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Abstract: Plant foods, their products and processing by-products are well recognized as important
sources of phenolic compounds. Recent studies in this field have demonstrated that food processing
by-products are often richer sources of bioactive compounds as compared with their original feedstock.
However, their final application as a source of nutraceuticals and bioactives requires addressing
certain hurdles and challenges. This review discusses recent knowledge advances in the use of plant
food processing by-products as sources of phenolic compounds with special attention to the role
of genetics on the distribution and biosynthesis of plant phenolics, as well as their profiling and
screening, potential health benefits, and safety issues. The potentialities in health improvement from
food phenolics in animal models and in humans is well substantiated, however, considering the
emerging market of plant food by-products as potential sources of phenolic bioactives, more research
in humans is deemed necessary.

Keywords: phenolic biosynthesis; microbiological safety; phenolic identification; phenolic
bioavailability; phenolic antioxidants; cardiovascular disease; cancer; diabetes; obesity; inflammation

1. Introduction

Phenolic compounds exist in their monomeric, oligomeric and polymeric forms. Gallic and
ellagic acids are found in plant food and their processing by-products as simple phenolics as well
as monomeric units of ellagitannins, also known as hydrolysable tannins. Likewise, catechin and
epicatechin exist as simple phenolics but are also constituents of proanthocyanidins (condensed
tannins). Oligomeric phenolics possess a degree of polymerization (DP) ranging from 2 to 10 while
polymers show DP > 10. Conjugated phenolics and their corresponding aglycones are well known
and the latter shows higher hydroxylation degree than that of the conjugated form. Furthermore,
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monomeric phenolics possess one or more aromatic rings bearing one or more hydroxyl groups while
oligomeric and polymeric phenolics have more than one hydroxylated aromatic ring.

Several classes of phenolic and polyphenolic derivatives have been described in the literature [1].
The terms “phenolics” and “polyphenolics” have sometimes been used interchangeably [2].
Phenolic compounds are commonly divided into non-flavonoids and flavonoids, the latter class
is most often encountered in the food sources [3]. These chemical bioactives are plant food secondary
metabolites and are primarily related to the plant defense against biotic and abiotic stress, pests
and pathogens [2,4]. However, studies in vitro, as well as in animal models and humans, also
provide support for their potential health benefits by lowering the risk and/or preventing the onset of
chronic ailments.

The existing literature shows a myriad of chemical and/or biochemical mechanisms by which
polyphenols may be render their effects [5–8]. Their roles as antioxidants, scavengers of reactive
oxygen species (ROS), reducers or chelators of metals ions and in restoring antioxidant enzymes
has been well established. Furthermore, inhibitory effects of phenolics towards enzymes related to
metabolic disorders such as type 2 diabetes and obesity (e.g., α-amylase, α-glucosidase, and lipase)
have also been highlighted. In addition, polyphenols may render anti-inflammatory and antimicrobial
effects [9–12]. Therefore, some authors have suggested that phenolic compounds are perhaps the most
important non-nutrient bioactive compounds in the human diet [2].

The potential of plant food by-products as a source of phenolic compounds has been widely
recognized. In particular, by-products from cereals, nuts, oilseeds, fresh and dried fruits, vegetables,
spices, coffee, and tea, among others [1,13,14], may be richer in different bioactive phenolics than
those of their original sources. Additionally, a recent study has demonstrated that, due to their higher
phenolic contents, winemaking by-products are able to better decrease very low-density lipoprotein
(VLDL) cholesterol and triacylglycerol levels than those of red wine in vivo [15].

Peanut skin and grape by-products, for example, are rich in proanthocyanidins A and B, also
known as condensed tannins [8,16–18], whereas pomegranate peels and seeds are rich in hydrolysable
tannins (ellagitannins) [19–21]. Citrus by-products have a high concentration of low molecular weight
flavonoids [22,23], and by-products from blueberry and other emerging berries such as jaboticaba
(Myrciaria jaboticaba (Vell.) Berg) and juçara (Euterpe edulis Mart.) are abundant in anthocyanins [24–27].
Meanwhile, phenolic acids are prominent in wheat and other cereal by-products [28,29]. The basic
structures of common phenolic acids are shown in Figure 1.
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Figure 1. Chemical structures of major phenolic acids identified in peanut skin [12,17] and grape
by-products [16,30].

Based on the existing knowledge, it is evident that the consumption of different sources of
phenolic compounds is of much importance for a better quality of life. This is especially true when
it comes to the consumption of edible plant foods and their processing by-products. Furthermore,
as an inexpensive alternative source of important biomolecules, plant food by-products may find
better uses in the field of functional ingredients and/or nutraceuticals. The distribution of food
phenolics among different tissues is influenced by genetic pathways, being specific to each crop
and/or variety thus influencing their response to biotic and abiotic stresses in the field, including
the production of secondary metabolites. Safety issues of plant food by-products, which must be
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addressed before application as functional ingredients or in producing nutraceuticals, may differ
among feedstocks. Furthermore, storage and food processing may influence their safety parameters.
The profiling and screening of phenolics are crucial to anticipate their potential health benefits. Finally,
non-communicable diseases (NCDs) such as cardiovascular ailments, cancer, diabetes and obesity, as
well as oxidative stress and inflammation are common to all of these chronic effects. In this sense and,
considering the importance of plant food by-products as emerging sources of phenolic compounds,
the present review summarizes the hurdles and the most promising applications with a special
emphasis to their potential health benefits.

2. Role of Genetics on the Distribution and Biosynthesis of Plant Phenolics

As already mentioned, plant food by-products are often more abundant sources of phenolics
than their corresponding starting materials and/or food products [5,15,31,32]. Thus, it is frequently
recommended to consume whole foods and eat certain fruits with their peels. These peels and other
processing by-products are not only rich sources of dietary fibre and minerals [33–36], but are also
important sources of phenolic compounds [25,37,38]. Various phenolic compounds, such as phenolic
acids and flavonoids, are present in many seeds, particularly in their hulls or seed coats [39]. The role
of phenolic compounds in plants is summarized in Table 1. The higher concentration of phenolic
compounds in the outer layers of grains and seeds [5,40–45] is in part explained by the plant defense
mechanisms against pests and pathogens [4]. As such, these phytochemicals are also known as
phytoalexins. The greater concentration of phytoalexins in the peels and skins of plant foods is related
to their environmental adaptation; as these parts are more exposed to pests and microorganisms than
the inner part.

Table 1. Role of phenolic compounds in plants.

Compounds Function References

Monomerics

Phenolic acids
Protection against infection of microbes, improvement of nutrient
uptake, protection against insect depredation, signaling molecules in
plant-microbes symbioses, involvement in plant allelopathy.

[46–52]

Flavonoids

Attract pollinators and seed dispersers, protection against oxidative
stresses derived from UV, high light, and low temperatures, preventing
photoinhibition and photobleaching, regulation of auxin transport,
modulation of flower color, protection from high intensity light and UV,
protection against DNA damage, involvement in plant allelopathy,
antimicrobial activity, regulation of Rhizobium nodulation genes,
protection against depredation by herbivores.

[53–63]

Dimerics, oligomerics, and polymerics

Proanthocyanidins
Protection against depredation by invertebrates and vertebrates,
scavenging of reactive oxygen species, protection against
microbes infection.

[64–66]

Hydrosable tannins Protection against wounds and depredation by microbes
and herbivores. [67–70]

Cell wall materials

Lignins
Lodging resistance, involvement in plant fertility, mechanical barrier in
seeds, biotic and abiotic stress resistance, involvement in plant growth
and development.

[71–75]

Lignans
Scavenging of reactive oxygen species and antimicrobial activity,
protection against insect depredation, involvement in plant allelopathy,
phytohormone-like property.

[76–79]

A wealth of data from the literature demonstrates that different parts of the plant contain
specific phenolics [12,19,40,80,81], thus suggesting that their accumulation is mediated by particular
transcription factors during their biosynthetic pathway. The skins of grape are abundant in flavonoids
and phenolic acids while flavonoids are mainly concentrated in the seeds [82]. Other studies have
also demonstrated that phenolic acids are constituents of peanut skin and meal from dry-blanched
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peanuts, whereas proanthocyanidins and monomeric flavonoids are found only in peanut skin [12,31].
The chemical structures of isomers of monomeric units of procyanidins are shown in Figure 2.
Furthermore, only four anthocyanins were found in the seeds of pomegranates compared to the 12
identified in the edible part. Meanwhile, proanthocyanidins, which were not detected in the mesocarp
and divider membrane, were present in the outer skin of pomegranates [19]. Thus, it is evident that
most plant species possess complex mixtures of phenolic compounds, and the concentration and
identity of these molecules can vary from organ to organ, and in the different developmental stages of
the organism [83]. However, different responses to environmental conditions and stresses also play an
important role in the plant composition.
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Plant phenolics are synthesized by two different metabolic routes, the malonic acid and the
shikimic acid pathways, converging into the phenylpropanopid pathway [46,84]. The shikimic acid
pathway produces aromatic compounds in plants, such as the amino acids tyrosine, tryptophan
and phenylalanine [85], but also produces gallic acid as an intermediate compound, which is the
precursor of hydrolysable tannins, gallotannins and ellagitannins [86–88]. This differs from condensed
tannins (proanthocyanidins), synthesized in the flavonoid pathway, derived from the phenylpropanoid
pathway [89]. The first reaction in the phenylpropanoid metabolic route is the deamination of
phenylalanine by the action of phenylalanine ammonia-lyase (PAL) yielding cinnamic acid and
ammonia. Subsequently, cinnamate 4-hydroxylase (C4H) catalyzes the cinnamate hydroxylation into
4-coumaric acid (p-coumaric acid). The enzyme 4-coumarate:CoA ligase (4CL) catalyzes synthesis of
the CoA thioester 4-coumaroyl CoA (p-coumaroyl CoA), which is ATP-dependent [84]. From this point
onwards, the different types of plant phenolics are synthetized (Figure 3) [90].

The biosynthesis of flavonoids in plants is well established, with six main types of flavonoids
(chalcones, flavones, flavonols, flavandiols, proanthocyanidins and anthocyanins). These compounds
are found in most higher plants, and isoflavonoids are mainly present in legumes [89]. The first
reaction in the flavonoid branch is catalyzed through the action of chalcones synthase (CHS), where
4-coumaroyl-CoA is combined with 3 malonyl-CoA molecules, obtaining naringenin chalcone, which is
converted to naringenin by the action of chalcone isomerase (CHI), being this compound the principal
point from which all classes of flavonoids branch out [91]. Further steps including the activity
of flavonoid 3-O-glucosyltransferase, dihydroflavonol 4-reductase, flavonoid 3′-hydroxylase, and
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flavanone 3-hydroxylase, among others, generate the rest of the flavonoid groups, as summarized in
Figure 3 [56,89,92–95].
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Figure 3. Adapted from the literature [56,89,90,92–95]. DSDG, dehydroshikimate dehydrogenase;
PAL, phenylalanine ammonia-lyase; C4H, cinnamate 4-hydroxylase; 4CL, 4-coumarate:CoA
ligase; CHS, chalcones synthase; CHI, chalcone isomerase; F3H, flavanone 3-hydroxylase; F3′H,
flavonoid 3′-hydroxylase; F3′5′H, flavonoid3′,5′-hydroxylase; IFS, isoflavone synthase; FLS, flavonol
synthase; DFR, dihydroflavonol 4-reductase; LAR, leucoanthocyanidin reductase; LDOX/ANS,
leucoanthocyanidin dioxygenase/anthocyanidin synthase; ANR, anthocyanidin reductase; UFGT,
UDP-glucose-flavonoid 3-O-glucosyl-transferase.

