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Systems Pharmacology-Based Discovery of Natural
Products for Precision Oncology Through Targeting
Cancer Mutated Genes

J Fang1, C Cai1, Q Wang1, P Lin2, Z Zhao3,4* and F Cheng2,5,6*

Massive cancer genomics data have facilitated the rapid revolution of a novel oncology drug discovery paradigm through
targeting clinically relevant driver genes or mutations for the development of precision oncology. Natural products with
polypharmacological profiles have been demonstrated as promising agents for the development of novel cancer therapies. In
this study, we developed an integrated systems pharmacology framework that facilitated identifying potential natural products
that target mutated genes across 15 cancer types or subtypes in the realm of precision medicine. High performance was
achieved for our systems pharmacology framework. In case studies, we computationally identified novel anticancer
indications for several US Food and Drug Administration-approved or clinically investigational natural products (e.g.,
resveratrol, quercetin, genistein, and fisetin) through targeting significantly mutated genes in multiple cancer types. In
summary, this study provides a powerful tool for the development of molecularly targeted cancer therapies through targeting
the clinically actionable alterations by exploiting the systems pharmacology of natural products.
CPT Pharmacometrics Syst. Pharmacol. (2017) 6, 177–187; doi:10.1002/psp4.12172; published online 0 Month 2017.

Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE

TOPIC?
� Massive cancer genomic data has facilitated the

revolution of a novel oncology drug discovery paradigm

through targeting clinically relevant driver genes or muta-

tions for the development of precision oncology.
WHAT QUESTION DOES THIS STUDY ADDRESS?
� Natural products with polypharmacological space have

been recognized as important agents in the development

of novel therapies for various complex diseases, including

cancer. It is urgently needed to develop novel approach,

such as a systems pharmacology approach, for the devel-

opment of targeted cancer therapeutics that target clinically

relevant alterations by exploiting the polypharmacology of
natural products.
WHAT THIS STUDY ADDS TO OUR KNOWLEDGE
� This study demonstrates that a systems pharmacolo-
gy framework that integrates drug–target interaction
network of natural products and cancer mutant genes
from the cancer genome projects would be useful for
the development of novel targeted cancer therapies.
HOW MIGHT THIS CHANGE DRUG DISCOVERY,
DEVELOPMENT, AND/OR THERAPEUTICS?
� This study will provide useful systems pharmacology
approaches for the development of precision oncology
through targeting the clinically relevant driver alterations
by exploiting the polypharmacology of natural products.

Despite rapid technological advancements and massive

research and development (R&D) investments, oncology

drug development remains a great challenge. In the past

several decades, traditional oncology drug discovery that

focused on synthesized compounds has shown high risk in

clinical trials.1 A recent study revealed that �7.5% of the

oncology drugs were able to enter phase I trials and only

33.2% of the drugs that entered phase III trials were

eventually approved.1 Compared with traditional oncology

drugs, natural products are better templates with ideal

pharmacokinetics/pharmacodynamics (PK/PD) properties,

of which scaffolds are repeatedly considered “privileged” in

drug discovery.2 So far, more than half of the new drugs

introduced after 1990 could be traced to naturally derived

products or their analogs.3,4 Since natural products pos-

sess enormous structural and chemical diversity and are

abundant, they have served as great inspiration for the next

generation of cancer therapeutics.5,6

With rapidly growing, revolutionary next-generation

sequencing technologies, several large-scale cancer

genome projects, such as The Cancer Genome Atlas

(TCGA) and the International Cancer Genome Consortium

(ICGC), have generated massive amounts of somatic muta-

tion profiles.7 Such massive amounts of cancer genomic

1Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China; 2State Key Laboratory of Biotherapy, West China Hospital,
Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, P.R. China; 3Center for Precision Health, School of Biomedical Informatics,
University of Texas Health Science Center at Houston, Houston, Texas, USA; 4Human Genetics Center, School of Public Health, University of Texas Health Science
Center at Houston, Houston, Texas, USA; 5Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts,
USA; 6Center for Complex Networks Research, Northeastern University, Boston, Massachusetts, USA. *Correspondence to: Z Zhao or F Cheng (zhongming.zhao@
uth.tmc.edu or fxcheng1985@gmail.com)
Received 11 November 2016; accepted 10 January 2017; published online on 0 Month 2017. doi:10.1002/psp4.12172

