD and y are our modelling assumptions, so the model’s lack
of sensitivity is reassuring.

The model shows little sensitivity to the rate of onset of dis-
ease, x, and sensitivity unlike other parameters increases with the
prevalence of undetected infection, except when this is very low
where this pattern reverses (Fig. 4V). At low prevalence an increas-
ing rate of onset of disease, x, can counter-intuitively cause disease
to decline, this is because of faster detection and hence imposition
of movement controls as disease occurs. There is very little sensi-
tivity in disease prevalence, ln(D+/D*), to r (recovery from disease,
Fig. 4VI) because removal rates via removal of disease, gD, are much
higher than via removal of infection, r (Fig. 3). This may be a reason-

able approximation of the condition in salmon where disease once
started generally continues until fallowing (Murray et al., 2011).

The model suggests the prevalence of BKD is highly sensitive
to the effectiveness of surveillance (and hence impose targeted

er changing parameter value for K* = D* = 0.0125. Panels are: (I) ˇU (uncontrolled
gD); (IV) y (value of gK and gD relative to gU); (V) x (onset of disease); (VI) r (recovery
ers are altered over the range −50% to +50% of the default value (−0.5 to +0.5) but
e 0–0.2 and ˇD over the range 0.04–0.24 (representing perfect control to no control
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ig. 5. Sensitivity analysis for the trout model for two most sensitive parameters:
aries from 0 to 0.1 (scale as in Fig. 4, but two categories are excluded as the range

ontrols); it is more sensitive to the level of background surveil-
ance q (Fig. 4VIII) than to contact tracing c (Fig. 4VII).

ifferential responses of the salmon and trout sectors

DAOs in the salmon sector cover <1% of salmon farms, while
17% of trout farms have DAOs. If the model is run using assump-
ions for known subclinical infection and disease prevalence of
* = D* = 0.005 for salmon or K* = D* = 0.1 for trout the outcomes are
ubstantially different.

The salmon model gives similar sensitivity results to the indus-
ry average model but is biased towards low prevalence responses,
nless a very high prevalence of undetected infection U* is assumed.
high value of U* is improbable because the salmon production

ycle takes longer than that for trout and they may be more likely,
ver this longer time, to develop clinical BKD if infected. These
esults are similar to those displayed in Fig. 4, so they are not
resented.

The prevalence of known infection in trout is much higher than
n salmon and there is no reason to believe that undetected infec-
ion is relatively rarer. This high prevalence makes the model more
table for trout, indicating prevalence of BKD is less likely to change
n response to either enhanced or relaxed controls. The two param-
ters that disease prevalence [ln(D+/D*)] for trout is most sensitive
o are transmission coefficient ˇU and surveillance q (Fig. 5), but
ven to these BKD in trout is considerably less sensitive than the
ndustry average (Fig. 4I and VI).

When prevalence of undetected infected farms = 0.8 there
ppears to be a drop in ln(D+/D*) for trout (Fig. 5). This is because
t this point the prevalence of susceptible farms = 0 and the model
s stable at gU = 0, r = 0, x = 0 (Fig. 3), i.e. when there is no turnover
n the model. The value in the output is thus that the post change
revalence of disease is the value set by the initial conditions, which
re arbitrary and so the result is unrealistic.

anagement scenarios

Results are presented for four examples (Table 2) of manage-
ent scenarios (Fig. 6). Standard output is relative change in disease

revalence, but scenarios III presents change in incidence, while IV
dditionally presents change in farms with DAOs, as described in
ethods. We do not use a log scale for plotting scenario outcomes,
ince absolute changes are of interest for selection of management
trategies.

The abandonment of existing movement controls (Fig. 6I) has
ar more effect on salmon than on trout. Increases in the number
and (II) q. Parameter ˇU is varied from −50% to +50% of default value (0.2) while q
nge is less).

of cases of clinical diseases of an order of magnitude are possi-
ble if prevalence of undetected infection, U*, is small for salmon.
Assuming U* for trout is similar to or has greater prevalence than
the known infection the number of cases is unlikely to increase by
much. The abandonment of movement controls saves this consid-
erable regulatory burden and reduces the sampling and diagnostic
costs since there would be no practical point in knowing which
farms were infected in the absence of clinical BKD.

