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Introduction

Peritoneal dialysis (PD) is a successful therapy, the outcomes 
of which are equal to those of hemodialysis (HD); however, 
PD can be administered as a home-based treatment which 
gives it the added advantage of maintaining the patient’s qual-
ity of life while undergoing the treatment. Despite these facts, 
many patients drop out or transfer to HD therapy because of 
peritonitis.1,2 Severe and prolonged peritonitis can lead to peri-
toneal membrane failure and this increases the odds for the 
subsequent development of encapsulating peritoneal sclerosis.3 
Peritonitis can lead to infection-related mortality in PD patients 
18% of the time.4 Therefore, it is important to focus attention 
on prevention and treatment of PD-related peritonitis, 

including the rapid reduction of inflammation and the conser-
vation of peritoneal membrane functions.

Far infrared radiation (FIR) is a region in the infrared spec-
trum of electromagnetic radiation with a wavelength of 50.0–
1000.0 μm.5 Only in the region of FIR can transfer energy be 
perceived as pure radiant heat by thermoreceptors in the human 
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skin.6 There are many biological effects of FIR therapy, includ-
ing the following: inducing accelerated recovery of skeletal 
muscle function after exercise, increasing arterial and periph-
eral blood flow in the lymphatic vessels, improving endothelial 
function and decreasing pain, inflammation, and oxidative  
stress.5,7–13 This noninvasive and convenient therapy has been 
shown to be an effective treatment for improving access flow 
and patency of arteriovenous fistulas (AVFs) in HD patients.14 
Studies have also demonstrated that FIR promotes microvascu-
lar blood flow and angiogenesis in various animal models.15,16 
FIR may produce an anti-inflammatory effect on joints by 
reversing lipopolysaccharide (LPS)-induced arthritis and 
relieving inflammation.17,18 It has also been shown to inhibit 
vascular inflammation by inducing heme oxygenase-1 (HO-1), 
which in turn increases skin microcirculation.19 The expression 
of HO-1 and endothelial nitric oxide synthase (eNOS) was 
induced by nitro-oleic acid, an anti-inflammatory, both in vitro 
and in vivo that can in turn mediate the anti-inflammatory 
actions.20 Moreover, eNOS synthase nitric oxide (NO) regu-
lates vascular tone and permeability,21 so it appears to be 
closely associated with vascular endothelial function.22 Given 
these positive effects upon the human body, FIR has become a 
promising treatment option for certain medical conditions.5

There are clinical reports investigating the dose of FIR 
needed to improve the dialysis treatment in HD or PD 
patients;14,23–26 however, there are few clinical reports inves-
tigating FIR’s effects on peritonitis. In this study, we assessed 
the biological effects of FIR on the LPS-induced peritonitis 
mouse model by analyzing the RNA and protein levels of 
interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), 
and endothelial nitric oxide synthase (eNOS). 

Materials and methods

Animals

Male ICR mice (8–10 weeks old, weighing 25 ± 3 g) were 
obtained from BioLASCO Taiwan Co., Ltd. (Taipei, Taiwan) 
and were acclimated for at least 1 week before use. All mice 
were housed in a room with a 12-h light/dark cycle and fed ad 
libitum with free access to clean drinking water at a tempera-
ture of 22~24°C and a humidity of 50 ± 5%. Before starting the 
experiment, mice were randomly divided into two groups (n = 8 
mice/group), the FIR treatment group and the control group, 
which would not receive FIR treatment. All animal experi-
ments were performed according to protocols approved by the 
Institutional Animal Care and Use Committees (IACUC).

Peritonitis induction

LPS was purchased from Sigma-Aldrich (St. Louis, MO, 
USA) and prepared in sterile phosphate-buffered saline 
(PBS) before use. To induce peritonitis, all mice were given 
intraperitoneal injections of LPS (100 μg/kg).27,28 The FIR 
treatment group mice were transferred to a plastic cage under 
a TY-201 therapy unit (WS Far-Infrared Medical Technology 
Co., Ltd., Taipei, Taiwan). The top radiator of the unit was 

positioned 25 cm above the mice. The FIR treated mice 
received radiation for 15 min every 30 min over the course of 
2 h. The control group was housed in the same space as the 
FIR group, but did not undergo FIR radiation treatment.

The baseline blood samples were collected via the facial 
vein the day before the experiment began. Other blood sam-
ples were also collected via the facial vein every 30 min after 
LPS injection. The sample collecting tubes contained ethyl-
enediaminetetraacetic acid (EDTA) as an anticoagulant, so 
that the blood could be separated into plasma and blood cells 
by centrifuge for further experiments.