Citation: CPT Pharmacometrics Syst. Pharmacol. (2017) 6, 177–187; doi:10.1002/psp4.12172
VC 2017 The Authors All rights reserved



data have helped us better understand cancer biology and
improve cancer prognosis, diagnosis, and treatment.8,9 For
most solid tumors, their genomes harbor hundreds of DNA-
level genetic alterations, which are composed of massive
bystander mutations (“passenger mutations”) with no onco-
genic potential and few cancer-driving genomic aberrations
(“driver mutations”).10 Driver mutations represent mutations
that have a selective growth advantage in tumor cells, fur-
ther contributing to tumor initiation, progression, and drug
resistance via activating oncogenes or inactivating tumor
suppressor genes.11 Therefore, cancer drugs that target
clinically relevant driver mutations, such as kinase inhibi-
tors, have shown high selectivity on tumor cells and demon-
strated valuable opportunities for precision oncology.12 For
example, BCR-ABL mutations have been found to predict
clinical responses to imatinib, the first US Food and Drug
Administration (FDA)-approved targeted agent, in chronic
myelogenous leukemia (CML). Epidermal growth factor
receptor (EGFR) mutations (e.g., T790M) are used to

predict clinical response to EGFR tyrosine kinase inhibitors
in non-small cell lung cancer (NSCLC).13 Although molecu-
larly targeted agents (e.g., kinase inhibitors) greatly improved
the clinical benefit and life quality of some cancer types, the
benefit has remained disappointing for many solid tumors
due to drug resistance or other issues.14–16 Natural prod-
ucts, which have the unprecedented scaffolds with good
pharmacokinetic/pharmacodynamic (PK/PD) profiles, provide
alternative opportunities for overcoming cross-resistance to
many of the known cancer drugs. Nowadays, an urgent need
is to develop more efficiently therapeutic agents derived from
natural products via targeting the mutated cancer genes for
precision oncology.

In this study we systematically examined natural products

for precision oncology by targeting cancer mutated genes

through an integrated systems pharmacology framework

(Figure 1). Specifically, we constructed a comprehensive

drug–target interaction network for natural products by inte-

grating data from about 10 chemoinformatics/bioinformatics

Figure 1 Diagram of an integrated systems pharmacology framework for prioritizing new anticancer indications by mapping the poly-
pharmacology of natural products into significantly mutated genes (SMGs) in cancers across 15 cancer types or subtypes. The abbre-
viations of 15 major cancer types/subtypes are: acute myeloid leukemia (LAML), bladder urothelial carcinoma (BLCA), breast invasive
carcinoma (BRCA), colon and rectal adenocarcinoma (COADREAD), glioblastoma multiforme (GBM), head and neck squamous cell
carcinoma (HNSC), kidney renal clear cell carcinoma (KIRC), lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC),
ovarian serous cystadenocarcinoma (OV), prostate adenocarcinoma (PRAD), skin cutaneous melanoma (SKCM), stomach adeno-
carcinoma (STAD), thyroid carcinoma (THCA), and uterine corpus endometrial carcinoma (UCEC). The SMGs are derived from various
large-scale cancer genome projects as described in a previous study.28 The drug–target interaction network for natural products were
built via integration data from several commonly used chemoinformatics and bioinformatics databases (see Methods).
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sources currently available. We then collected cancer Sig-

nificantly Mutated Genes (SMGs) for 15 cancer types or

subtypes from over 20 large-scale cancer genome

sequencing projects. Finally, we developed an integrated

statistical approach under systems pharmacology frame-

work by incorporating drug–target interaction network of

natural products into our curated cancer SMGs to prioritize

new anticancer indications of natural products for each indi-

vidual cancer type. Systematic validations revealed the high

performance of our approach. Moreover, we repurposed

multiple potential anticancer indications or off-label cancer

treatment for several FDA-approved or clinically investiga-

tional natural products with new molecular mechanisms in

case studies.

METHODS
Integration of drug data for natural products
We collected drug information for natural products by inte-

grating data from six data sources, including a traditional

Chinese medicine database,17 Chinese natural product

database,18 traditional Chinese medicine integrated data-

base (TCMID),19 traditional Chinese medicine systems

pharmacology (TCMSP),20 traditional Chinese medicine

database@Taiwan (TCM@Taiwan),21 and universal natural

product database (UNPD).22 For each database, drug

structures for natural products were initially stored in ISIS

Base 2.5 (MDL Information Systems, San Ramon, CA),

and converted to SDF format. Subsequently, six SDF files

were merged to a single SDF, which contained all drug

structures from six data sources. InChIKey, a fixed-length

(25 character) condensed digital representation of the

InChI, was generated by Open Babel23 for each drug. After

removing the duplicates according to InChiKey, 259,547

unique natural products were obtained. Finally, InChIKey for

each drug was retrieved to obtain the corresponding Pub-

Chem CID information with the python script “PubChemPy”

(https://pypi.python.org/pypi/PubChemPy) and mapped to

the DrugBank database to link the corresponding drug

information.