According to Holton and Cornish [92], the study of the genetics of anthocyanin synthesis began
last century with Mendel’s work on the pea flower colors. From this point onwards, an extensive
amount of experimentation has been conducted to decipher the genetic basis of pigment synthesis using
multiple plant species, standing out the attraction of pollinators and seed dispersal as a consequence
of anthocyanins synthesis in petals.

The isolation and characterization of mutants involved in the pigmentation of the aleurone
layer and the seed coat have strengthened the genetics and the molecular understanding of this trait
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in several plant species [96,97]. Specific proteins regulating anthocyanin accumulation have also
been characterized and studied in detail in several plant species [98,99]. These proteins are included
in the two biggest families of plant regulatory proteins, the bHLH and the MYB families [100–103].
Other plant proteins carrying the “WD40” repeats (WDR or beta-transducin repeat) are also implicated
in the expression of pigmentation [104–106].

The MYB component of the MBW (MYB-bHLH-WDR) complex activates this pathway through
the transcription of its bHLH partner, and the MBW complex is considered a “master regulator”
that can stimulate this pathway by itself [107–109]. More than 600 types of anthocyanins have
been reported to date [110], and after synthesis, they are transported to the vacuolar lumen where
they are stored [111,112]. There is agreement that the MBW complex controls a series of regulative
proteins distinctly from a highly organized transcription process depending on specific environmental
conditions to the beginning of the flavonoid biosynthetic route through a positive regulatory
feedback [113]. These types of environmental and developmental controls mainly depend upon
the well-orchestrated expression of early biosynthetic genes (EBGs) and late biosynthetic genes
(LBGs). At least 17 genes in Arabidopsis that control the flavonoid (flavonols and proanthocyanidins)
metabolism during seed development have been reported [114]. Recently, Xu et al. [115] demonstrated
that the transcription factors TRASPARENT TESTA 16 (TT16) and 15 (TT15) work upstream the
proanthocyanidin biosynthetic pathway, although through two different genetic pathways that control
proanthocyanidins accumulation in Arabidopsis seed coats. In this context, six of the tt genes have
been reported to encode transcriptional regulators, which are, TTG1 (WDR family), TT1 (WIP1/Zn
finger), TT16 (ABS/AGL32, MADS box), TT8 (bHLH042), TT2 (DSL1/WRKY44) and TT2 (MYB123),
standing out the relevance of transcriptional controls in the regulation of flavonoid biosynthesis [114].
TTG2, TT1, and TT16 are also implicated in epidermal cell fate, which can be an indirect way to
regulate proanthocyanidin accumulation [113]. The control of flavonol biosynthesis encompasses
distinct R2R3-MYB transcription factors aiming EBGs and flavonol synthase (FLS), specifically MYB11,
MYB12, and MYB111 [116].

Anthocyanin biosynthesis in Solanaceous plant species such as pepper, tomato, eggplant, potato
and petunia, is controlled by MBW complexes involving different MYBs, although with the same
bHLH and WD40 transcription factors. Diminished biosynthesis is regulated through the upregulation
of MYB repressors and the downregulation of MYB activators [56]. In radish, total anthocyanin
associated with the transcription levels of anthocyanin biosynthesis genes namely, RsCHS3, RsUFGT,
RsANS, RsF3′H1 and RsF3H, playing these genes key functions in spatial-temporal and phenotypic
anthocyanin accumulation by a coordinated control, and the principal regulatory element in
anthocyanin biosynthesis is RsUFGT [117]. According to another study, 13 structural genes are likely
involved in the anthocyanin biosynthesis in the taproots of purple carrot genotypes, LDOX1/LDOX2,
DFR1, F3H1, F3′H1, CHS1, and CHI1 genes that can be responsible for the loss of light-independent
anthocyanin synthesis of non-purple carrots [94]. In addition, the expression of LDOX2, DFR1, PAL1,
PAL3, and F3H1, which are anthocyanin biosynthetic genes, augmented as a result of an ethephon
application in black carrot roots, as well as the expression of the MYB1 transcription factor, which under
stressful conditions was related to the stimulation of the phenylpropanoid pathway [118]. Interestingly,
the transient and stable transformation results showed that IbMYB1 by itself was sufficient to activate
all the structural anthocyanin genes and the accumulation of anthocyanins in the flesh of sweet potato
roots [119]. In this species, a MADS-box gene (IbMADS10) is implicated in pigmentation, resembling
that of the Arabidopsis transparent testa (tt) genes. In another study, contrary to the complex nature of
pigmentation (i.e., polygenic inheritance and strong effect of the environment) reported previously,
the “white” phenotype of pomegranate was caused by a recessive single-gene trait, due to the insertion
in the Leucoanthocyanidin dioxygenase (PgLDOX) gene, determining the white anthocyanin-less visual
aspect [120]. Liu et al. [56] proposed that environmental stimuli involving high light intensity [121],
blue/UV light [122] and low temperature [123] are useful during cultivation to stimulate anthocyanin
production as a short-term enhancement. For a long-term improvement, modern breeding tools
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(genetic engineering) can be utilized to not only augment yields, but also to optimize anthocyanins
content by the stabilization of their structures and the reduction of their degradation.

Once oxidized, proanthocyanidins generate mature seeds that are brown-colored [124], and they
have a pivotal role in the seed embryo protection against abiotic and biotic stressful conditions [97],
and in the articulation of seed dormancy, dispersion and longevity [125–127]. Apart from their role
in seeds [128], proanthocyanidins in leaves provide protection against biotic and abiotic stress, they
confer astringency and flavor to wines and other drinks, they provide positive effects for human health,
and they are a major quality factor for forage crops [115,129]. In this context, an Arabidopsis TT2-like
gene MYB115 was identified in Populus tormentosa (poplar) and studied and characterized using
several genetic and molecular methods (including CRISPR/Cas9 system), providing knowledge of the
regulatory systems controlling proanthocyanidins synthesis through the activity of MYB115 in poplar,
improving resistance to fungal pathogens [103]. In parallel, a quantitative trait loci (QTL) mapping and
an association analysis were conducted on grape berry proanthocyanidins composition revealing an
intricate genetic regulation for proanthocyanidin traits and distinct genetic architectures between skin
and seeds, although this study unraveled novel genomic regions (four candidate genes VvMYBPA1,
VvCHI1, VvMYBPA2, and VvLAR1) that are valuable for future research of the genetic regulation of
proanthocyanidins content [130]. Regarding forage crops, Paolocci et al. [131] reported that FaMYB1
expressed in Lotus corniculatus leaves, which is a flavonoid R2R3MYB repressor from strawberry,
can compensate the activity of the endogenous transcriptional MYB-bHLH-WD40 (MBW) complex
stimulating proanthocyanidin synthesis [113,114,132], and FaMYB1 did not alter the expression of a
resident R2R3MYB promoter of proanthocyanidins. This study concluded that there is a commitment
in leaf cells to produce proanthocyanidins that depends on the balance between the activity of
promoter and repressor MYBs working within the MBW complex of forage legumes. In addition,
Escaray et al. [133] produced a Lotus corniculatus × L. tenuis interspecific hybrid that displayed high
biomass yield, rhizome production, and elevated proanthocyanidin content in edible tissues adequate
to avoid ruminal bloating. This study showed that proanthocyanidin levels correlated with the
expression response of the R2R3MYB transcription factor TT2, and with those of the essential structural
genes of the catechin and epicatechin biosynthetic routes resulting in proanthocyanidin biosynthesis.

In barley grains, the flavonoid biosynthetic pathway has been investigated in detail [134], and the
yellow color is caused by proanthocyanidin produced in the seed coat [135]; red and purple pigments
are anthocyanins produced in glumes and pericarp; and blue colors are due to anthocyanins produced
in the grain aleurone layer [136]. More recently, 11 structural and regulatory genes controlling spatial
and temporal responses have been reported, in which the Ant2 gene plays a crucial role in barley
grain pericarp pigmentation, and considering the flavonoid biosynthesis pathway genes, there was a
lack of specific transcriptional regulation in black-grained genotypes [93]. One recent genome-wide
association study of barley under varying plant water regimes showed that drought had a slight
negative effect on the concentration of total phenolics (TP), and five specific TP-related QTLs were
identified, which can have great potential for the molecular breeding of barley varieties with improved
straw quality for bio-energy applications [137].

Sensory characteristics (e.g., color, texture, and flavor) of plant foods are perhaps the most
important factors dictating a consumer’s decision. Furthermore, functional claims may also affect
their final price. The content of phenolic compounds as well as their identities play a major role
in both sensory and potential bioactivities of plant foods and, as a consequence, their processing
by-products. Therefore, current breeding investigations should consider phenotypic responses in
terms of (poly)phenol contents and their identities [138]. For example, the choice of a proper genotype
is essential for obtaining onions with high-flavonoid content (i.e., red over yellow and white cultivars).
In addition, the inedible dry skin has higher total flavonoids relative to that of the edible flesh [139].
Ciancolini et al. [140] selected two genotypes, out of 17 Italian globe artichokes, as the most appropriate
source materials to recover bioactive phenolics (e.g., chlorogenic acid and dicaffeoylquinic acid) [140].
However, comparing to other areas such as food processing and their outcome in terms of phenolic
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changes, it is still necessary to gain a better understanding about the new genetics and plant breeding
approaches with respect to the expression and over-expression of genes associated with the biosynthesis
of phenolic compounds that are beneficial to human health and possess antiaging activity [141–143].

In summary, the genetic material of the plant does not differ within plant tissues. In contrast,
the distribution of phenolic compounds among plant tissues is often distinct. Due to the crucial
role of several enzymes during the phenolic biosynthesis, it is possible to state that these enzymes
may be tissue specific. Therefore, plant breeders could pay special attention to the expression of
genes related to production of specific enzymes in order to obtain plant materials that may render
by-products enriched in bioactive phenolics. Likewise, in depth understanding of the role of genetics
in the distribution of phenolic compounds in distinct forms (e.g., soluble (free, esterified, etherified)
versus insoluble-bound) as well as in their monomeric, oligomeric, polymeric, aglycone and conjugated
state appears to be a promising field of investigation which will be helpful for better understanding of
the potential uses of plant food by-products as sources of these natural compounds.

3. Microbiological Safety and Decontamination

Peanuts or groundnuts have their skin removed, if subjected to the blanching process.
Several reports have substantiated the role of the skin as a major source of phenolic
compounds [12,17,18,31,144,145]. Due to constant contact with the soil and post-harvest conditions,
peanuts and their skins may not fit microbiological standards for use in producing nutraceuticals or as a
functional ingredient [17,146]. Although peanut skin is used as an example here, the same concept may
be extended to different plant food by-products, especially those generated from processing of certain
fruits, nuts, grains, seeds, and other non-perishable food, for which storage conditions may not be
adequately considered by the producers and the industry. According to Toledo et al. [36], the addition
of passion fruit peel and seed flour increased the growth of yeast and mold in a food model system.
Brazil nut skin and hard shell, by-products of the cracking and shelling process, have also been regarded
as potential sources of bioactive compounds [80], but their safety requires attention. Shelled Brazil
nuts from two different locations showed higher aflatoxins than that of in-shell samples [147], lending
support to the probable higher concentration of mycotoxins in the shell. Furthermore, bran and shorts
showed higher deoxynivalenol concentration compared to the flours [148], also indicating that the
outer layers of wheat are more susceptible to mycotoxin contamination. In addition, apples and
their products, especially from organic growing, may be contaminated with patulin [149,150], thus,
apple peel, a flavonoid-rich by-product [151] may also be contaminated. Therefore, microbiological
and/or toxicological status of plant food by-products should be checked and strategies to prevent
contamination and to manage their quality standards be contemplated.