RNA quantification

Peripheral blood mononuclear cells (PBMCs) were sepa-
rated immediately after facial vein collection. The whole 
blood cells were centrifuged for 30 min at 500 g without stop, 
at room temperature. The PBMC-containing band was aspi-
rated and stored at −80°C until use. Total RNA was obtained 
from the blood cells using RNAzol BD reagent (Molecular 
Research Center, Inc., Cincinnati, OH, USA) according to 
the manufacturer’s instructions. RNA was quantified by 
ultraviolet (UV) absorbance at 260 nm. First-strand cDNAs 
were synthesized from 3 μg of total RNA using a First Strand 
cDNA Synthesis Kit (Invitrogen, Carlsbad, CA, USA). Real-
time polymerase chain reaction (PCR) and quantitative PCR 
(qPCR) analyses were performed in triplicate in 96-well 
reaction plates with the Maxima SYBR Green qPCR Master 
Mix (2X; Thermo Fisher Scientific, Waltham, MA, USA). 
The amplification was carried out in the ABI StepOnePlus 
Real-Time PCR System (Applied Biosystems, Foster City, 
CA, USA). Primers used for qPCR amplification of IL-6, 
TNF-α, and eNOS can be seen in Table 1. The results of the 
mRNA levels were normalized to GAPDH expression in 
each sample and relative quantification (ΔΔCt) showed 
expression of target genes.29

Detection of cytokine production

Plasma samples were used to measure IL-6, TNF-α, and 
eNOS levels using commercially available enzyme-linked 
immunosorbent assay (ELISA) kits. The IL-6 and TNF-α 
ELISA kits were purchased from 4Abio (Beijing, China) and 
the eNOS ELISA kit was purchased from MyBiosource (San 
Diego, CA, USA). The procedures were performed accord-
ing to the manufacturers’ instructions. All assays were per-
formed in triplicate. The concentration of each protein was 
calculated from the standard curve.

Statistics

The data depicted represent eight independent experiments. 
Triplicate samples were run for all qPCR, with an ELISA for 
each individual experiment: results are shown with the 
mean ± SD. Statistical analyses were performed using the two-
tailed paired t-test; p values of <0.05 were considered signifi-
cant, with all statistics using GraphPad Prism 7.0 software.
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Results

To determine the effect of FIR radiation, the LPS-induced 
peritonitis mice were analyzed for RNA levels and plasma 
protein concentrations of IL-6, TNF-α, and eNOS.

RNA levels analysis

Table 2 summarizes the findings of the qPCR and the result-
ing mRNA levels measured. The ΔCT values of IL-6, TNF-α, 
and eNOS were obtained by normalizing the CT value to an 

Table 1.  List of primers used for real-time qPCR analysis.

Gene Primers Amplicon

GAPDH Forward 5'-TGCACCACCAACTGCTTAG-3' 187
Reverse 5'-GGATGCAGGGATGATGTTC-3'

IL-6 Forward 5'-CTCTGGGAAATCGTGGAAAT-3' 134
Reverse 5'-CCAGTTTGGTAGCATCCATC-3'

TNF-α Forward 5'-ATGAGAAGTTCCCAAATGGC-3' 125
Reverse 5'-CTCCACTTGGTGGTTTGCTA-3'

eNOS Forward 5'-TCCGGAAGGCGTTTGATC-3' 101
Reverse 5'-GCCAAATGTGCTGGTCACC-3'

qPCR: quantitative polymerase chain reaction.

Table 2.  Expression levels of IL-6, TNF-α, and eNOS normalized with GAPDH using the comparative CT method.

Gene Time ΔCTa Mean ΔΔCTb Fold of baseline

IL-6 Control Baseline 10.88 ±1.74 – –
0.5 8.87 ± 1.64 −2.02 ± 1.64 4.05
1 8.39 ± 1.51 −2.50 ± 1.51 5.64
1.5 7.68 ± 1.43 −3.20 ± 1.43 9.19
2 7.79 ± 1.44 −3.10 ± 1.44 8.57

FIR Baseline 11.06 ± 2.33 – –
0.5 11.00 ± 2.95 −0.06 ± 2.95 1.04
1 9.74 ± 1.95 −1.32 ± 1.95 2.50
1.5 9.97 ± 2.62 −1.09 ± 2.62 2.13
2 11.25 ± 3.51 0.20 ± 3.51 0.87

TNF-α Control Baseline 10.85 ± 2.41 – –
0.5 10.23 ± 2.72 −0.58 ± 2.72 1.50
1 9.86 ± 2.63 −0.76 ± 2.63 1.70
1.5 9.86 ± 1.49 −0.93 ± 1.49 1.90
2 10.23 ± 1.75 −0.53 ± 1.75 1.44