Construction of drug–target interaction network for

natural products
Drug–target interaction mappings were performed for two

types of data sources: 1) general chemoinformatics data-

bases (including ChEMBL,24 BindingDB,25 and STITCH26),

and 2) natural products-specific chemoinformatics data-

bases (including HIT27 and TCMID19). We downloaded the

latest data as: ChEMBL (v. 21), BindingDB (accessed in

June 2016), and STITCH (accessed in June 2016). For

ChEMBL and BindingDB, only data items that met the fol-

lowing criteria were retained: i) Ki, Kd, IC50, or EC50 �
10 lM; ii) the target is a human protein; iii) the target can

be represented in a unique UniProt accession number; and

iv) the drug can be successfully represented in the canoni-

cal SMILES format. For the STITCH source, the thickness

of each interaction pair represents the confidence score of

the association. Only drug–target interactions from Homo

sapiens were downloaded, and high-confidence interactions

(score �0.7) were kept in this study. Finally, the duplicated
drug–target pairs were removed.

Traditional Chinese Medicine (TCM) provides an impor-
tant source for natural products. As representative TCM
databases, HIT and TCMID manually curated thousands of
known herb ingredients’ targets information. To enlarge the
scope of the known drug–target interactions for natural
products, we extracted drug–target interactions from HIT
and TCMID using a web crawler approach. For TCMID, we
excluded the computationally predicted drug–target interac-
tions from STITCH, and only kept the known drug–target
interactions identified by experimental data in human. Then
we merged the known drug–target interactions from HIT
and TCMID. Subsequently, we mapped 259,547 unique nat-
ural products into the five drug–target databases mentioned
above to extract the experimentally reported drug–target
interactions using the “InChIKey.”

Manual curation of mutated genes for 15 cancer types/
subtypes
We manually collected SMGs for 15 cancer types/subtypes
from over 20 cancer genome analysis projects. The details
were provided in our previous study.28 These 15 major can-
cer types consist of acute myeloid leukemia (LAML), blad-
der urothelial carcinoma (BLCA), breast invasive carcinoma
(BRCA), colon and rectal adenocarcinoma (COADREAD),
glioblastoma multiforme (GBM), head and neck squamous
cell carcinoma (HNSC), kidney renal clear cell carcinoma
(KIRC), lung adenocarcinoma (LUAD), lung squamous cell
carcinoma (LUSC), ovarian serous cystadenocarcinoma
(OV), prostate adenocarcinoma (PRAD), skin cutaneous
melanoma (SKCM), stomach adeno-carcinoma (STAD), thy-
roid carcinoma (THCA), and uterine corpus endometrial
carcinoma (UCEC). The details are available in online Sup-
plementary Figure 1 and Supplementary Table 1. We
annotated all SMGs using gene Entrez ID, chromosome
location, and the official gene symbols from the National
Center for Biotechnology Information (NCBI) database
(accessed on June 12, 2015).29

Prioritizing new anticancer indications for natural
products
In this study we developed an integrated statistical frame-
work to prioritize new anticancer indications or off-label
cancer treatment for FDA-approved or clinically investiga-
tional natural products by incorporating drug–target interac-
tion network of natural products into SMGs identified by
several cancer genome projects. The hypothesis of our
integrated statistical framework asserts that a natural prod-
uct with polypharmacological profiles shows a high potential

Table 1 Statistics of drug-target interaction (DTI) network for natural

products

Data resource # of drug targets # of natural products # of DTIs

ChEMBL 550 2,004 5,905

BindingDB 614 1,360 3,245

STITCH 2,648 840 6,594

HIT & TCMID 1,276 527 5,079

Total 3,546 2,988 18,008
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for a particular anticancer indication if its targets are more
likely to be SMGs in this specific cancer. We proposed a
permutation testing to calculate the statistical significance
of a natural product to be prioritized for treating a specific
cancer type or subtype. The null hypothesis posits that
drug target proteins of natural products equally distribute at
protein products of SMGs against other human genome-
wide gene products (proteins). The alternative hypothesis
asserts that cancer drug target proteins are more likely to
be protein products of SMGs than other proteins for a natu-
ral product that has a potential anticancer indication. We
performed the permutation test as below:

P5
# Sm pð Þ > Smf g

# total permutationsf g (1)

Here we performed 100,000 permutations (#[total permuta-
tions]) by randomly selecting the same number of SMGs in
a specific cancer type from protein products at the
genome-wide scale (20,462 human protein-coding genes
from the NCBI database; Supplementary Table 2). In
each permutation, we repeated the calculation of Sm (the
number of SMGs targeted by a given natural product in a
specific cancer type) and denoted it as Sm(p). A nominal P
was the computed for each natural product by counting the
number of permutations that have Sm(p) greater than the
real case, divided by the total number of permutations.
Then the resulting P-values generated from the permutation
tests were corrected as adjusted P-values (q values) using
the Benjamini–Hochberg multiple test correction method.30

Finally, we further calculated a Z-score for each natural
product in a specific cancer during permutations:

Z5
x2u
r

(2)

where x is the real number of SMGs targeted by a given
natural product in a specific cancer type, l is the mean
number of SMGs targeted by a given natural product during
100,000 permutations in a specific cancer type, and r is
the standard deviation.