The policy of improved general removal of infection is highly
effective (Fig. 6II) and leads to the eradication of R. salmoninarum
under the salmon model, unless the prevalence of undetected infec-
tion is very large. This policy leads to major drops in prevalence in
trout, although not to eradication. Drops in the proportion of farms
under DAOs are similar (not shown).

If moderately increased removal of infection from all farms is
effective then perhaps a more aggressive stamping out of known
cases of infection might also be expected to be effective. It turns
out that this is a surprisingly poor policy in this case (Fig. 6III).
Stamping out does lead to a very large drop in relative prevalence
of disease and DAOs by reducing both the new prevalence of dis-
ease and known subclinical infection, D+ and K+, (not shown) as
these farms are being targeted. Stamping out can lead to the eradi-
cation of BKD from trout (unlike scenario II), but only if prevalence
of undetected infection is low. The incidence of new disease cases,
however, can actually increase, especially for trout, if prevalence
of undetected infection is large, because following culling controls
are removed and the previously controlled farm can again spread
infection if re-infected.

Improved surveillance (Fig. 6IV) allows infected farms to be
placed under movement controls faster, and this does lead to a
major decline in D+ (i.e. clinical BKD). However, if this is not suffi-
cient for eradication or serious reduction in D+, this policy can lead
to a permanent increased numbers of farms being subject to move-
ment control if prevalence of undetected infection is large enough
(Fig. 6).

Transient model responses

The model has been run until it becomes stable, visually assessed
as beyond the point at which variables reach equilibrium. How-
ever, the model has transient responses that are of importance for
management so two examples are presented (Fig. 7). If movement

restrictions are lifted from known sub-clinically infected farms this
means an immediate drop in the number of farms under movement
restrictions, but disease prevalence increases only slowly. In the
long term the proportion of farms under movement restrictions
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Fig. 6. Responses of the model to potential control policies given the initial value of U* before policy is introduced; outputs changes are relative to pre-policy values.
Thin line = trout (D* = K* = 0.1) medium line = salmon (D* = K* = 0.005) and thick line = both (D* = K* = 0.0125). Policies are: (I) abandon movement controls on infected farms
(ˇK = 0.2, ˇD = 0.024); (II) improve infection removal generally, 2 × gU , 2 × gK , 2 × gD); (III) stamp out infection where known (5 × gK , 5 × gD); (IV) increase surveillance (q = 0.02).
In panels I, II and IV results are a change in the proportion of farms with clinical disease ([D+/D*] − 1) and in III the result is proportional change in the incidence of disease
([U+ + K+]/[U* + K*] − 1). Panel IV also displays proportional change in farms under movement controls, ([K+ + D+]/[K* + D*] − 1) (dashed lines).
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ig. 7. Transient response in the proportion of farms under movement restriction
rom K and low prevalence of infection (S* = 0.875, U* = 0.1, K* = 0.0125, D* = 0.0125)

re- and post-policy change is similar (only 12% drop); but after
he change these controlled farms are all diseased (as opposed to
0% before the change). However, the benefits of reduced controls
re immediate and the costs of increased disease are delayed so
iscounting reduces these long-term costs (Hennessy, 2007). Alter-
atively, if more effective surveillance is introduced (the scenarios
nder which c increased from 1 to 2 and q from 0 to 0.02), this
educes both the numbers of farms under movement restrictions
nd the numbers with disease. However, in the short term there
s a transient increase in the number of farms under movement
estrictions because farms with undetected infection are converted
o farms with known infection.