Ionizing radiation and ultraviolet radiation have long been used to inhibit or eliminate
microorganisms (bacteria and fungi) in food products [146,152–154]. However, due to induced
free radical generation, detrimental effects towards vitamin C and liposoluble compounds, such
as tocopherols and carotenoids, have brought about a concern regarding their effects towards other
phenolic compounds [155,156]. The literature, however, has demonstrated that induced changes are
dependent on the nature of the compounds involved. Anthocyanins have been found to decrease upon
gamma-irradiation [157], but proanthocyanidins, monomeric flavonoids, and phenolic acids increased
in the fraction containing free and insoluble-bound phenolics [17]. Although gamma-irradiation
may induce negative effects on anthocyanins, the same changes have also been observed upon
pasteurization [158]. These methods have been used to decrease the microbial load in the food,
cosmetic and pharmaceutical industries, but gamma-irradiation has been found effective not only
towards bacteria but also against their toxins [153], which is not the case for heat treatment, in
which enterotoxin A has been found to be resistant [159]. In addition, a recent study demonstrated
that ozone treatment reduced deoxynivalenol and zearalenone contamination in wheat bran [160].
Several other non-thermal technologies such as pulsed light, high-power ultrasound, cold plasma,
high hydrostatic pressure, and dense phase carbon dioxide have been tested to improve the safety of
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edible products [161], but experience has demonstrated that most of them may induce changes in the
identity or in the quantities of phenolic compounds.

4. Characterization of Phenolic Compounds

4.1. Sample Preparation and Phenolic Extraction

Sample preparation is a key step for qualitative characterization and quantitative analysis of
plant food phenolics. Furthermore, there are several types of plant food by-products (e.g., skins,
seeds, leaves, bran, etc.), all of which may have different structural moisture contents. Therefore, to
facilitate comparison, the final results should be reported on a dry weight basis. Three dehydration
techniques were evaluated by Barcia et al. [162], namely oven-drying at 50 ◦C; spray-drying; and
freeze-drying. Regardless of the sample (skins or lees), an examination of the phenolic composition of
winemaking by-products (BRS Violeta cultivar) demonstrated that oven-drying negatively affected
their concentration. The content of anthocyanins plus pyranoanthocyanins was 18 times lower in
oven-dried samples compared to that of freeze-dried samples. The same trend was observed for
flavonols, hydroxycinnamic acid derivatives, and condensed tannins, although to a lesser extent.
Likewise, the same study showed that stilbenes of winemaking by-products from BRS Lorena cultivar
were also negatively affected. Therefore, especially when it comes to anthocyanin preservation,
oven-drying should be especially avoided.

Several plant food by-products may also contain significant amounts of lipid in their composition.
Fibre is a major constituent of peanut skin [145], however, another study [163] demonstrated
that peanut skin still has a significant lipid content (11%). In addition, fruit seeds, well known
and investigated processing by-products, are also rich sources of specialty oils [164] containing
up to 80% polyunsaturated fatty acids [165]. The content of their unsaturated fatty acids was
correlated with their concentration of liposoluble antioxidants [164], such as tocols (tocopherols
and tocotrienols), and carotenoids [165]. It is therefore, evident that tocopherols and tocotrienols
as well as carotenoids are present in the lipid fraction. Thus, due to their reducing and/or free
radical scavenging properties [165], these bioactive compounds may also interfere in different assays.
In fact, Arranz et al. [166] reported that DPPH (2,2-diphenyl-1-(2,4,6-trinitrophenyl)hydrazyl) radical
scavenging activity was significantly and positively correlated with the antioxidant stability of several
nut oils as evaluated by the Rancimat method, which was attributed to their tocopherol contents.
The same study also demonstrated that phospholipids interfered in the determination of total phenolic
contents by Folin and ortho-diphenols assays. Several solvents have been used to extract polyphenols
(e.g., methanol, ethanol, acetone), and these are also able to extract the lipid fraction. Peanut skin
extract obtained upon hexane extraction [167] was not able to delay soybean oil oxidation in the
Rancimat test in various concentrations (100–800 ppm). In contrast, extracts (100 ppm) obtained with
ethanol decreased the induction period of refined-bleached-deodorized soybean oil and showed to be
as effective as butylated hydroxytoluene (BHT), thus indicating that ethanol, but not hexane, was able
to extract phenolic antioxidants from peanut skin. Therefore, during defatting, which is a mandatory
step, one must consider these differences and hexane appears to be the best option thus far.

More than three decades ago, Krygier, Sosulski, and Hogge [168] and subsequently Naczk
and Shahidi [169] suggested a successful alkaline extraction method for quantitative extraction
of insoluble-bound phenolic acids. In addition, some recent reports have also supported the
advantages of this method in recovering monomeric flavonoids, proanthocyanidins, and hydrolysable
tannins [16,17,21,81,170]. However, even to date, most studies on phenolic compounds only consider
the fraction containing soluble phenolics, ignoring the insoluble-bound fraction, which is linked to
the cell wall of the plant material. Furthermore, the fraction containing soluble phenolics, also known
as crude phenolic extract [171], may also be fractionated into free and soluble-conjugated molecules,
namely esterified and etherified phenolics [31]. Fractionation techniques have been shown to be
helpful for the identification of new phenolic compounds, which allows deeper evaluation and may
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help to enrich the phenolics database with respect to the evaluation of a crude extract [31]. In fact,
79 phenolic compounds in different parts of pomegranate by-products have been reported, from which
30 compounds were identified for the very first time [21]. Furthermore, proanthocyanidins, reported in
pomegranate by-products for the first time, were present mainly as soluble conjugates in the fraction
containing phenolics released from their esterified form. This indicates that proanthocyanidins were
esterified with other molecules and their identification could be very difficult without prior hydrolysis.
Fractionation techniques have also been proven to be useful for the study of process-induced changes
as well as for the classification of different feedstocks in specific clusters [17].

Considering the growing interest in the fraction containing insoluble-bound phenolics, it is
important to choose the best solvent for the extraction of the soluble counterpart. Inefficient
extraction of soluble phenolics may lead to overestimation of the insoluble-bound fraction. Therefore,
investigation on the best solvent-assisted extraction conditions [172–175] has frequently been addressed.
Besides chemical extractions, several studies have demonstrated that enzyme-assisted extraction may
be a “green method” to recover phenolic compounds, including phenolic acids, monomeric flavonoids,
proanthocyanidins, and anthocyanins [30,176,177]. In fact, recent findings have demonstrated that
enzyme treatment should be considered for the development of nutraceuticals from plant by-products
as the process changes the ratio of soluble/insoluble-bound phenolics; therefore, making them more
physiologically bioaccessible, whereas insoluble-bound phenolics must be metabolized by the colonic
fermentation before local biological action [30]. However, to evaluate the changes, a control for all
steps (devoid of enzyme) should also be prepared to investigate pH and buffer effects. In fact, it is
not difficult to find some studies evaluating the enzyme effect but failing to include a proper control.
Therefore, it is not possible to ensure that the results actually reflect the action of the enzyme or arise
from the solvent and/or pH effects. In this context, it is possible to find various studies supporting
aqueous phenolic extraction [178–180], thus emphasizing the critical role of a proper control during
enzyme-assisted extraction.

Different enzymes degrade distinct substrates [176]. Viscozyme has been found to be more
effective than Pronase in releasing phenolic compounds from grape by-products [30]. The same
study demonstrated that procyanidin dimer B, a major compound in this feedstock, was extracted
with Viscozyme but not upon Pronase treatment. Even when the same enzyme is used, factors
such as enzyme to substrate ratio, temperature, and incubation time may influence the extraction
yield [176,181]. Regardless of the solvent chosen and/or the enzymatic treatment, especially for
the extraction of the soluble phenolic fraction, the particle size of the feedstock also needs to be
considered and properly reported. The antioxidant activity of cereal by-products has been found to be
inversely correlated with the granulometry of the milling by-product sub-fraction [182]. Furthermore,
conventional and non-conventional methods may be chosen for the extraction process, and the
decision must be based on the feedstock, consumption of energy, and operation costs associated with
the manufacturing facility [183]. Likewise, in terms of industrial application, the market value of
the recovered compounds and final application, the cost of the solvents used and/or their removal
(separation costs) as well as the cost associated with the use or developing of novel techonologies
should be considered [184,185].

Ultrasound-assisted extraction resulted in a higher recovery of phenolics than the conventional
solvent extraction [26]. Likewise, supercritical fluid extraction, especially under acidified conditions,
rendered extracts rich in anthocyanins [27]. Furthermore, although Ferreres et al. [186] reported
that temperature did not have any effect on the phenolic extraction of pitaya fruit by-products,
another study conducted with winery by-products [8] demonstrated significant effects of temperature
on the antioxidant activity of the recovered extract. These techniques have their importance, but
they may affect the distribution of phenolic compounds (soluble versus insoluble-bound forms).
Furthermore, even soluble conjugated phenolics may have their glycosidic moieties hydrolyzed
during these processes [187]. Therefore, before using such techniques, a full characterization using
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classic chemical extraction procedures is needed to efficiently characterize all phenolics present, thus
providing the basis for investigating their changes upon processing.

4.2. Estimation of Total Phenolic Content (TPC)

The term quantification of total phenolics has long been used [188]. However, non-phenolic
compounds may also react with Folin-Ciocalteu reagent [189]. According to Shinde et al. [190],
the non-zero total phenolic content found in milk (devoid of phenolic extracts) may have resulted
from milk proteins (e.g., tyrosine residues) and sugar components (oligosaccharide and glucose).
Furthermore, different phenolic compounds have been found to react to varying degrees with this
reagent. Therefore, expression of the results as a single number is necessarily arbitrary [189] and the
trends among several samples, prepared under the same conditions, may be more important than
comparing a single number. Therefore, the term quantification has recently been replaced by the
estimation with respect to the evaluation of total phenolics [31]. Furthermore, the term estimation
implies that in depth analysis (e.g., liquid chromatography–tandem mass spectrometry, LC-MSn)
should be further carried out. Figure 4 details several examples from the literature which illustrate the
complexity of making relevant interpretations based solely on TPC.
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The study by Garrido et al. [191] (Figure 4A) demonstrated that total phenolics increased upon
different heat processing operations. However, this may be misleading since a deeper evaluation of
their data shows that some individual phenolics were not affected by the treatment (e.g., procyanidin
trimer A) while some (e.g., eriodictyol-7-O-glucoside, kaempferol, isorhamnetin) were actually
decreased after blanching and drying. It is important to note that this issue has not been fully
tested. Therefore, those initiating their path into the chemistry of food phenolics should be careful in
making quick interpretations.

The solvent system employed to recover phenolic compounds from hazelnut skin was studied
by Contini et al. [192] (Figure 4B). According to these authors, regardless of the standards used (e.g.,
gallic acid, catechin, or tannic acid), 80% acetone rendered a higher extraction yield. It is of interest to
note that catechin always gives higher values, followed by tannic acid and gallic acid. TPC provides
an index or trend rather than an accurate quantification. Furthermore, as already mentioned, specific
phenolic molecules exhibit distinct reactivity with Folin-Ciocalteu reagent, which stems from their
different redox potential. Therefore, TPC are highly influenced by the standard used to calculate and
report the final results.