Statistical analysis and network visualization
The statistical analysis was performed using the Python
(v. 3.2, https://www.python.org/) and R platforms (v. 3.01,
http://www.r-project.org/). Network visualization and analy-
sis (such as degree calculation) were conducted using
Cytoscape (v. 3.2.0, http://www.cytoscape.org/).

RESULTS
Construction of drug–target interaction network for
natural products
The final drug–target interaction network contains 18,008
known natural product-specific drug–target interaction pairs,
which connects 2,988 unique natural products and 3,546
target proteins (Table 1). The 18,008 interaction pairs
(Supplementary Table 3) are composed of five data sour-
ces, including ChEMBL (5,905 pairs), BindingDB (3,245
pairs), STITCH (6,594 pairs), and the combined HIT and
TCMID (HIT&TCMID, 5,079 pairs).

Figure 2 shows a bipartite drug–target interaction net-
work for 5,681 interactions connecting 409 FDA-approved
or clinically investigational natural products annotated in
DrugBank database and 2,210 target proteins. The detailed
data are provided in Supplementary Table 4. The average
degree (i.e., connectivity) of a natural product is 6.03
(18,008/2988), which is stronger than 2.22 of nonnatural
product drugs in DrugBank (Supplementary Table 5). The
Wilcoxon test shows that there is a significant difference
(P-value < 2.2 3 10216) for the number of known targets
between natural products and non-natural product drugs in
DrugBank, suggesting a significant polypharmacology for
natural products. Network analysis suggests that the aver-
age number of known target proteins for the FDA-approved
and clinically investigational natural products in DrugBank
is 13.89 and the average degree for each target protein is
2.57. Among the 409 FDA-approved or clinically investiga-
tional natural products, eight are linked by over 100 target
proteins: DB04077 (glycerol), DB04216 (quercetin),
DB02709 (resveratrol), DB00396 (progesterone), DB04272
(citric acid), DB07352 (apigenin), DB01645 (genistein), and
DB00131 (adenosine monophosphate). Among 2,210
known target proteins, 154 are products of SMGs, while the
rest of 2,056 are products of non-SMGs. For example, eight
SMGs have drug degrees (K) greater than 10: TP53
(K 5 27), BLM (K 5 22), ESR1 (K 5 16), ABCB1 (K 5 16),
AKT1 (K 5 13), CDKN1A (K 5 12), MMP2 (K 5 11), and
PTGS1 (K 5 11). Taken together, the observed polypharma-
cological profiles of natural products motivated us to devel-
op a new computational approach for prioritizing potential
anticancer indications to FDA-approved or clinically investi-
gational natural products via targeting SMGs in cancers.

Systems pharmacology-based prediction of new
anticancer indications for natural products
Here, we proposed a statistical systems pharmacology
framework (Figure 1, see Methods) to prioritize new anti-
cancer indications for natural products. By applying the
threshold of q < 0.05, we identified 848 anticancer indica-
tion pairs connecting 224 natural products and 15 cancer
types/subtypes (Supplementary Table 6). Table 2 summa-
rizes 154 significant anticancer indication pairs for 45 FDA-
approved or clinically investigational natural products
(including known anticancer (off-label use) and non-anticancer
(drug repurposing) natural products) across 15 cancer types/
subtypes. Interestingly, several natural products were pre-
dicted to have anticancer indications for multiple cancers,
such as resveratrol, glycerol, quercetin, fisetin, and genistein.
Heat maps in Figure 3 shows Z-scores and q-values of the
predicted indications for 45 FDA-approved or clinically investi-
gational natural products against 15 cancer types/subtypes.