The model time step is arbitrarily fitted to the fixed transmission
oefficient ˇU value of 0.2 per time step. Therefore the duration of
he transient response is not defined in the model.

iscussion

ontrol strategies

The model can be used to illustrate that the outcomes of par-
icular control strategies (Table 2), these depend strongly on the

revalence of undetected infection. This means a strategy that
ay be effective if the prevalence of undetected infection is low
ight be quite ineffective if this is high. The model indicates that
ore effective disease control policies include untargeted removal
ed line) and with disease (solid line) under: (I) removal of movement restrictions
mproved surveillance under the trout model (S* = 0.6, U* = 0.2, K* = 0.1, D* = 0.1).

of infection (increased gU, gK and gD) and improved surveillance
(increased q).

Relaxing existing movement controls may have minimal effect
on cases of disease, if prevalence of undetected infection is high,
although it does remove the costs of these controls. However,
if prevalence of undetected infection is low the consequence of
removing controls may be a large increase in cases of disease as
spread from the known sub-clinically infected farms becomes rel-
atively more important. A knowledge of the background prevalence
of infection is needed to asses the consequences of relaxing existing
controls.

Increased untargeted removal of infection, increased G, is effec-
tive at reducing prevalence of BKD and could be achieved by more
effective or frequent fallowing, regardless of a farm’s official infec-
tion status. Since this or any other untargeted policy includes farms
that are not known to be infected it has to be applied to all farms,
not just the small number known to be infected, therefore any prac-
tical infection removal policy must impose minimal costs. However
fallowing would require that sites be emptied for harvest over a rel-
atively short period at the end of a production cycle as opposed to a
model of continuous input and output of fish (Wallace et al., 2011).
This episodic production could both flood local markets and might

lead to cash flow problems for trout companies with relatively
few farms, but is not a problem for salmon companies generally
with many farms and a global market. The salmon industry already
incorporates fallowing periods at the end of each production cycle
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nd BKD does not generally appear to persist on salmon farms post
allowing (Murray et al., 2011). As it is already widely applied to
almon farms it may be difficult to improve on this to a significant
xtent. Fallowing of trout farms is less regular and so there may be
oom for improvement here and, since it is not targeted, could also
mprove control of other diseases (Wallace et al., 2011).

Stamping out policies appear to be surprisingly ineffective at
reventing new cases of clinical BKD. This is likely due to the fact
hat after infection is eradicated from a farm the movement controls
re lifted, so the farm may become re-infected and again a source
f uncontrolled infection (Wallace et al., 2011). The low R. salmoni-
arum transmission rate from infected farms subject to movement
ontrols, even in the presence of disease, means they are effectively
emoved as infection sources, so even a small increase in uncon-
rolled farms can have a big impact on infection pressure and hence
ew cases. In the case of diseases that do spread more strongly
hrough the environment, such as infectious salmon anaemia in
cotland (Murray et al., 2010), stamping out may be important as
control measure as infection can continue to spread from farms
nder movement controls.

Improved surveillance is an effective strategy for reducing BKD
revalence; a similar result has been found for KHV, another
athogen with subclinical infection in aquaculture (Taylor et al.,
011). Improved surveillance allows imposition of more movement
ontrols. This may be short-term with a transient increase followed
y a long-term decline in the number of DAOs (possibly eradication
f infection) or it may be that the surveillance leads to a permanent
ncrease in the number of farms under DAOs, but always with a
eduction in the number of disease outbreaks. An increase in the
umber of farms with DAOs is likely to occur if the prevalence of
ndetected infection was large prior to the increased surveillance
nd the proportion of these infected farms that is detected and
ontrolled is not enough to prevent high levels of transmission.
urveillance could be improved by increasing sampling effort or by
he use of quantitative real-time polymerase chain reaction (qPCR)
s the screening method as this appears to be considerably more
ensitive in detecting sub-clinical infection than the enzyme-linked
mmunosorbent assay (ELISA) screening that was previously used
Hall et al., 2011). Surveillance could also be improved by increasing
ncentives for faster reporting (Horan et al., 2010); as BKD is notifi-
ble a failure to report can result in prosecution, however positive
ncentives might improve reporting (Hennessy, 2007), particularly
f low level disease.