Phenolics from rice husk (Figure 4C) were extracted using magnetic stirring or Soxhlet extraction
over different time periods (60, 120, 180, 240, and 300 min) [193]. As for the method of extraction,
magnetic stirring always rendered a higher yield. In contrast, increasing the extraction time was
efficient only up to 180 min, after which, the TPC started to decrease, thus demonstrating that phenolic
extraction is influenced by extration time.

The influence of the soybean seed coat was studied by Abutheraa et al. [194]. The darker
the color, the higher was the TPC (Figure 4D). The tannin content (high versus low) also appears
to have an influence on the TPC. Figure 4E shows that, irrespective of the sample, high-tannin
canola always contained higher TPC [195]. Finally, one may think that by-products from red grape
are the best source of phenolic compounds. However, while the peel of Agiorgitiko (red grape)
presented higher TPC (Figure 4F), the opposite was noted for the seed of Roditis (white grape) [196].
Other colorimetric methods (e.g., total flavonoid and total proanthocyanidin) may also be used as
screening tools. However, one should bear in mind the drawbacks of these methods.

The examples presented in this contribution and previous experiences demonstrate that
comparing TPC results with those of the literature data may not be that informative. In contrast,
comparing TPC results among several related samples (e.g., plant food by-products versus original
material) [146] and/or fractions (e.g., soluble (free, esterified, etherified) versus insoluble-bound) [31]
prepared by the same analyst and under the same conditions may serve as a screening method. In any
case, if one decides to focus on TPC literature for compative purposes, a checklist could be helpful sto
avoid misinterpretation. As illustrated in Figure 4A,D–F, different samples and/or varieties will likely
show contrasting TPC values. Regardless of the test material, all steps involved in sample preparation
(e.g., lipid, sugar and protein removal, particle size, solvent/enzymatic system, temperature, and
time of extraction) and selection of phenolic standard must be checked. This critical checklist could
be helpful to avoid overstatements that may influence the field of chemistry of phenolic compounds,
especially in the emerging field of phenolics from plant processing by-products.

4.3. Identification and Quantification of Polyphenols

More than 8000 phenolic compounds have been reported in the literature, but just a few
commercial standards are currently available, which demonstrates the critical role of hyphenated
techniques such as liquid chromatography coupled to tandem mass spectrometry (LC–MSn) [197,198],
matrix assisted laser desorption time of flight mass spectrometry (MALDI-TOF MS) [199] or other
techniques [200–202]. Selected plant food by-products and screening of phenolics are summarized in
Table 2.
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Table 2. Selected plant food by-products and phenolic screening.

Feedstock Product Fraction Phenolic Compounds Method * Ref.

Almond Skin Proanthocyanidins HPLC-MS [203]

Apple Peel Phenolic acids and monomeric
flavonoids UPLC-MS [151]

Avocado Peel and seed Phenolic acids and flavonoids HPLC-MS [11]

Barley Outermost milling fraction Phenolic acids HPLC [204]

Blackberry Seed meal Phenolic acids, monomeric flavonoids,
proanthocyanidins, and anthocyanins HPLC-MS [24]

Black raspberry Seed meal Phenolic acids, monomeric flavonoids,
proanthocyanidins, and anthocyanins HPLC-MS [24]

Black raspberry Seed Ellagitannins and proanthocyanidins HPLC-MS [205]

Blueberry Wine pomace Anthocyanins HPLC-MS [26]

Blueberry Seed meal Phenolic acids, monomeric flavonoids,
proanthocyanidins, and anthocyanins HPLC-MS [24]

Brazil nut Skin Phenolic acids, monomeric
flavonoids, and proanthocyanidins HPLC-MS [80]

Camelina Seed meal Phenolic acids, monomeric
flavonoids, and proanthocyanidins HPLC-MS [206]

Chia Seed meal Phenolic acids, monomeric flavonoids
and proanthocyanidins HPLC-MS [207]

Citrus reticulata Chempi (aged peel) 5-demethylated polymethoxyflavones HPLC [208]

Grape Pomace Phenolic acids, monomeric flavonoids,
proanthocyanidins, and anthocyanins HPLC-MS [209,210]

Grape Pomace and rachi Phenolic acids, monomeric flavonoids,
proanthocyanidins, and anthocyanins HPLC [8]

Grape Winemaking and grape
juice by-products

Phenolic acids, monomeric
flavonoids, and proanthocyanidins HPLC-MS [16]

Mango Residual pulp Phenolic acids and monomeric
flavonoids HPLC [38]

Millet Hull Phenolic acids HPLC-MS [171]

Onion Skin Monomeric flavonoids HPLC-MS [211]

Orange Peel Flavonoids HPLC-MS [22]

Orange Peel Polymethoxyflavones HPLC-MS [212]

Passion fruit Peel, albedo and seed Phenolic acids and monomeric
flavonoids HPLC [38]

Peanuts Skin and meal Phenolic acids, monomeric
flavonoids, and proanthocyanidins HPLC-MS [12,31]

Peanuts Skin Phenolic acids, monomeric
flavonoids, and proanthocyanidins HPLC-MS [17,144]

Peanuts Skin Proanthocyanidins HPLC [18,213]

Pineapple Peel, and residual pulp Phenolic acids and monomeric
flavonoids HPLC [38]

Pomegranate Peel and seed
Phenolic acids, monomeric
flavonoids, anthocyanins,
proanthocyanidins, and ellagitannins

HPLC-MS [19,21]

Pomegranate Peel Punicalagin and ellagic acid HPLC [214]

Soybean Okara Isoflavones UPLC [215]

Soybean Seed coat Phenolic acids and flavonoids HPLC-MS [40]

Sophia Seed meal Phenolic acids, monomeric
flavonoids, and proanthocyanidins HPLC-MS [206]

Wheat Bran Phenolic acids HPLC [28,41]

HPLC, high-performance liquid chromatography; UPLC, ultra-performance liquid chromatography; * MS (mass
spectrometry) may contemplate tandem mass spectrometry (MSn).



Int. J. Mol. Sci. 2018, 19, 3498 14 of 47

5. Potential Health Benefits

5.1. Antioxidant Potential

Free radicals are related to lipid and protein oxidation, among others; which are detrimental to
food and biological systems. Reactive oxygen species (ROS) are constantly generated via mitochondrial
metabolism, which can worsen with unhealthy habits such as smoking [16]. ROS generated by immune
cells may be beneficial to human health due to their role in preventing invasion of pathogens [2],
however during homeostasis imbalance the body may not be able to neutralize ROS, which may lead
to harmful effects. Overtraining by individuals engaged in intense exercise regimes is an example of
homeostasis imbalance accompanied by oxidative stress [216]. A recent human trial with healthy adults
under intense physical training demonstrated that phenolic compounds increase serum antioxidant
status [217]. Some plant food by-products recently studied as a source of phenolic compounds and
their proposed application areas are summarized in Table 3. The antioxidant potential of phenolic
compounds from plant by-products has been substantiated by in vitro and in vivo studies [24,210].
The ability of polyphenols in scavenging free radicals may be explained by single electron transfer (SET)
or hydrogen atom transfer (HAT) [218], which evidences the differences in their operative mechanisms.
The number and position of hydroxyl groups in phenolic compounds are critical to their antioxidant
potential. Therefore, polyphenols are, generally, more effective than monophenols. DPPH radical,
ABTS (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) diammonium salt) radical cation, and
ORAC (oxygen radical absorbance capacity) are among the most commonly used methods for the
first level screening of the antioxidant potential of natural products/compounds [219]. A recent
report evaluated the mechanism of antioxidant action of some phenolic acids using ABTS radical
cation and ORAC methods, the latter demonstrating the ability of an antioxidant to neutralize peroxyl
radicals [220]. According to the authors [220], HOMO energy, rigidity (η) and Mulliken charge on
the carbon atom in m-position to the phenolic hydroxyl were most significant descriptors of their
antioxidant properties against peroxyl radical while electron transfer enthalpy from the phenolate
ion was the most significant descriptor of the antioxidant capacity towards ABTS radical cation.
The importance of ORAC method in the field of food bioactives and associated health benefits
have also been reviewed [221], however, the shortcomings of this and other methods should also be
considered [219]. The literature has also demonstrated the relevance of evaluating the antioxidant
efficacy towards hydrogen peroxide, hydroxyl radicals, nitric oxide and peroxynitrous acid [2,222].
Furthermore, the ability of phenolic compounds towards superoxide anion and hypochlorous acid has
been investigated [8,11].
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Table 3. Selected plant food by-products, screening and proposed applications.

Feedstock Product Fraction Evaluation Purpose and/or Application Ref.

Almond Skin Effects towards antioxidant enzymes using cell and animal models. [203]

Apple Peel Scavenging activity against DPPH radical, and ferric reducing antioxidant power. Inhibition of fish oil oxidation. [151]

Avocado Peel and seed
Reducing power (FRAP) and antioxidant potential against ABTS radical cation, DPPH radical, and reactive oxygen
species (peroxyl and superoxide radical and hypochlorous acid). Anti-inflammatory activity by inhibition TNF-α and
nitric oxide in mouse macrophage RAW 264.7 cells.

[11]

Barley Outermost milling fraction Antioxidant potential against ABTS radical cation, DPPH, peroxyl and superoxide radical. Antioxidant potential using
a photoinduced chemiluminescence technique. [204]

Barley Outermost milling fraction Scavenging of peroxyl and hydroxyl radicals, metal chelation activity, inhibition of radical-induced supercoiled DNA
breakage and antiproliferative activities using Caco-2 human adenocarcinoma cells. [45]

Blackberry Seed meal Antioxidant activity (towards hydroxyl and peroxyl radicals), reducing power, chelation capacity, prevention of DNA
damage, and LDL-cholesterol oxidation. [24]

Black raspberry Seed Reducing power (FRAP) and antioxidant potential towards DPPH radical and ABTS radical cation. Anti-inflammatory
activity by reduction of nitric oxide using RAW 264.7 cells. [205]

Black raspberry Seed meal Antioxidant activity (towards hydroxyl and peroxyl radicals), reducing power, chelation capacity, prevention of DNA
damage, and LDL-cholesterol oxidation. [24]

Blueberry Seed meal Antioxidant activity (towards hydroxyl and peroxyl radicals), reducing power, chelation capacity, prevention of DNA
damage, and LDL-cholesterol oxidation. [24]

Brazil nut Skin Antioxidant potential towards ABTS radical cation, and DPPH, hydroxyl, and peroxyl radicals. [80]

Camelina Seed meal Potential biological activities of camelina and sophia seed meals through inhibition of LDL-cholesterol oxidation, DNA
damage as well as pancreatic lipase and α-glucosidase activities. [223]

Camelina Seed meal Antioxidant potential towards ABTS radical cation, reducing power and metal chelation. [206]

Canola Hull Antioxidant potential of crude tannins by β-carotene-linoleate model system, DPPH radical, and reducing power. [195]

Chia Seed meal
Antioxidant potential towards ABTS radical cation, DPPH and hydroxyl radical. Reducing power, chelation capacity
and antioxidant capacity in beta-carotene linoleate model system. Inhibition of activities against pancreatic lipase,
α-glucosidase, human LDL-cholesterol oxidation in vitro, DNA damage induced by peroxyl and hydroxyl radicals.