To evaluate the accuracy of our systems pharmacology-
based model, we further systematically searched the litera-
ture in PubMed for the predicted indications on these 45
FDA-approved or clinically investigational natural products.
Among the 45 natural products, 31 (31/45, 68.9% success
rate) were previously reported to have anticancer indica-
tions in the previously published literature (Supplementary
Table 7). This success rate of 68.9% suggests a reason-
able accuracy for our systems pharmacology framework.
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DISCUSSION

Natural products with polypharmacological profiles have
been demonstrated as promising agents for the develop-
ment of oncology drugs. In this study we constructed a
comprehensive drug–target interaction network for 2,988
natural products through integration of various chemoinfor-
matics and bioinformatics resources (Table 1 and Figure 1).
We further developed an integrated statistical systems

pharmacology framework with the permutation test for pri-
oritizing new anticancer indications of natural products via
targeting cancer relevant mutations and mutant genes. By
applying our integrated systems pharmacology approach
to 15 cancer types/subtypes, we found 848 significant anti-
cancer indications for 224 natural products (q < 0.05). We
systematically examined the predictions for 45 FDA-
approved or clinically investigational natural products anno-
tated in the DrugBank database via searching various

Figure 2 A global bipartite drug–target interaction network for natural products. This network connects 409 FDA-approved or clinically
investigational natural products annotated in the DrugBank database and 2,210 known drug target proteins, including proteins encoded
by 154 significantly mutated genes (SMGs) and 2,056 non-SMGs in cancers.
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Table 2 List of discovered anticancer indications for 45 FDA-approved or clinically investigational selected natural products

Name Pubchem CID Cancer Indications (Z-score)

Resveratrol CID445154 **BLCA (7.4), **HNSC (7.5), **KIRC (7. 6), **LUAD (6.1), **OV (6.94), **PRAD (6.44), **STAD

(5.57), **THCA (6.79), **UCEC (7.21), **SKCM (7.03), *GBM (4.98), *LUSC (4.80), *BRCA (4.77)

Glycerol CID753 **GBM (5.47), **HNSC (6.24), **KIRC (6.44), **LUAD (8.66), **LUSC (7.50), **STAD (6.95), **UCEC

(7.03), **SKCM (7.31), *PRAD (4.76), *BLCA (4.90), *BRCA (4.34), *OV (4.07)

Quercetin CID5280343 **BLCA (9.03), **GBM (6.16), **HNSC (9.09), **KIRC (10.58), **LUAD (11.89), **LUSC (7.57),

**STAD (8.64), **UCEC (9.40), **SKCM (8.27), *PRAD (5.94), *BRCA (5.60), *COAD/READ

(5.25)

Fisetin CID5281614 **HNSC (6.72), **LUAD (9.02), **LUSC (7.29), **PRAD (7.41), *COAD/READ (8.38), *SKCM (6.51),

*THCA (6.59), *BLCA (6.65), *UCEC (5.95), *LAML (6.11), *STAD (4.98)

Genistein CID5280961 **BLCA (6.24), **BRCA (7.03), **HNSC (7.34), **KIRC (7.93), **LUAD (9.74), **LUSC (8.05),

**PRAD (8.96), **SKCM (7.42), *COAD/READ (5.56), *UCEC (6.48), *GBM (4.86)

Estradiol CID5757 **BLCA (8.21), **HNSC (8.37), **LUAD (9.92), **LUSC (9.07), **PRAD (7.06), **UCEC (6.41),

**SKCM (7.54), *COAD/READ (4.87)

Ethanol CID702 **LUAD (6.63), **THCA (13.05), *UCEC (6.31), *LAML (8.10), *LUSC (5.71), *SKCM (5.68)

Isopropyl Alcohol CID3776 **THCA (9.65), *LUSC (5.53), *HNSC (5.00), *PRAD (5.23), *STAD (4.76)

1,3-Diphenylurea CID7595 *LAML (11.61), *THCA (12.28), *OV (7.75), *PRAD (7.09)

Citric Acid CID88113319 **LAML (8.37), **LUSC (6.73), *SKCM (4.71), *GBM (4.69)

Ellagic acid CID5281855 **LUAD (10.40), *UCEC (5.15), *GBM (5.14), *LUSC (4.99)

Paclitaxel CID36314 *BRCA (6.54), *BLCA (5.97), *KIRC (5.50), *GBM (4.91)

Deoxycholic Acid CID222528 **LAML (10.61), *PRAD (6.27), *KIRC (5.62)

Apigenin CID5280443 *BLCA (5.11), *HNSC (5.17), *SKCM (4.75)

Dimethyl sulfoxide CID679 *LUAD (6.40), *GBM (6.04), *THCA (6.67)

Kaempherol CID5280863 *KIRC (5.85), *UCEC (5.26), *LAML (5.50),

L-Citrulline CID9750 *HNSC (8.01), *STAD (7.63), *SKCM (6.59)

Progesterone CID5994 **GBM (6.64), *LUSC (5.38), *LUAD (5.35)

Trometamol CID6503 **HNSC (6.95), *STAD (5.34), *THCA (5.69)

8-azaguanine CID8646 *THCA (10.33), *LAML (9.71)

Acetylsalicylic acid CID2244 *LUAD (7.52), *SKCM (6.61)

Caffeine CID2519 **PRAD (7.76), *THCA (6.91)