FIR Baseline 9.08 ± 2.13 – –
0.5 9.50 ± 2.23 0.42 ± 2.23 0.75
1 9.41 ± 2.55 0.33 ± 2.55 0.80
1.5 9.54 ± 2.72 0.46 ± 2.72 0.73
2 9.81 ± 2.08 0.73 ± 2.08 0.60

eNOS Control Baseline 6.84 ± 1.00 – –
0.5 6.86 ± 0.96 0.02 ± 1.96 0.98
1 6.98 ± 1.48 0.15 ± 1.48 0.90
1.5 7.36 ± 1.03 0.79 ± 1.03 0.58
2 7.95 ± 1.03 1.12 ± 1.03 0.46

FIR Baseline 6.71 ± 0.72 – –
0.5 7.23 ± 0.65 0.52 ± 0.65 0.70
1 7.34 ± 0.62 0.63 ± 0.62 0.65
1.5 7.14 ± 1.95 0.43 ± 1.95 0.74
2 6.93 ± 1.26 0.22 ± 1.26 0.86

aThe ΔCT value is determined by subtracting the GAPDH CT value from the IL-6, TNF-α and eNOS CT values. Results are expressed as mean ± SEM 
(n = 8).
bThe calculation of ΔΔCT involves the subtraction of the baseline ΔCT value. This is a subtraction of an arbitrary constant, so the SD of ΔΔCT is the 
same as the SD of the ΔCT value.
cThe fold relative to the baseline was determined by evaluating the expression of the 2-ΔΔCT method.
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internal control GAPDH. The fold of baseline values is cal-
culated by the relative quantification ΔΔCt method.29 A con-
tinuous rise in the IL-6 RNA levels was observed in the 
control group, post-LPS-induction, from the time of 30–
90 min, and the levels remained high (8.57-fold) for 2 h. 
Remarkably, the FIR group IL-6 RNA levels only showed a 
slight increase (2.50-fold) after 1 h and then returned to the 
baseline level 2 h after LPS-induced stimulation. Previously 
studies have shown that LPS could induce IL-6 and TNF-α 
RNA level.30 Interestingly, the RNA levels of TNF-α in the 
FIR group were not affected by LPS stimulation, but 
remained steady at the baseline level (Figure 1(b)). However, 
a significant increase in the TNF-α RNA levels of the control 
group was found at 30, 60, and 90 min after LPS stimulation. 
The data collected via these trials seem to indicate that FIR 
therapy could reduce or inhibit the production of the 
cytokines, IL-6 and TNF-α, according to the expression 
level of PBMCs.

The RNA levels of eNOS were inhibited 0.65-fold com-
pared with the baseline level of the FIR group at 1 h after the 
LPS intraperitoneal injection, but the eNOS expression 
began to appear at 1.5–2 h (Figure 1(c)). The RNA levels of 
eNOS of the FIR group returned to the baseline level after 
2 h, but the RNA levels of eNOS of the control group con-
tinuously decreased after LPS stimulation.

Plasma protein levels analysis

To further examine the effect of FIR on LPS stimulated IL-6, 
TNF-α, and eNOS response, the concentration of each protein 
within the plasma was measured with the ELISA method. The 
FIR treatment group significantly reduced the IL-6 level rise 
after 30 min compared with the control group (p < 0.05; Figure 
2(a)). The concentration of FIR group TNF-α rose faster than 
the control group after 30 min (Figure 2(b)). The TNF-α levels 
of both the FIR and the control group reached their maximum 
level in the plasma from 1 to 2 h after LPS stimulation, while 
the FIR group’s levels started to decrease at 1.5–2 h. In addi-
tion, the TNF-α levels of the FIR group were significantly 
reduced at 2 h compared with the control group (p < 0.05).

The FIR treatment did not show a significant effect on 
plasma concentration of eNOS compared with the control 
group (Figure 2(c)); yet there were slightly higher levels at 
1.5–2 h compared to the baseline measurement.

Discussion

We assessed PBMCs’ RNA levels and serum protein levels for 
the cytokines, IL-6, TNF-α, and eNOS after stimulation by 
LPS in two mice populations, a FIR treatment group and a 
control group, which did not receive FIR treatment. The FIR 
treatment inhibited IL-6 and TNF-α RNA levels in PBMCs, 
with only a delayed increased stimulation of the IL-6 protein 
level in plasma in the first 30 min. IL-6 and TNF-α both play 
key roles in the inflammatory cascade. The mortality rate of 
HD patients is significantly proportional to their plasma IL-6 

levels.31,32 Therefore, a treatment to inhibit and reduce IL-6 
and TNF-α will improve dialysis patient care.