[207]

Citrus reticulata Chempi (aged peel) Prevention of obesity and type 2 diabetes in mouse model. [208]

Grape Pomace Anti-inflammatory activity in mice (inhibition of TNF-α and IL-1β). [209]

Grape Pomace Antioxidant capacity using yeast cells. [210]

Grape Pomace Isolation and identification of phenolics bearing inhibition capacity towards α-glucosidase. [6]

Grape Pomace Antioxidant potential towards DPPH radical and ABTS radical cation. [224]
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Table 3. Cont.

Feedstock Product Fraction Evaluation Purpose and/or Application Ref.

Grape Pomace and rachi Antioxidant activity (towards DPPH radical, ABTS radical cation, peroxyl radical, superoxide anion, hypochlorous
acid) and anti-inflammatory effect by suppressing TNF-α liberation in vitro. [8]

Grape Seed Anti-inflammatory activity (inhibition of cytokines and suppression of MAPK and NF-κB) in RAW264.7 macrophages. [225]

Grape Seed Reduction of bone loss in the experimental arthritis. [226]

Grape Seed Reduction of kidney injury in experimental type 2 diabetes. [227]

Grape Winemaking by-products Antioxidant potential towards ABTS radical cation, DPPH and hydroxyl radical. Reducing power and inhibition of
α-glucosidase and lipase activities. [30]

Grape Winemaking and grape juice
by-products

Antioxidant activity (towards DPPH radical, ABTS radical cation, and hydrogen peroxide), reducing power, prevention
of DNA damage, and LDL-cholesterol oxidation. [16]

Grape Winemaking by-products Bioactivity using cardiometabolic biomarkers in Wistar rats. [15]

Guava Pomace Anti-inflammatory activity through reduction of edema and neutrophil migration in mice models. [228]

Mango Residual pulp Microbiological safety and antioxidant activity (towards DPPH radical, ABTS radical cation) [38]

Millet Hull Hydroxyl and peroxyl radical inhibition, inhibition of DNA strand scission induced by both ROS, inhibition of
liposome oxidation, and human colon adenocarcinoma cell proliferation inhibition. [171]

Onion Skin
Inhibition of peroxyl and hydroxyl radical induced supercoiled DNA strand scission, cupric ion induced human
low-density lipoprotein peroxidation inhibition in vitro, inhibition of lipopolysaccharide stimulated cyclooxygenase-2
expression in mouse macrophage cell model.

[229]

Onion Skin Antioxidant potential (ABTS radical cation, DPPH radical, and reducing power). [211]

Passion fruit Peel, albedo and seed Microbiological safety and antioxidant activity (towards DPPH radical, ABTS radical cation) [38]

Peanuts Skin
Gamma-irradiation induced changes and microbiological safety. Antioxidant potential (towards DPPH radical, ABTS
radical cation, hydroxyl radical, and hydrogen peroxide), reducing power, prevention of DNA damage, and
LDL-cholesterol oxidation.

[17]

Peanuts Skin and meal
Antioxidant potential against ABTS radical cation, DPPH and hydroxyl radicals, and reducing power. Antioxidant
capacity in gamma-irradiated fish model system. Antimicrobial activity against Gram-positive and Gram-negative
bacteria.

[12]

Peanuts Skin and meal Antioxidant potential towards ABTS radical cation, DPPH and hydroxyl radicals, and reducing power. Inhibition of
α-glucosidase and lipase activities. [31]

Peanuts Skin Isolation, structural characterization of proanthocyanidins, and evaluation of their antioxidant activity towards DPPH
radical, ABTS radical cation, and ferric reducing antioxidant power. [18]

Peanuts Skin Isolation and identification of proanthocyanidins. Inhibition of TNF-α and IL-6 in cultured human monocytic
THP-1 cells. [213]
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Table 3. Cont.

Feedstock Product Fraction Evaluation Purpose and/or Application Ref.

Pineapple Peel, and residual pulp Microbiological safety and antioxidant activity (towards DPPH radical, ABTS radical cation) [38]

Pomegranate Peel and seed
Scavenging of ABTS radical cation, DPPH and hydroxyl radicals, and metal chelation. Potential bioactivity towards
inhibition of α-glucosidase and lipase activity, inhibition of human low-density lipoprotein (LDL) oxidation in vitro
and inhibition of peroxyl and hydroxyl radical-induced DNA strand scission.

[19,21]

Pomegranate Peel and seed
Antioxidant activity in beta-carotene-linoleate model system and against DPPH radical. Prevention of lipid
peroxidation in albino rat liver homogenate in vitro, scavenging activity towards hydroxyl radical scavenging activity,
and human low-density lipoprotein (LDL) oxidation in vitro.

[230]

Pomegranate Peel Anti-inflammatory activity through inhibition of expression of TNF-α, IL-1β, MCP-1 and ICAM-1 and adhesion of
monocytes to endothelial cells. [214]

Rapeseed Hull Antioxidant potential of crude tannins by β-carotene-linoleate model system, DPPH radical, and reducing power. [195]

Sophia Seed meal Antioxidant potential towards ABTS radical cation, reducing power and metal chelation. [206]

Sophia Seed meal Potential biological activities of camelina and sophia seed meals through inhibition of LDL-cholesterol oxidation, DNA
damage as well as pancreatic lipase and α-glucosidase activities. [223]

Soybean Seed coat Antioxidant potential towards ABTS radical cation and DPPH as well as reducing power (FRAP assay). [40]

Wheat Bran Antioxidant potential against peroxyl radical and via photochemiluminescence method, antioxidant capacity in seal
blubber oil (Rancimat test) and inhibition of oxidation of low-density lipoprotein and DNA in vitro. [41]

Wheat Bran Antioxidant potential against ABTS radical cation. [42]

Wheat Bran
Antioxidant potential against ABTS radical cation, DPPH and peroxyl radicals, reducing power, inhibition of
photochemilumenescence, and iron (II) chelation activity. Inhibition of oxidation of human low-density lipoprotein
cholesterol and DNA in vitro. Oxidative stability using stripped corn oil in Rancimat test.

[43]

Wheat Bran Antioxidant potential towards ABTS radical cation, DPPH, superoxide radicals, hydroxyl radical, and scavenging of
hydrogen peroxide. Reducing power and ferrous chelating activity. [44]

Wheat Bran fractions Total antioxidant capacity towards ABTS radical cation as affected by debranning. [28]
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5.2. Neutralization of Metal Ions

Metal ions also participate in redox reactions. Therefore, evaluating the capacity of phenolics
in neutralizing them through chelation or reduction is also desirable. These methods may follow
different mechanisms of action, therefore, using just one assay may not be sufficient for anticipating the
actual effects using in vitro biological model systems as well as in vivo studies [16,17]. Furthermore,
their results may differ according to the evaluation medium (e.g., solvent, buffer, and/or pH).
Although some researchers still continue to ignore their use, the data collected by applying different
methods may be useful. Similar to free radicals, metal ions are related not only to lipid oxidation [231],
but also to protein oxidation [232]. It is well known that ferric ions and hydroxyl radicals are generated
in the presence of hydrogen peroxide and ferrous ions through Fenton reaction (Haber-Weiss cycle). In
this cycle, a set of dynamic redox reactions take place continually, at which ferrous ions are oxidized to
the ferric form and the latter is again reduced to the ferrous form. It has been hypothesized that the
ratio of ferric to ferrous ion is important for rapid initiation of lipid peroxidation through the Fenton
reaction and the ratios of 1:1 to 7:1 (Fe3+/Fe2+) are optimum [231]. Therefore, an ideal antioxidant
should not only be a good reducing agent but may also need to exhibit chelating capacity. Although
the reducing power of food phenolics has been well substantiated, their chelating ability is not always
easy to confirm. In fact, amongst 25 phenolics identified in berry seed by-products [24], protocatechuic
acid was the only one showing a positive correlation with both reducing power (r = 0.8774, p = 0.002)
and chelating capacity (r = 0.7430, p = 0.022), but a stronger correlation with reducing power was
evident. The metal chelation of phenolics from grape by-products [233] was not correlated with any
other assay, namely total phenolic content, DPPH radical scavenging and ORAC assay. Metal chelation
takes place via complexation and, therefore, the chemical structures of polyphenols may have a higher
influence on chelating ability than in the reducing power [19]. The latter study [19] demonstrated that
free phenolics from pomegranate seeds showed about 2-fold higher ability in chelating ferrous ions
than those released from their esterified form. Furthermore, a study by Andjelković [234] reported
different binding constants for selected phenolic acids. Finally, according to the same research team,
no complex formation was detected with compounds lacking a catechol or galloyl moiety.

The use of plant food by-products as a source of phenolic compounds has not yet been entirely
taken advantage of by the industry. Among possible concerns is the microbiological safety, as
mentioned earlier, but the presence of toxins produced by fungi and bacteria as well as potential
presence of pesticide residues may contribute to the multitude of existing hurdles. Thus, studies
involving humans may face more resistance, in need for prior investigations on their safety, collection
of data in vitro, evaluation in cell lines, and in animal models. Regardless of the source, these
processing by-products are rich in carbohydrates, fibre, protein, lipid, and minerals as well as a myriad
of phytochemicals [33,163,224]. Besides the antioxidant potential, the most studied subject to date,
some plant food by-products that have recently been considered as a source of phenolic compounds
and remaining proposed application areas are summarized in the following sections.

5.3. Bioavailability of Phenolics

A wide range of potential health benefits through consumption of rich sources of phenolic
compounds are addressed here with respect to their characterization and quantification in different
source materials, including plant food by-products. However, less attention has been paid to research
dealing with their bioavailability. The mechanism of action of food phenolics under physiological
conditions remains unclear. In fact, the bioaccessibility of phenolic compounds in the small intestine
or the metabolism of non-digestible phenolics upon fermentation in the colon may be pointed as one
of the topics that remain to be clarified. These aspects play an important role in the bioaccessibility,
which leads to the bioavailability and bioactivity of polyphenols and may be helpful to understand
the discrepancies among different studies [235,236]. It has been accepted that extrapolations between
in vitro and in vivo systems cannot be made [237]. These controversial results may also be found for
ellagitannins [237]. Furthermore, high molecular weight phenolics may be broken down in the gastric
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juice [235]. Likewise, their degree of methylation and glycosylation may also be affected but, as far as
we know, this point has scarcely been addressed.

The bioaccessibility and further bioavailability of phenolic compounds may explain the oxidative
status of plasma as well as different tissues such as the liver, kidney, brain, and colon [238–241];
however, further confirmation is still necessary. The presence of phenolic metabolites in urine of rats
treated with procyanidin A and B from apple and cranberry, respectively, may explain the mitigation
of urinary tract infections in vivo [242]. Therefore, it is reasonable to suggest that the benefits of
proanthocyanidins and ellagitannins stem, at least in part, from the action of their metabolites [237].
Although methylated, glucuronidated, and sulfated proanthocyanidins have been reported as
metabolites of proanthocyanidin [235,236], the presence of unmodified proanthocyanidin in human
plasma upon consumption of proanthocyanidin-rich foods has also been reported [243]. Likewise,
ellagitanin metabolites such as urolithin A glucuronide, urolithin B glucuronide acid, urolithin-C
glucuronide, urolithin-C methyl ether glucuronide, and dimethyl ellagic acid glucuronide have also
been detected in human plasma following consumption of different sources of ellagitannins [244].
Therefore, studies focusing on the mechanism of action must be conducted not only with the native
compounds but also with their biotransformed forms.