Cisplatin CID24191118 *LAML (10.55), *PRAD (6.38)

Dicoumarol CID54676038 *LAML (8.05), *THCA (8.24)

Digitoxin CID441207 *THCA (9.02), *LAML (8.29)

Digoxin CID2724385 *THCA (8.23), *LAML (7.83)

Emodin CID3220 *LUAD (5.97), *LUSC (5.13)

Flavone CID10680 *LUSC (6.08), *BLCA (5.45)

Hydralazine CID3637 *LAML (7.84), *THCA (8.42)

Mercaptopurine CID667490 *LAML (8.96), *THCA (9.48)

Theophylline CID2153 **COAD/READ (8.19), *HNSC (6.59)

Xylometazoline CID5709 *THCA (7.57), *LAML (7.01)

Acetaminophen CID1983 *COAD/READ (6.78)

Butanoic Acid CID264 *OV (7.52)

Capsaicin CID1548943 *SKCM (4.89)

Chenodeoxycholic acid CID10133 *PRAD (7.46)

D-Glutamine CID5961 *BLCA (6.51),

Dimethylformamide CID6228 *THCA (10.20)

Morphine CID5288826 *STAD (5.20)

Nicotine CID942 *PRAD (5.63)

Pyruvic acid CID1060 *THCA (6.23)

Reserpine CID5770 **GBM (7.99)

Riboflavin CID493570 *OV (7.44)

Rofecoxib CID5090 *COAD/READ (6.56)

Staurosporinone CID3815 *SKCM (6.10)

*1.0 3 1025< q<0.05; **q< 1.0 3 1025.
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Figure 3 The heat maps show the predicted indications for 45 FDA-approved or clinically investigational natural products against 15
cancer types/subtypes. The predicted Z-scores (a) and q-values (b) for 45 natural products against 15 cancer types/subtypes. The
area in gray represents the nonavailable value since no significantly mutated genes are overlapped with the known targets of a specific
natural product. The area in red represents the natural product having the high Z-score and the low q value across specific cancer indi-
cations. The abbreviations of 15 major cancer types/subtypes are: acute myeloid leukemia (LAML), bladder urothelial carcinoma
(BLCA), breast invasive carcinoma (BRCA), colon and rectal adenocarcinoma (COADREAD), glioblastoma multiforme (GBM), head
and neck squamous cell carcinoma (HNSC), kidney renal clear cell carcinoma (KIRC), lung adenocarcinoma (LUAD), lung squamous
cell carcinoma (LUSC), ovarian serous cystadenocarcinoma (OV), prostate adenocarcinoma (PRAD), skin cutaneous melanoma
(SKCM), stomach adenocarcinoma (STAD), thyroid carcinoma (THCA), and uterine corpus endometrial carcinoma (UCEC).
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literature data. High performance (31/45, 68.9% successful
rate) was yielded in the evaluation of our systems pharma-
cology framework based on currently available literature
evidence.

To further demonstrate the accuracy or usefulness of our
approach, we selected four typical FDA-approved or clini-
cally investigational natural products (resveratrol, quercetin,

fisetin, and genistein) which have abundant experimentally
validated data in the literature as example drugs to illustrate
their anticancer profiles and mechanism-of-action (MOA).

Resveratrol is a non-flavonoid polyphenol in grape skin
and has been reported to have antioxidative and proapop-
totic effects in several cancer cell lines.31 Several ongoing
or completed clinical trials (http://clinicaltrials.gov/) for

Figure 4 The reconstructed networks for four typical natural products. The networks display the predicted indications for four typical
natural products, resveratrol (a), quercetin (b), genistein (c), and fisetin (d), against 15 cancer types/subtypes and their corresponding
targets of the significantly mutated genes (SMGs) in multiple cancers. The gray lines denote SMGs in a specific cancer. The dotted
red lines denote the predicted indications. The thickness (value) of a dotted red line is proportional to the Z-score (see Methods). The
abbreviations of 15 major cancer types/subtypes are: acute myeloid leukemia (LAML), bladder urothelial carcinoma (BLCA), breast
invasive carcinoma (BRCA), colon and rectal adenocarcinoma (COADREAD), glioblastoma multiforme (GBM), head and neck squa-
mous cell carcinoma (HNSC), kidney renal clear cell carcinoma (KIRC), lung adenocarcinoma (LUAD), lung squamous cell carcinoma
(LUSC), ovarian serous cystadenocarcinoma (OV), prostate adenocarcinoma (PRAD), skin cutaneous melanoma (SKCM), stomach
adenocarcinoma (STAD), thyroid carcinoma (THCA), and uterine corpus endometrial carcinoma (UCEC).
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resveratrol are being conducted to treat various cancers,
such as colon cancer (NCT00256334), neuroendocrine
tumor (NCT01476592), and liver cancer (NCT02261844).
Figure 4a shows that resveratrol is predicted to have
potential indications for 13 cancer types in our study: BLCA
(Z 5 7.36, q < 1.0 3 1025), HNSC (Z 5 7.48, q < 1.0 3