The control strategies illustrated are examples of model
esponse to parameter changes, the sensitivity analysis showed the
odelled BKD prevalence is also sensitive reduced transmission

rom farms not under movement controls (ˇU) and, providing the
revalence of undetected infection (U*) is small, to the rate of onset
f disease (x) and contact tracing (c). We will briefly discuss the
mplications of these results for other potential BKD control strate-
ies. Reduced transmission from farms with undetected infection
ight be achieved by simply reducing the total number of inter-

arm movements, and relatively low numbers of movements occur
etween marine salmon farms specifically to reduce the risk of
preading ISA (Murray et al., 2010). However risk of transmission
f disease through fish movements can also be reduced by rela-
ively subtle changes to contact network structure (Green et al.,
009), and such changes are likely to be less disruptive than simply
educing the total number of movements. The effect of change in
he rate of onset of disease, x, is interesting, slower onset can lead to
here being more disease. This might mean less virulent strains of R.
almoniarum could actually result in more diseased farms (although

erhaps such less virulent strains would cause less mortality per
utbreak) or that good farmers might spread infection more than
armers who stress their fish. Contact tracing is a good way of reduc-
ng BKD if prevalence of undetected infection is low, but not if it is
cs 3 (2011) 171–182 179

high; this contrasts with general surveillance (q) that is effective
even if this prevalence is reasonable high. This difference occurs
because contact tracing roots out a smaller proportion of the unde-
tected infected farms, while q identifies more cases, the larger the
prevalence of undetected farms is.

Salmon and trout

The known prevalence of BKD in trout farms is about 20 times
higher than that in salmon farms in Scotland (Fig. 2). It is unlikely
that salmon have a much higher relative prevalence of undetected
infection, since the longer production time gives more time for dis-
ease to be expressed. We therefore suspect that salmon have a low
prevalence of undetected infected farms and this low prevalence
suggests that changes in controls may have a stronger effect on
salmon than trout. This response applies to reduced infection con-
trol with a large increase in the cases of disease in salmon, but
in trout the effect may be quite small. Conversely improved dis-
ease controls such as fallowing, reduced transmission or increased
surveillance (leading to more farms being placed under movement
restriction) could lead to eradication of infection from salmon, but
could be costly and of limited effectiveness for trout. Existing prac-
tices in salmon production in Scotland include regular fallowing
after each production cycle, which is rarely the case on trout farms
where farms are in continuous production. As such, the different
fallowing and biosecurity practices between the two industries
may explain, at least in part, the existing difference in prevalence.
Conversely, these practices can be seen as a result of the lack of
incentive to invest in controls effective for BKD if consequence is
low and probability of re-infection relatively high as appears to be
the case for trout (Hennessy, 2007).

The low prevalence of known infection in Scottish salmon is
quite unstable in the model (Fig. 4). This suggests that (unless
there is a high prevalence of undetected infection U*) small
improvements in removal or prevention of spread (including small
improvement in surveillance to allow targeted movement controls)
could lead to a situation where infection is eradicated (R0 < 1).
Indeed there was a period in 2006–7 when there was no known
infection in salmon (Fig. 2), although this does not mean there
were no undetected infected salmon farms. Although most cases
of R. salmoninarum infected salmon farms in Scotland appear to be
associated with other cases in salmon and therefore probably are
due to spread from other salmon farms (Murray et al., 2011) it is
possible that occasional inputs from wild reservoirs (Wallace et al.,
2011), or imported ova (Walker, 2010), or trout farms (Fig. 2) are
maintaining infection (Ruane et al., 2009; Taylor et al., 2010) and
preventing eradication from the salmon industry. As risk of infec-
tion becomes perceived to be low the incentive to invest in controls
is reduced thereby increasing that risk of re-emergence (Hennessy,
2007). Given its existing relatively high BKD prevalence, occasional
external inputs are unlikely to have significant effects on R. salmoni-
narum epidemiology within the trout industry. The Scottish trout
industry is closely coupled with that in England and Wales (Murray
et al., 2011); so policy change to trout must be applied at the GB
level. Ireland is BKD free, even though wild salmon and sea trout
can easily cross from GB and there is extensive contact with Scot-
tish aquaculture (Ruane et al., 2009); thus it is possible to have
a BKD free salmon aquaculture industry in an environment sim-
ilar to Scotland’s. The conditions under which reservoirs prevent
eradication of pathogens from populations targeted for control are
discussed by Haydon et al. (2002). Reservoirs of coronavirus present
at low levels in wildlife are believed to be the source of SARS (Guan

et al., 2003), but did not play a role in its spread once in the human
population.