Within phenolic compounds, proanthocyanidins have been listed among the least absorbed [245].
Proanthocyanidins have been found in several by-products such as apple peel, blackberry, black
raspberry, blueberry, litchi pericarp, as well as pomegranate peel [24]. The bioavailability of
proanthocyanidins has been studied for a long time but until now, this subject is not entirely understood.
While some authors have stated that proanthocyanidins with a degree of polymerization higher
than four are not absorbed in the gut [236], others have reported that proanthocyanidins with an
average degree of polymerization of six were absorbed by the epithelial cells [246]. The latter study
showed that catechin as well as procyanidin dimer and trimer had similar permeability in colonic
carcinoma (Caco-2) cells of human origin, which was close to that of mannitol, a known marker
of paracellular transport, whereas proanthocyanidins with an average polymerization degree of six
showed approximately 10 times lower permeability coefficients than the former molecules. In contrast,
Ou et al. [247] demonstrated that procyanidin dimer, trimer and tetramers could cross Caco-2 cell
monolayers but the ratio was decreased with higher degree of polymerization. Like proanthocyanidins
(condensed tannins), ellagitannins (hydrolysable tannins) could be of high molecular weights and may
not be readily bioavailable; therefore, low molecular weight phenolics such as ellagic acid must be
released from their parent compounds to be absorbed and act as functional molecules.

In human intervention trials, Tomás-Barberán et al. [248] observed three different phenotypes
for urolithin production upon ellagitannin and ellagic acid intake. According to these authors,
“phenotype A” produced only urolithin A conjugates, whereas “phenotype B” produced isourolithin A
and/or urolithin B in addition to urolithin A and no urolithins were detected in the third one, named
“Phenotype 0.” The authors also highlighted that a higher percentage of phenotype B was observed in
volunteers with chronic illnesses such as metabolic syndrome or colorectal cancer, which are associated
with gut microbial imbalance. Therefore, especially for high-molecular weight phenolics and those
linked to the cell wall of plant materials (insoluble-bound phenolics), the health status of the subjects
should be carefully considered as it may affect the identities of the phenolic metabolites.

Human in vitro fecal fermentation studies demonstrated that even if proanthocyanidins
(up to tetramers) as well as catechin and epicatechin were able to reach the colon, their
presence would not be detected after colonic fermentation as the catabolites found were
5-(3′,4′-dihydroxyphenyl)-γ-valerolactone, (3,4-dihydroxyphenyl) acetic acid, protocatechuic acid,
hydroxybenzoic acid, and salicylic acid. The same occurred with elagitannins as only gallic acid,
pyrogallol, phlorogucinol, syringic acid, and protocatechuic acid were detected following in vitro
fecal fermentation. Likewise, no anthocyanin was detected after fermentation and ferulic and sinapic
acids present in oat and wheat bran were found in their hydrogenated forms as dihydroferulic acid
and dihydrosinapic acid, respectively [249]. Therefore, although to a lesser extent compared to that
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of proanthocyanidins, ellagitannins, anthocyanins and monomeric flavonoids, phenolic acids may
undergo biotransformation upon colonic fermentation after being released from their insoluble-bound
form. However, at least with respect to ferulic and sinapic acids, their degree of hydroxylation may
not change as demonstrated by Dall’Asta et al. [249]. Therefore, the biological effects of the parent
compounds and phenolic metabolites may be similar.

5.4. Cardiovascular Diseases

Prevention of atherosclerosis and associated cardiovascular diseases (CVD) has been suggested
among the potential health benefits of food phenolics. Low-density lipoprotein-cholesterol (LDL-C)
levels have been found to be significant predictors of death from cardiovascular and coronary heart
disease in men with and without preexisting cardiovascular disease in a ten-year mortality study [250].
The same study also concluded that low levels of high-density lipoprotein cholesterol were significant
predictors of death from CVD. According to Martín-Carrón et al. [251], commercial dietary fiber
products rich in polyphenols can be obtained from red and white whole grape pomace produced after
wine or grape juice production, as well as from white and red skins and seeds. The study conducted
by these authors reported the reduction in LDL-C concentrations due to the consumption of a diet
supplemented with a dietary fiber and polyphenols rich product in hypercholesterolemic rats.

Winemaking by-products (100 mg/kg/d) also showed biological activity by decreasing the levels
of VLDL-cholesterol and triacylglycerols in Wistar rats [15]. In addition, Aviram et al. [252] evaluated
the antiatherogenic properties and mechanisms of action of different pomegranate fruit parts (peels
arils, seeds, and flowers) and the atherosclerotic lesion area was significantly decreased by up to
70%. The presence of oxidized LDL-C is also involved as an early event in the pathogenesis of
atherosclerosis, a condition where plaque inside the arteries may impair the blood flow and increase
the risk of coronary heart disease. Development of atheromatous plaques takes place due to the
uptake of oxidized LDL-C, via scavenger receptors, thus leading to cholesterol accumulation and foam
cell formation [21,223,253]. Phenolic antioxidants act as chain breakers through inhibition of lipid
peroxidation and may also inhibit oxidation of protein, thus potentially preventing LDL-C via multiple
mechanisms [164]. Metal ion-catalyzed oxidation of proteins and lipids have several consequences.
Therefore, methods such as the cupric ion induced human LDL-C peroxidation have been useful in
demonstrating the potential benefits of phenolic compounds in reducing the risk of CVD. This topic
was discussed in an editorial, highlighting its importance for prospection of new sources of phenolic
compounds to reduce and/or prevent CVD [254].

The lowest inhibition of lipid peroxyl radical species of gallic acid as compared with
epigallocatechin gallate lends support to the importance of the lipophilicity of phenolic
compounds [255]. In addition, lipophilised epigallocatechin gallate ester derivatives were more
effective than epigallocatechin against cupric-induced LDL-C peroxidation [256], which was in good
agreement with a recent study [257]. Therefore, inhibition of protein oxidation of LDL-C may also
be contemplated, and these studies allow to suggest that oxidation of the lipid fraction may be more
important compared to the protein components. The chelation capacity of phenolic compounds
towards copper ions may also be involved. Besides pure compounds and their lipophylized
derivatives, phenolics from several by-products from legumes, oilseeds, cereals and fruits have
been investigated [16,17,19,21,24,207,223]. The IC50 of free, esterified and insoluble-bound phenolic
extracts from camelina and sophia seed meals was in the range of 20–30 µg/mL [223], whereas the
corresponding values found for chia meal were between 20 and 70 µg/mL.
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Studies on pomegranate by-products demonstrated that some phenolic fractions could inhibit
LDL-C oxidation in vitro [19,21], however, the inhibition was not correlated with the total phenolic
content. In a previous study, de Camargo et al. [16] demonstrated that only eight, out of 18 phenolics
quantified in grape by-products were correlated with LDL-C inhibition, which was confirmed by the
study conducted by Ayoub et al. [24]. These studies support the role of the chemical structure on the
antioxidant capacity in a complex system containing both lipid and protein fractions and oxidants such
as metal ions as well as ROS and NOS. The great potential in improving the cardiometabolic profile
of food phenolics in animal models and in humans is well substantiated, however, considering the
emerging market of plant food by-products as potential sources of phenolic bioactives, more research
in humans is deemed necessary.

5.5. Phenolics as Adjuvants in Cancer Prevention and Treatment

Cancer has been listed by the International Agency for Research on Cancer (IARC), among the
worldwide leading diseases. Lung, liver, colorectal, stomach, and female breast have been pointed
as the most common causes of cancer death. Carcinogens may be of chemical (tobacco smoke and
mycotoxins) and physical (e.g., ultraviolet and ionizing radiation) nature. Furthermore, infections from
certain viruses, bacteria, or parasites are examples of biological carcinogens. Several mechanisms that
account for the anticarcinogenic actions of phenolic compounds and culminate in apoptosis and/or
cell cycle arrest have already been summarized [258,259]. However, DNA-damage signaling and repair
have been highlighted as crucial pathways to the etiology of most, if not all, human cancers [260].
In this sense, DNA strand breakage may lead to mutagenesis and affect its replication and transcription,
which is among the causes of cancer initiation [24,197].

Mycotoxins have been listed among the chemical carcinogens and, in fact, some studies have
reported mycotoxin-DNA damage in vitro and in vivo [261,262]. The presence of these potential
carcinogens has been reported in several food and processing by-products [148,263–265]. Furthermore,
the observed DNA damage has been linked to oxidative stress. As mentioned in a previous report,
avoiding consumption of these products may or may not be a realistic option [164]. Furthermore, to
address this question, the protective effect of phenolic compounds to overcome deleterious effects due
to exposure to mycotoxins has been a target of studies.

Long et al. [266] reported the protective effect of grapeseed proanthocyanidin extract on oxidative
damage induced by zearalenone in Kunming mice and suggested that the mechanism could be
related to the activation of the Nrf2/ARE signaling pathway. Furthermore, proanthocyanidins
were found to protect against acute zearalenone-induced testicular oxidative damage in male
mice [267]. Zearalenone metabolites (α- and β-zearalenol) have been studied by Ben Salem et al. [268].
According to these authors, quercetin was able to protect cells against α- and β-zearalenol-induced
endoplasmic reticulum stress and apoptosis. In another study, quercetin was found to prevent
endoplasmic reticulum stress and reduce zearalenone-induced apoptosis in HCT116 and HEK293
cells [269]. Therefore, considering the literature, it is possible to suggest that mycotoxin-induced
changes may be, at least in part, faced as one type of oxidative stress imbalances, and as rich sources of
phenolic compounds, plant food by-products may be useful to overcome mycotoxin-related issues.
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Peroxyl and hydroxyl radical induced supercoiled DNA strand scissions have been useful to
demonstrate potential benefits of phenolic compounds in reducing the potential risk of certain
types of cancer. Phenolics from several plant food by-products inhibited ROS-induced DNA
damage in vitro [17,19,21,24,171,207,229]. Furthermore, some studies in cell models and in vivo have
substantiated the anticancer potential of phenolics from agro-industrial residues [270,271]. Free and
soluble-conjugate phenolics are, at least partially, bioacessible and could reach the plasma and different
tissues, which may explain the preventive effect of food phenolics towards certain types of cancer. On the
other hand, colorectal and stomach cancer prevention may not necessarily be related to the bioaccesibility
of polyphenols. As mentioned before, colorectal cancer has been listed among the most common causes
of cancer death. Pan et al. [258] summarized the molecular mechanisms for chemoprevention of colorectal
cancer by natural dietary compounds, including polyphenols. Another study demonstrated that phenolics
from the outermost fraction of barley showed a high level of antiproliferative activity toward inhibition of
Caco-2 human colorectal adenocarcinoma cells [45]. Insoluble-bound phenolics from grape by-products
have been found to be the major fraction compared to the soluble counterpart [16,30]. Additionally, it
has been accepted that phenolic compounds in the insoluble-bound form are not readily bioacessible.
However, by being metabolized by human colonic microbiota, phenolics present in the insoluble-bound
may be released in the colon and prevent colorectal cancer.

Besides the preventive effect of long-term consumption of rich sources of phenolic compounds,
these natural compounds may also act as adjuvants during cancer treatment. Surgery, chemotherapy,
radiation, or their combination, are the most common treatments for cancer [164]. Several side
effects such as nephrotoxicity, neurotoxicity, hepatotoxicity, cardiotoxicity, as well as gastrointestinal
and pulmonary toxicity have been reported for several drugs used in the treatment of cancer [272].
Furthermore, the oxidative stress-based hypothesis involving production of ROS due to the use of
anticancer drugs has gained acceptance [273].