1025), KIRC (Z 5 7.56, q < 1.0 3 1025), LUAD (Z 5 6.12, q
< 1.0 3 1025), OV (Z 5 6.94, q < 1.0 3 1025), PRAD
(Z 5 6.44, q < 1.0 3 1025), STAD (Z 5 5.57, q < 1.0 3

1025), THCA (Z 5 6.79, q < 1.0 3 1025), UCEC (Z 5 7.21,
q < 1.0 3 1025), SKCM (Z 5 7.03, q < 1.0 3 1025), GBM
(Z 5 4.98, q 5 0.0125), LUSC (Z 5 4.80, q 5 0.0206), and
BRCA (Z 5 4.77, q 5 0.0277). Among the 13 cancer indica-
tions, six (HNSC, KIRC, STAD, SKCM, LUSC, and BRCA)
were also predicted by our previous study.28 Surprisingly,
the effect of resveratrol was well studied in breast cancer,
and the results showed that patients with high total intake
of resveratrol had a lower risk of breast cancer compared
to a group with a low level of ingestion.32 Specifically, pro-
tein kinase B and tumor suppressor p53 (resveratrol tar-
gets) are encoded by two key SMGs in various cancer
types: AKT1 and TP53. AKT1 regulates multiple critical bio-
logical processes in cancer, such as metabolism, prolifera-
tion, cell survival, growth, and angiogenesis, while p53
plays a key role in apoptosis, genomic stability, and inhibi-
tion of angiogenesis.33 A recent study reported that resver-
atrol potently inhibited glioblastoma multiforme (GBM) and
glioblastoma stem-like cells (GSC) growth and infiltration,
acting partially via AKT deactivation and p53 induction, and
suppressed glioblastoma growth in vivo.34

Quercetin, a bioactive flavonol, is mainly found in plant
foods such as onions, apples, and berries.35 It governs vari-
ous intracellular targets, including the proteins involved in
apoptosis (e.g., RELA and PTGS2), cell cycle (e.g., CDKs),
antioxidant replication, and metastasis and angiogenesis
(e.g., MMPs). Figure 4b shows that quercetin is predicted
to have potential anticancer indications for 12 cancer types,
including BLCA (Z 5 9.03, q < 1.0 3 1025), GBM
(Z 5 6.16, q < 1.0 3 1025), HNSC (Z 5 9.09, q < 1.0 3

1025), KIRC (Z 5 10.58, q < 1.0 3 1025), LUAD
(Z 5 11.89, q < 1.0 3 1025), LUSC (Z 5 7.57, q < 1.0 3

1025), STAD (Z 5 8.64, q < 1.0 3 1025), UCEC (Z 5 9.40,
q < 1.0 3 1025), SKCM (Z 5 8.27, q < 1.0 3 1025), PRAD
(Z 5 5.94, q 5 0.0023), BRCA (Z 5 5.60, q 5 0.0055), and
COAD/READ (Z 5 5.25, q 5 0.0093). Recently, several clini-
cal trials for quercetin to treat or prevent various cancers
are ongoing or completed, including prostate cancer
(NCT01912820), colorectal cancer (NCT00003365), renal
cell carcinoma (NCT02446795), and advanced pancreatic
cancer (NCT01879878). Our prediction is consistent with
several previous in vitro or in vivo studies for quercetin.36–38

For example, quercetin targets, such as epidermal growth
factor receptor (EGFR) and matrix metalloprotease 2
(MMP2), are significantly mutated in multiple cancer types
(Figure 4b). Both EGFR and MMP2 play important roles in
tumor metastasis and angiogenesis.36 Previous studies
showed that quercetin acted as a chemopreventive agent
against prostate cancer in an in vivo model by inhibiting the
EGFR signaling pathway.37 In addition, a previous pharma-
cological study suggested that quercetin could directly

inhibit the activities of MMP2 (IC50 5 6.68 lM) and MMP13
(IC50 5 8.46 lM).38 Hence, targeting MMP2 and EGFR path-
ways are potential anticancer mechanisms for quercetin.