In this study, we found that the FIR treatment inhibited 
the IL-6 RNA levels of PBMCs and delayed the increased 
stimulation of IL-6 levels in plasma. We understand that IL-6 
is synthesized with local stimulation in the initial stages of 
inflammation and then moves to the liver through the blood-
stream, followed by the rapid induction of several acute 
phase proteins.33 IL-6 functions as a mediator for notifica-
tion and sends out a warning signal to the entire body, so that 
the delayed increase of IL-6 with FIR treatment may ease the 
acute phase inflammatory response.

Figure 1.  Comparative real-time PCR results were expressed in 
(a) IL-6, (b) TNF-α, and (c) eNOS relative to baseline levels. The 
controls and FIR treatment blood samples were collected from 
LPS-induced peritonitis mice at baseline, 0.5, 1, 1.5, and 2 h post-
LPS intraperitoneal injection. The fold relative from baseline was 
determined by evaluating the expression of the 2-ΔΔCT method.
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TNF-α is involved in systemic inflammation and is one 
of the mediators of acute phase reaction. It has been 
reported that PBMCs stimulated by LPS steadily increase 
the net production of TNF-α.34 The excessive production of 

TNF-α can trigger detrimental systemic effects by acutely 
precipitating a syndrome similar to that of septic shock.35 
Our study reveals that FIR treatment can reduce TNF-α 
levels, which may help lower the inflammation response 

Figure 2.  Protein level responses in LPS-induced peritonitis in the control and FIR treatment group mice. Plasma was collected at 
baseline, 0.5, 1, 1.5, and 2 h post-LPS intraperitoneal injection and measured by ELISA for (a) IL-6, (b) TNF-α, and (C) eNOS.
Results are expressed as the mean ± SEM from eight mice (n = 8) per time point.
*p < 0.05 indicates statistically significant results between the control and the FIR group.
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and prevent excessive production of TNF-α. The TNF-α 
levels of the FIR group increased faster than the control 
group at 30 min after LPS stimulation, but the FIR group’s 
TNF-α levels were reduced significantly at 2 h after LPS 
stimulation. Although few studies have investigated the 
relationship between FIR treatment and inflammation, one 
such study demonstrated that the stimulation of HO-1 
expression leads to the inhibition of TNF-α expression in 
HD patients.19 The inhibition of TNF-α activity in PBMCs 
and plasma concentration within the FIR treatment group 
reveals some concerning aspects regarding its therapeutic 
mechanisms.

Similar to the TNF-α levels of the FIR group, the PBMCs` 
IL-6 RNA level was suppressed with FIR treatment, but the 
plasma protein level of IL-6 only delayed the increased stim-
ulation during the first 30 min. TNF-α is produced mainly by 
PBMCs, like macrophages and T cells, but it is also produced 
by other cell types, such as fibroblasts.36 IL-6 is produced by 
PBMCs as well as various tissues, so its concentration in 
plasma is derived not only from PBMCs but also from cells 
inside their complex cellular and humoral network.37 The 
reduced and delayed IL-6 levels in PBMCs and plasma found 
in the FIR treatment group requires further investigation to 
assess the full impact of FIR treatment on inflammation.

The cytokines, IL-6 and TNF-α, are elevated in most 
inflammatory states and have been recognized as targets of 
therapeutic intervention. Our results show the effects of FIR 
treatment in reducing cytokine levels in the LPS-induced 
peritonitis mouse model. These results provide therapeutic 
potential because in continuous ambulatory PD patients, 
TNF-α and IL-6 are markedly elevated in the acute stage of 
peritonitis.38,39

In this study, the eNOS protein levels in the plasma did 
not respond significantly to FIR treatment, but had the sub-
sequent effect of returning to baseline levels of RNA in 
PBMCs compared to the control group. Long-term FIR 
therapy is reported to significantly upregulate eNOS mRNA 
and protein expression as well as serum NO production.15 
The production of eNOS facilitates macrophage expression 
of inducible nitric oxide synthase (iNOS) in response to 
LPS, which stimulates production of NO, which is involved 
in antibacterial defense,40 preventing the progression of 
atherosclerosis.41

The limitations to this study are the physiological inflam-
matory response and cytokine markers have a relative rather 
than absolute relationship. Many cytokines, like IL-6, have 
pleiotropic effects, both proinflammatory and anti-inflam-
matory, that bring the host back to homeostasis. The results 
need to be followed up by further investigation in future 
studies using histological methods and clinical trials.

Conclusion

In continuous ambulatory PD patients, the TNF-α and IL-6 
levels markedly increase in the acute stage of peritonitis.38,39 

They are elevated in most inflammatory states and have been 
recognized as targets of therapeutic intervention. Our study 
found that FIR treatment can inhibit or reduce IL-6 and TNF-α 
activity, and can stabilize eNOS expression. This study reveals 
that FIR therapy affects cytokine concentrations in plasma and 
that FIR therapy has the potential to reduce inflammation and 
maintain vascular endothelial health and function.
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