Doxorubicin, an anthracycline, generates hydrogen peroxide, hydroxyl, and superoxide radicals as
a result of oxidative metabolism. The lower oxidative stress, compared to the control, in anthracycline
treated rats was attributed to catechin [274]. The ability of irradiation in impairing the growth and
multiplication of cancer cells is related to DNA damage probably due to oxidation thus generating ROS.
Although normal cells may also be affected by the treatment, they have a greater ability in repairing
themselves and overcome exposure to radiation [164].

The ability of human lymphocytes in vitro in rejoining from X-ray-induced DNA double-strand
break has been found to be dependent on the age of subjects, and older ones showed lesser ability in
overcoming DNA damage than that found in DNA from younger blood donors [275,276]. According to
Singh et al. [275], DNA repair from X-ray induced damage was more difficult in older individuals.
Due to the crucial role of phenolic compounds towards ROS-induced DNA strand breakage, evaluation
of their protective effect against DNA damage may also be used to anticipate their potential in
alleviating drug- and radiation-induced effects during cancer treatment [277].

5.6. Type 2 Diabetes and Obesity

At a molecular level, the ability of phenolic compounds in inactivating digestive enzymes has
been shown to be a good option in several pre-clinical studies [6,278]. Carbohydrate- (α-amylase
and α-glucosidase) and lipase-hydrolysing enzymes present in the small intestinal brush border
participate in the breakdown of complex carbohydrates and triacylglycerols and enable their absorption.
Inhibitors of carbohydrate-hydrolysing enzymes are able to retard the liberation of D-glucose
from dietary complex carbohydrates thus delaying glucose absorption which, in turn, may reduce
postprandial plasma glucose levels and suppress postprandial hyperglycemia [279].

Although anti-hyperglycemic products are available in the market, their use may result in several
side effects. Additionally, anti-hyperglycemic drugs are provided by the government free of charge in
some countries like Brazil, thus becoming a national economic burden [30]. Phenolics bearing digestive
enzyme inhibitory activity and their respective inhibition capacity are shown in Table 4.
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Table 4. Phenolics bearing digestive enzyme inhibitory activity.

Compound IC50 (µg/mL) Ref.

A-amylase

[280]
(−)-epicatechin 140
Epigallocatechin >300

(−)-4′-O-methylepigallocatechin >300
(−)-epicatechin-(4b→8)-(−)-4′-O-methylepigallocatechin >300

α-glucosidase

[280]
(−)-epicatechin 140
Epigallocatechin >300

(−)-4′-O-Methylepigallocatechin >300
(−)-epicatechin-(4b→8)-(−)-4′-O-methylepigallocatechin >300

Lipase

[281]
Rosmarinic acid 125
Chlorogenic acid 96.5

Caffeic acid 32.6
Gallic acid 10.1

According to the literature [31], the enzyme inhibition capacity of polyphenols may be explained
by their complexation with proteins through hydrogen-bonds or addition of nucleophiles to oxidized
quinones [282]. Therefore, the general understanding that oxidized phenolic compounds do not
serve as bioactives may be misleading. In fact, oxidation of polyphenols is an intermediary step for
further nucleophilic reaction with several enzymes. Protein-binding is dependent on several factors
such the size, length, and flexibility of phenolic compounds. Furthermore, the stereospecificity of
polyphenols and proteins is also important [283]. It has been hypothesized that larger molecules
(e.g., proanthocyanidins) are more likely to bind with proteins as compared to low molecular weight
phenolics [284]. However, whereas polymeric proanthocyanidins have shown higher inhibitory
effect towards α-amylase, the opposite was found against α-glucosidase [285], for which oligomeric
proanthocyanidins were actually more effective. Therefore, generalizations are not as simple as one
would expect.

Acarbose, an oral anti-diabetic drug, was found to be a competitive inhibitor for α-glucosidase
and mixed noncompetitive inhibitors for α-amylase [286]. Inhibition studies demonstrated that
proanthocyanidins were a mixed noncompetitive inhibitor against α-amylase but a competitive
inhibitor against α-glucosidase [180]. Inhibitory effects of phenolic compounds towards enzyme
activity are not as linear as found against DPPH radical and ABTS radical cation. Therefore,
the enzymatic inhibition is frequently reported as a percentage of inhibition or in terms of IC50,
the concentration necessary to inhibit enzymatic activity by 50%. A recent study [31] demonstrated
that free phenolics of peanut skin exhibited a lower IC50 than that of acarbose [6]. The IC50 for several
phenolics from different sources has been summarized by Kumar et al. [279].

Environmental conditions have been accepted as a critical factor influencing the phenolic profile
of grapes and hence, their processing by-products. However, Kadouh et al. [287] evaluated grape
pomaces from six grape varieties grown in the same vineyard and suggested that the greatest inhibitory
effect of Tinta Cão grape by-products towards α-glucosidase stems from varietal effects rather than
agronomic conditions. The correlation of total phenolics with antioxidant potential and reducing power
of several plant by-products is well established [16,24], but the correlation between α-glucosidase with
total phenolics has also been reported [30,31,287], thus indicating a dose-dependent response.

Recently, metabolomic analysis enabled the identification of several potential anti-α-amylase
agents, namely epigallocatechin gallate, herbacetin-3-O-D-glucopyranosyl-7-O-L-rhamnoside,
kaempferol 3-xylosyl-(1→6)-glucoside, berbacetin-8-O-D-glucopyranoside, tricin 7-O-β-D-glucopyra
noside, kaempferol 3-O-glucoside, tricin 5-O-β-D-glucopyranoside, herbacetin-7-O-rhamnoside,
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kaempferol and tricin [288]. In contrast, commercial standards, namely catechin, resveratrol,
delphinidin chloride, cyanidin chloride, malvidin-diglucoside, malvin chloride, malvidin chloride,
cyanidin-diglucoside, procyanidins B1 and B2, epicatechin gallate, kaempferol, myricetin, quercetin
hydrate, quercetin 3-O-glucoside, and phenolic acids (gallic, caffeic, p-coumaric, and ferulic acids) were
tested against rat intestinal α-glucosidases, but no inhibition was found [287]. The authors therefore
concluded that unidentified bioactive components from their starting material could be responsible
for inhibiting the enzyme. The same research team [6] conducted a subsequent bioactivity-guided
isolation and purification of α-glucosidase inhibitor from Tinta Cão grape pomace and confirmed
the inhibitory ability of 6-O-p-trans-coumaroyl-D-glucopyranoside, which was not identified in their
previous study [287].

Masumoto et al. [289] demonstrated that mice fed a high-fat/high-sucrose diet administered
along with non-absorbable apple procyanidins showed lower levels of endogenous metabolites
associated with insulin resistance as compared with the control group. Several proanthocyanidin-rich
plant food by-products such as peanut skin, persimmon peels, and grape by-products, among
others [30,31,285] have been pointed as good options to inactivate digestive enzymes (e.g., α-amylase
and α-glucosidase). In addition, rich sources of hydrolysable tannins, anthocyanins, phenolic
acids of meal from dry-blanched peanuts and pomegranate by-products also exhibited inhibitory
properties [19,31]. Finally, the synergistic effect of cyanidin-3-galactoside with acarbose has also been
reported [290], suggesting that anthocyanins and other potential phenolic compounds may improve
the effects of acarbose for treatment of diabetes, thus encouraging their combined use.

It is already common sense among health professionals that obesity is associated with a higher
risk of developing several chronic ailments (e.g., type 2 diabetes, cardiovascular diseases, and certain
types of cancer). Therefore, body weight management may decrease the risk of many diseases and their
complications. Orlistat, a conventional anti-obesity drug, has been used as a positive control in many
studies [281,291]. The mechanism behind the interaction of food phenolics with lipase may be similar
to α-amylase and α-glucosidase, however, phenolic-enzyme specificity may differ, as discussed earlier.

In this context, phenolics from pomegranate by-products [19] exhibited, generally, a higher
inhibitory effect towards α-glucosidase than amongst lipase. Proanthocyanidin-rich fractions from
pecan shell [292] also showed inhibition towards α-amylase and pancreatic lipase, which was
dependent on the degree of proanthocyanidin polymerization. Furthermore, the influence of phenolic
content has not been found to be as drastic as it was on antioxidant activity and reducing power [31].
In fact, up to 28-fold higher total phenolic content was found in the phenolic-rich fractions from
peanut skin as compared with the fractions obtained from peanut meal from dry-blanched samples.
However, 1.8-(α-glucosidase) and 2.2-fold (lipase) higher inhibition was found in the most active
samples. These results suggest that the number of hydroxyl groups in phenolic compounds to
deactivate digestive enzymes is not as important as they are towards reactive oxygen species and
metal ions.

Myricitrin and quercitrin have shown dose-dependent lipase inhibitory effects, but the first one
had a stronger inhibitory activity [7]. According to Zhang et al. [7], molecular docking analysis showed
that myricitrin bound more tightly than quercitrin to the lipase with a greater number and shorter
distance of hydrogen bonds, which supported their experimental results. As for the structure-activity,
sugar-removed proanthocyanidin extracts showed higher anti-obesity effects in rat models [291] than
that of glycosylated proanthocyanidin extracts.

Polyphenols modulate energetic metabolism, glucose uptake, absorption of cholesterol,
and production of apolipoproteins. Furthermore, phenolic compounds also affect hormones related to
satiety by downregulation of grelin and upregulation of leptin [293]. For example, proanthocyanidin
extracts exerted their anti-obesity effects by upregulating the expression of SIRT1, thus inducing the
deacetylation of PPAR-γ and downregulating the expression of C/EBP-α, as well as upregulating the
expression of BMP4 to boost the levels of brown fat [291].
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Besides inhibiting lipase activity in vitro [278], this study demonstrated that proanthocyanidins
also reduced the accumulation of total triacylglycerols and cholesterol induced by oleic acid
in HepG2 cells. Although another study [31] reported a low potential of proanthocyanidin
rich-fractions from peanut skin compared to that of orlistat, Zhang et al. [278] supported the
hypolipidemic property of these compounds. These authors reported that proanthocyanidins
significantly increased the phosphorylation of AMP-activated protein kinase (AMPK) and thus reduced
triacylglycerols and sterols biosynthesis by inhibiting its downstream proteins, such as acetyl-CoA
carboxylase, 3-hydroxy-3-methylglutaryl-CoA reductase and sterol regulatory element-binding protein.
They also stated that proanthocyanidins regulated cellular glucose metabolism by promoting glucose
consumption in HepG2 cells, thus lending support to their use in preventing and/or managing
hyperglycemic diseases.

Myrciaria jaboticaba peel containing phenolics such as cyanidin and ellagic acid prevented fat
weight gain and decreased peripheral insulin resistance in animal models [294]. In another study,
freeze-dried jaboticaba peel was found to decrease saturated fatty acids of rats fed high-fat diets.
Fecal triacylglycerols also increased in high-fat-diet groups (obese rats) given freeze-dried jaboticaba
peel, which showed a dose-dependent response to anthocyanins intake, thus suggesting the role of
anthocyanins in jaboticaba by-products in lowering the absorption of triacylglycerols in vivo [238].
In humans, the intake of M. jaboticaba peel decreased glucose and insulin levels, which indicates
important clinical effects, such as improvement of insulin sensitivity [295].

The correlation between oxidative stress and obesity [296] has been associated with mitochondrial
and hepatic dysfunction and endoplasmic reticulum stress [297]. As mentioned before, polyphenols
are classically known to reduce oxidative stress [297] by scavenging free radicals via modulation of
redox-sensitive enzymes and NRF2, among other mechanisms [297,298]. In this way, ingestion of
polyphenols has been associated with the prevention and control of oxidative stress in obesity [238].