Genistein belongs to a multifunctional natural isoflavonoid
class of flavonoids. Figure 4c shows that genistein is pre-
dicted to have potential anticancer indications for 11 cancer
types, such as BLCA (Z 5 6.24, q < 1.0 3 1025), BRCA
(Z 5 7.03, q < 1.0 3 1025), and LUAD (Z 5 9.74, q <
1.0 3 1025). A recent study has reported that genistein
acted as a chemotherapeutic agent against different types
of cancers via altering apoptosis, cell cycle, and angiogene-
sis or inhibiting metastasis.39 In addition, genistein has
been widely used and tested in several clinical cancer stud-
ies, such as breast cancer (NCT00244933), bladder cancer
(NCT00118040), prostate cancer (NCT01325311), and lung
cancer (NCT01628471). Estrogen receptors (ERs) play an
important role in the development and progression of breast
cancer, acting via two subtypes: ERa and ERb encoded by
ESR1 and ESR2, respectively. Genistein was reported to
have strong inhibitory activities (IC50) on human ERa
(395 nM) and ERb (10 nM).40 A recent study showed that
genistein inhibited the proliferation and differentiation of
MCF-7 human breast cancer cells via the regulation of ERa
expression and induction of apoptosis.41

Similar to quercetin and genistein, the flavonol fisetin is
also mostly present in fruits and vegetables. A previous
study has suggested that fisetin inhibited cancer growth
through alteration of the cell cycle, inducing apoptosis,
angiogenesis, invasion, and metastasis.42,43 Herein, fisetin
was predicted to exert anticancer activity for 11 cancer
types (Table 2), such as PRAD (Z 5 7.41, q < 1.0 3 1025),
LUAD (Z 5 9.02, q < 1.0 3 1025), and LUSC (Z 5 7.29,
q < 1.0 3 1025). Figure 4d shows that fisetin targets pro-
tein products of nine SMGs in various cancer types. For
example, several fisetin targets, such as Cyclin-dependent
kinases (e.g., CDK2 and CDK4) and AKT, play critical roles
in the cell cycle.42,43 Specifically, fisetin arrests HT29 colon
cancer cells from G1 to S phase by inhibiting the activities
of CDK2 and CDK4,42 and also arrests A375 melanoma
cell growth at the G2 phase through dephosphorylation of
AKT and inhibition of its downstream molecules.43

In summary, we computationally identified several poten-
tial anticancer indications for resveratrol, quercetin, fisetin,
and genistein by targeting various key cancer signaling
pathways (Figure 4). These high-confidence predictions
provide potential candidates for future experimental investi-
gations or clinical validations in order to develop new
molecularly targeted cancer therapies. However, further in
vitro and in vivo experimental assays are needed to validate
these predicted anticancer effects and potential MOA
before moving to preclinical or clinical studies.

There are several limitations in the current systems
pharmacology-based framework. First, the incomplete
drug–target interaction network for natural products curated
from publicly available databases may influence the pre-
dicted results. Recently, several network-based approaches
provide useful tools for prediction of drug–target interac-
tions with high accuracy.44–46 Hence, integration of the pre-
dicted drug–target interactions for natural products via
previously reported network-based approaches may improve
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the performance of the systems pharmacology framework.

Second, only significantly mutated genes reported by the

previous cancer genome projects were used in this study.

Data quality and data incompleteness of the cancer mutant

genes may be influenced by the limited cohorts of cancer

genome projects and tumor heterogeneity. Big cancer sam-

ples and types (e.g., rare cancers) are sequenced and their

SMGs have been reported or will be released soon. We will

integrate the incoming large-scale cancer genomics data in

our future analysis. Third, our validation of the approach is

only limited to literature evidence. We will expand the valida-

tion by using other approaches or data in the future, like

cross-validation. Fourth, it is commonly known that most

cancer significantly mutated genes are not targetable by cur-

rent small molecular drugs, owing to the “undruggable” prop-

erties of certain cancer mutant genes (e.g., KRAS). In

addition, tumor suppressor genes (e.g., p53) with loss-of-

functions cannot be considered as drug targets. One alterna-

tive way for development of new therapies for loss-of-

function genes is to target the pathways or subnetworks

(e.g., neighbors in the protein interaction network) perturbed

by the inactivation mutations in tumor suppressor genes.28

For example, integrating systems biology resources, such as

the human protein–protein interaction network, may assist in

targeting the “undruggable” mutant cancer genes for natural

products by indirectly targeting their neighbors in the human

protein–protein interaction network, regulatory network, or

biological pathways.47–49 Finally, integration of drug-induced

transcriptome data in cancer cells, such as LINCLOUD

(http://www.lincscloud.org/), for natural products, may help

identify novel anticancer indications of natural products by

the systems pharmacology framework in the future.50

In conclusion, this study presents an integrative systems

pharmacology framework for identifying potential natural prod-

ucts that may target cancer mutant genes derived from the

large-scale cancer genome sequencing projects. Our approach

would provide a useful tool for the development of targeted

cancer therapies by exploiting the systems pharmacology of

natural products in the post era of cancer genomics studies.
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