If prevalence increases for trout farms then the risk of trans-
mission to salmon may increase; if the existing prevalence of
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ndetected infection in trout farms is already high then risk to
almon will not change under any reduced internal controls in
he trout industry. This risk can be controlled by ensuring or
mproving the separation of the two sectors of the industry. This
ompartmentalisation (Zepeda et al., 2008) seems to be potentially
ossible as farms in the two sectors are largely in separate net-
orks and geographical areas (Murray et al., 2011); indeed the very
ifferent prevalence in the two sectors is evidence of an existing
eparation.

osts and conflicts of controls

Control policies for BKD impose four different cost types:
urveillance; movement restrictions; farm depopulation and the
irect losses to disease. Costs may vary depending on the nature
f the farm, for example a production farm may be relatively little
ffected by movement controls, but these could be devastating for
hatchery that depends on selling fish to ongrowing farms. BKD is
elieved to cause far greater losses to the salmon industry; these
ave not been systematically evaluated, but at the worst case a sin-
le farm ascribed 130 tonnes of salmon as lost to BKD (Murray et al.,
011).

Farmers will seek a point where increased investment in con-
rols and surveillance balance reduced losses due to disease (Peddie
nd Stott, 2003). Hennessy (2007) has shown that cost imposed on
arms by the state, even from epidemiologically ineffective controls,

ay help disease control by increasing the incentive on farmers to
void infection. This incentive might be particularly important in
he case of trout farms for which the direct costs of disease are
elieved to be minimal for BKD, but for which movement restric-
ions can be expensive. Loss of incentive by weakening of official
ontrols might therefore lead to reduced incentive to invest in
iosecurity.

Farms on which sub-clinical R. salmoninarum is detected can still
evelop BKD and have the additional cost of movement controls, yet
his is the most effective way of controlling disease at the industry
evel. There is a conflict between the farm level and the industry
evel as to the benefits of rapid detection of infection (Horan et al.,
010). Furthermore the costs are fully borne by the infected farm as
here is no official compensation for imposition while the benefits
re a slightly reduced risk of infection to all uninfected farms.

Transient responses could impose costs that may discourage
ractices that would be beneficial in the long-term, or may encour-
ge practices that are counter-productive in the long term. Since we
o not know the prevalence of undetected infection, U*, the possi-
le long-term cost/benefit is difficult to balance against short term
and apparent) cost/benefit. Even if U* is known and so long-term
ffects can be quantified, the benefits of their adoption will depend
n the discount rate and time-scale of the effects (Hennessy, 2007).
he model uses an arbitrary time step to fix transmission coefficient
U = 0.2, so we cannot say how long the transient effects will last.
owever, these could be found if an independent estimate of any
f the time dependent parameters were made.

Transient response and individual interests of farmers may com-
ine to discourage improved practice. For example, in the early
tages of improved fallowing practices the farms that first clear
nfection are likely to be re-infected from the many other farms that
re still infected, even if improved practice is universal. Worse, any
ndividual farm pioneering improved practice without a general
mprovement in the industry will remain indefinitely vulnerable
o the high risk of re-infection. Conversely, the reduced infection
ressure may be a benefit to other farms where fallowing is not

racticed, which may discourage future fallowing of these facilities.

The control of BKD requires a long-term and collective approach
o gain any benefits. This requires policies to be developed by
overnment and/or industry bodies rather than the operators of
cs 3 (2011) 171–182

individual farms or companies (Hennessy, 2007). The salmon and
trout sectors appear to have different interests in controls and so
must either agree a suitable compromise or be operated as separate
compartments.

Conclusions

The modelling provides specific conclusions concerning the con-
trol of BKD and more general conclusions that may be applicable for
other diseases affecting aquaculture and agriculture. The effective-
ness of potential BKD controls depends on the existing prevalence
of infection in farmed salmon and trout, and in particular on the
number of farms with undetected infection. Policies that are likely
to work are either those that lead to improved general farm biose-
curity, regardless of official DAO status, or those that increase the
efficacy of detection. Additionally, improved biosecurity is likely
to give general benefits in the control of a range of diseases.
Industry level benefits may be acquired at the cost of specific
restrictions to the individual farms. Epidemiological separation of
salmon and trout production is likely to be economically beneficial,
since different optimal control strategies appear to apply to these
industries.

Other diseases affecting agricultural or aquacultural systems
may be difficult to detect if they occur asymptomatically and if
so they may be spread with the movement of animals. Exam-
ples include bovine tuberculosis (Gilbert et al., 2005), Jaagsiekte
in sheep (Palmarini et al., 1999), and Johne’s Disease (Whittington
and Sergeant, 2007) from agriculture and KHV (Taylor et al., 2010)
and oyster herpesvirus (Arzul et al., 2002) from aquaculture. Even
cases of clinical disease may go unnoticed if producers consider the
condition is ‘normal’, e.g. bovine fasciolosis in Indonesia (Tisdell
et al., 1999). Similar modelling methods to those described here
may be useful for investigating controls on these diseases (Taylor
et al., 2011). The modelling approach developed here allows param-
eters to be estimated for endemic diseases in steady-state by using
the arbitrary time-step approach. If the prevalence of unknown
infection is known (quite possible if farms change infection status
frequently) the model parameters values can be strongly con-
strained. The approach here may be of particular use for modelling
systems with relatively poor knowledge of their epidemiology
and in which resources for surveillance for infection are particu-
larly limited. This can be the case for many agricultural diseases
in less developed countries and even for aquaculture in devel-
oped countries. In systems for which there is more epidemiological
knowledge these simple models can be replaced with more sophis-
ticated models that have greater predictive power, although even
in these cases the simple modelling approach can give useful initial
results. The value of robust surveillance programme to improve dis-
ease control policies, and to evaluate their effectiveness, is strongly
emphasised.
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Appendix A. The analytical evaluation of parameters, gU,
gK, gD, x and r

The values of the model parameters and variables can be used

to constrain each other, especially if we set the values of the vari-
ables to reflect the current situation and assume the prevalence of
R. salmoninarum is approximately in steady state. This is a reason-
able assumption for R. salmoninarum infection because the number
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f new cases has been fairly constant in recent years and there is a
ong history of persistent low-prevalence infection. We use simple
lgebra on these equations, assuming the variables are at steady
tate and therefore constants, to solve the implied values of these
arameters.

The number of farms actually affected by clinical BKD is very low
nd the number with DAOs (or CDNs) (i.e. known infection with or
ithout BKD) is also low, so we set steady-state K* = D* = 0.0125 for

he industry as a whole, 0.005 for salmon and 0.1 for trout (Fig. 2).
e do not know the value of U, almost by definition, so we use U*

ver a range of values to assess parameters (Fig. 3).
If infection is at steady state then ˇUS*U* + ˇDD*S* = G(1 − S*)

here G is the removal rate and for this first step we assume this
s equal for all infected components G = gU = gK = gD. From this,

= [ˇUS∗U∗ + ˇDD∗S∗]
(1 − S∗)

f removal of known infection is faster than it is for undetected
nfection (gK = gD > gU) then the weighted average value of G must
eflect this balance. If removal of infection from known infected
arms is faster by a factor y then (gK or gD) = ynU then,

= gU[U∗ + y(D∗ + K∗)]
[U∗ + K∗ + D∗]

so :

U = G(D∗ + U∗ + K∗)
(yD∗ + U∗ + yK∗)

K = gD = gU × y

he turnover of D* and the effectiveness of contact trac-
ng from infection (spread from U* is not observed and so
o contact tracing is undertaken) will determine the value
f x (onset of disease). From the equation for U* we see
US*U* + ˇKS*K* + ˇDS*D* − crU* − gUU* − xU* − qU*, which drop-
ing the zero q term leaves ˇUS*U* + ˇDS*D* − U*(cr + nU + r), so

= [ˇUS∗U∗ + ˇ3S∗D∗ − gUU∗]
[(c + 1)U∗]

aving defined x we can find r (recovery rate from disease) using
D* = x(U* + K*) − D*nD

= x(U∗ + K∗)
D∗ − gD

he solution to x and r turn out to be identical for the scenarios
nvestigated (see Fig. 3). We have not analytically derived why this
s so as it is not relevant to our model analysis.

ppendix B. Model code
# R code to run BKD SI model with detected and undetected
nfection

# Alexander G Murray, Marine Scotland Science, Aberdeen, April
011
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par(mfrow = c(2,2))

# steady state variable values
Kx < −0.005 # 0.005 salmon, 0.0125 whole industry, 0.1 trout
Dx < −Kx
Ux < −0.0

# array to store model output
rr < −trunc(40 − 2 * Kx/0.025) # max 40 runs but exclude where K + D + U > 1
xx < −1:(4 * rr)
dim(xx) < −c(rr,4)

for(j in 1:rr) { # model loop for each prevalence scenario
Ux < −Ux + 0.025 # update I and S for each scenario
Sx < −1 − Ux − Dx − Kx

betaU < −0.2 # transmission coefficient from I
betaK < −0.0 # transmission coefficient from K
betaD < −0.04 # transmission coefficient from D
ctr < −1 # contact tracing
y < −2 # factor by which gK and gD > gU
q < −0.0 # surveillance rate

# calculate parameters dependent on U*
G < −(betaU * Sx * Ux + betaD * Dx * Sx)/(1 − Sx)

gU < −G * (Ux + Kx + Dx)/(y * (Dx + Kx) + Ux) # loss of infection from U
gK < −gU * y # loss of infection from K
gD < −gU * y # loss of infection from D

x < −(betaU * Sx * Ux + betaD * Dx * Sx − gU * Ux)/((ctr + 1) * Ux) # rate of onset of
disease
r < −x * (Kx + Ux)/Ux − gD # rate of recovery from disease to K

# modification of parameter values for model management scenarios
#q < −0.02
#gU < −gU * 2
#gK < −5 * gK #2
#gD < −5 * gD #2
#betaK = 0.2
#betaD = 0.24

S < −numeric(400) # uninfected populations
U < −numeric(400) # infected non-diseased not detected
K < −numeric(400) # known infected, non-diseased
D < −numeric(400) # disease population

S[1] < −0.99
U[1] < −0.01
K[1] < −0
D[1] < −0

for(t in 2:400) { # run model

trasm < −S[t − 1] * (betaU * U[t − 1] + betaK * K[t − 1] + betaD * D[t − 1])
cont < −ctr * x * U[t − 1]

S[t] < −S[t − 1] + gU * U[t − 1] − trasm + gK * K[t − 1] + gD * D[t − 1]
U[t] < −U[t − 1] + trasm − cont − x * U[t − 1] − gU * U[t − 1] − q * U[t − 1]
K[t] < −K[t − 1] + r * D[t − 1] + cont − gK * K[t − 1] − x * K[t − 1] + q * U[t − 1]
D[t] < −D[t − 1] + x * (U[t − 1] + K[t − 1]) − r * D[t − 1] − gD * D[t − 1]

}
plot(1:400,S,type = “l”,ylim = c(0,1),ylab = “population”,xlab = “time”,main = “S”)

plot(1:400,U,type = “l”,ylim = c(0,1),ylab = “population”,xlab = “time”,main = “U”)

plot(1:400,D,type = “l”,ylim = c(0,1),ylab = “population”,xlab = “time”,main = “D”)

plot(1:400,K,type = “l”,ylim = c(0,1),ylab = “population”,xlab = “time”,main = “K”)

# new stabilised values of parameters
xx[j,1] = S[400]
xx[j,2] = U[400]
xx[j,3] = K[400]
xx[j,4] = D[400]

}
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