Gut microbiota can biotransform phenolic compounds, producing aglycones and other
derivatives [299] and, on the other hand, polyphenols can also play a role by modulating gut microbiota
in such a prebiotic-like effect [300]. Phenolic compounds are metabolized in the gut and modulate
colonic microbiota [300]. Gut microbiota transforms nutrients and other dietary components into
several metabolites modulating the human immune system and metabolic responses. In this way, as
literature more and more correlates obesity and comorbidities with gut microbiota [301], understanding
how polyphenols can modulate intestinal bacteria composition is crucial to better understand the role
of polyphenols in health promotion.

In summary, randomized controlled trials have shown that diets rich in polyphenols are associated
with reduced obesity parameters [302]. Evidence from studies in vitro, using animal models and
clinical trials [31,294,295], show that several mechanisms could be involved, like modulation of
digestive enzymes, gut microbiota and finally energy metabolism. Furthermore, polyphenols also
modulate low grade inflammation [303], and this topic will be addressed below.
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5.7. Anti-Inflammatory Effects

Inflammation is a host defense response against an invading agent which involves the
participation of immune system cells, such as neutrophils, macrophages and lymphocytes [304,305].
Despite beneficial effects, the occurrence of an inappropriate inflammatory process may commonly
trigger the onset of inflammatory disorders, for instance, rheumatoid arthritis and diabetes
mellitus [306,307]. The daily intake of rich sources of phenolic compounds has been directly associated
with disease prevention, since these substances produce biological effects in the body, particularly due
to their antioxidant and anti-inflammatory properties [308]. Studies have shown that such a broad
class of bioactive compounds is capable of modifying different pathways during the inflammatory
process, by acting through enzymatic inhibition, antagonism of extracellular and intracellular receptors,
modulation of cell signaling pathways, and synthesis of proinflammatory cytokines [308–312].

Recent research has shown the anti-inflammatory potential of several plant food by-products
using in vitro and in vivo experimental models and further isolated and/or characterized the major
bioactive substances present therein [8,313–315]. Among the by-products, the pomace and seeds of
different types of grapes have attracted attention for their anti-inflammatory potential and phenolic
composition. Denny et al. [209] detected the presence of proanthocyanidins, flavan-3-ol monomers and
anthocyanins in the pomace of Petit verdot grapes. The authors further reported that administration of
the extract and fractions from Petit verdot grape pomace reduced inflammation by inhibiting tumor
necrosis factor α (TNF-α) and interleukin-1 beta (IL-1β) in mice.

Proanthocyanidins have also been identified in grapeseed and have shown to be responsible
for modulating the experimental inflammatory response. A study by Chu et al. [225] demonstrated
that a grape seed proanthocyanidins extract (90% polyphenols, which consists of a combination of
ingredients with more than 85% oligomeric proanthocyanidins (OPCs) and more than 7% (+)-catechin
and (−)-epicatechin) was able to suppress the release and expression of inflammatory cytokines
by lipopolysaccharide-stimulated macrophages (LPS). The authors reported that the mechanism of
action of the extract is related to (i) inhibition of phosphorylation of the mitogen-activated protein
kinase (MAPK) and (ii) inhibition of activation of the nuclear factor kappa B (NF-κB). The effects
of the grape seed proanthocyanidins extract were confirmed by Park et al. [226] using a model of
inflammatory disease. These authors showed that the extract containing 98.5% proanthocyanidins, was
effective in reducing bone loss associated with arthritis-induced inflammation. In another study [227],
administration of the grape seed proanthocyanidin extract led to an improvement in the renal lesion of
type 2 diabetic rats, further confirming its beneficial effects.

Tatsuno et al. [213] isolated several proanthocyanins and tested the biological activity of the
peanut skin extract as well as of the isolated proanthocyanidins against the production of inflammatory
cytokines in a human monocytic THP-1 culture. The results indicated that the peanut skin extract
decreased the production of TNF-α and interleukin 6 (IL-6) by THP-1 cells in response to LPS. As
for the biological activity of the isolated compounds, proanthocyanidin dimers and trimers were
more potent compared to monomers or tetramers. Procyanidin B2 has been identified in the peel of
two different varieties of avocado, while Procyanidin B1 was present only in the seed. Furthermore,
epicatechin, another major compound, was present in both peel and seeds [11]. According to the
authors, these compounds were responsible for the inhibitory activity of the phenolic extracts obtained
from these by-products towards the release of TNF-α cytokine and nitric oxide by LPS-stimulated
macrophages. In line with that, Denny et al. [228] identified the compounds epicatechin, quercetin,
myricetin, isovanilic and gallic acid in the pomace extract of Psidium guajava L. The pomace extract
reduced paw edema and peritonitis in carrageenan-challenged mice.
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Different studies have provided scientific evidence that pomegranate by-products are rich in
phenolic compounds and possess significant anti-inflammatory activity [19,21,316,317]. Park et al. [214]
examined the effects of pomegranate peel extract on stimulated THP-1 cells. The extract was found to
have a suppressive effect on the production of free radicals, the expression of TNF-α, IL-1β, monocyte
chemoattractant protein-1 (MCP-1) and the intercellular adhesion molecule 1 (ICAM-1) and led to
reduced monocyte adhesion to endothelial cells. Such inhibitory activity on monocyte adhesion to
endothelial cells was also observed for the compounds punicalagin and ellagic acid, which can be
found in the pomegranate peel [214].

Punicalagin shows anti-inflammatory activity and is among the major compounds of
pomegranate [316]. A study carried out by BenSaad et al. [318] showed that punicalagin was able
to inhibit the production of nitric oxide, prostaglandin E2 (PGE2) and IL-6 in stimulated RAW 264.7
macrophages. The molecular mechanisms of action of punicalagin on cell signaling (Figure 5) were
elucidated by Xu et al. [319] and Kim et al. [320].

According to Xu et al. [319], the inhibitory activity of punicalagin on the release of inflammatory
cytokines occurs through the reduction of NF-κB activation, as well as through reduction of
phosphorylation of the MAPK c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinases
(ERK) 1/2 and p38 mitogen-activated protein kinases (p38 MAPK). Both effects were shown to be
related to the inhibition of overexpression of the Toll-like receptor mRNA 4. In addition, Kim et al. [320]
found that punicalagin suppresses the activation of NF-κB by preventing degradation of IκB as well
as the translocation of p50 and p65 to the cell nucleus. The authors further showed that punicalagin
inhibited the expression of iNOS and COX2.

Ellagic acid, also one of the most prominent compounds in pomegranate by-products, had its
anti-inflammatory activity evaluated and the mechanisms of action mechanism of action elucidated
(Figure 6) [321–323].

BenSaad et al. [318] also showed that ellagic acid is able to reduce nitric oxide, PGE2 and IL-6
production in stimulated RAW 264.7 macrophages. El-Shitany et al. [324] reported that administration
of ellagic acid reduced acute inflammation in mice. According to these authors, the mechanism of
action is, at least in part, related to reduction of nitric oxide, IL-1β, TNF-α, COX-2 and NF-kB. As for
the chronic inflammation, Allan et al. [325] demonstrated administration of ellagic acid attenuated
arthritis development by reducing proinflammatory cytokines. According to Yu et al. [326] ellagic acid
reduced the expression of VCAM-1 and E-selectin as well as the adhesion of monocytes to endothelial
cells. The reduction of VCAM-1 and E-selectin expression was explained by the inhibition of nuclear
translocation of p65 and p50.

Polymethoxyflavones are a subclass of flavonoids which have also attracted interest because
of their potential to modulate the inflammatory process by blocking the expression of endothelial
cell adhesion molecules and inhibiting the release of inflammatory cytokines [327]. These bioactive
substances were found in sweet orange peel, which adds economic value to its by-product [212].
In addition to sweet orange, the anti-inflammatory activity of berries and their by-products have also
been investigated [328–330]. A study carried out by Park et al. [205] found that the tannin fraction
obtained from black raspberry seeds was able to reduce the levels of nitric oxide in a culture of
stimulated macrophages. The chemical composition of the tannin fraction mainly showed the presence
of ellagitannins, which are substances with diverse biological effects in the organism, including
anti-inflammatory properties.
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6. Conclusions

Plant food by-products have attracted much attention due to their potential as a source of
bioactive compounds. Phenolic compounds are of special interest due to their preventive action against
cardiovascular disease and certain types of cancer, which have been linked to the antioxidant activity,
reducing power, and chelation capacity of these phytochemicals. Increasing interest of their action in
the management of metabolic disorders such as diabetes and obesity has also been found. In addition,
polyphenols may render anti-inflammatory effects. For these reasons, their application in the area of
functional foods and nutraceuticals has been recommended. However, some hurdles and challenges
should be addressed, as discussed in this review which also briefly summarized some of them,
which included the safety, characterization, and evaluation of potential health benefits. Genetic control
of phenolic biosynthesis is complex and involves a matrix of overlapping regulatory signals during
plant development. For some of the key compounds, such as flavonoids, there is now a very good
understanding of the nature of those signals and how the signal transduction pathway connects to
the activation of phenolic biosynthetic genes. As for the safety, more attention should be paid to the
microbiological and toxicological aspects of the starting material and final product. Identification
should take into account the fraction containing soluble phenolics, and the insoluble-bound fraction
must be included. Literature on the use of alkaline versus enzymatic extraction is scarce. Identification
of phenolics still suffers from lack of commercial standards, therefore the use of HPLC itself is not
the best tool for such a purpose, thus the use of hyphenated techniques (e.g., LC-MSn) is deemed
necessary. Consequently, development of a functional ingredient or nutraceutical should consider all
these aspects.
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198. Ma, Y.; Kosińska-Cagnazzo, A.; Kerr, W.L.; Amarowicz, R.; Swanson, R.B.; Pegg, R.B. Separation and
characterization of soluble esterified and glycoside-bound phenolic compounds in dry-blanched peanut
skins by liquid chromatography–electrospray ionization mass spectrometry. J. Agric. Food Chem. 2014, 62,
11488–11504. [CrossRef] [PubMed]

199. Reed, J.D.; Krueger, C.G.; Vestling, M.M. MALDI-TOF mass spectrometry of oligomeric food polyphenols.
Phytochemistry 2005, 66, 2248–2263. [CrossRef] [PubMed]

200. Aguilar-Hernández, I.; Afseth, N.K.; López-Luke, T.; Contreras-Torres, F.F.; Wold, J.P.; Ornelas-Soto, N.
Surface enhanced Raman spectroscopy of phenolic antioxidants: A systematic evaluation of ferulic acid,
p-coumaric acid, caffeic acid and sinapic acid. Vib. Spectrosc. 2017, 89, 113–122. [CrossRef]

201. Mignolet, A.; Mathieu, V.; Goormaghtigh, E. HTS-FTIR spectroscopy allows the classification of polyphenols
according to their differential effects on the MDA-MB-231 breast cancer cell line. Analyst 2017, 142, 1244–1257.
[CrossRef] [PubMed]

202. Ricci, A.; Lagel, M.C.; Parpinello, G.P.; Pizzi, A.; Kilmartin, P.A.; Versari, A. Spectroscopy analysis of phenolic
and sugar patterns in a food grade chestnut tannin. Food Chem. 2016, 203, 425–429. [CrossRef] [PubMed]

203. Truong, V.-L.; Bak, M.-J.; Jun, M.; Kong, A.-N.T.; Ho, C.-T.; Jeong, W.-S. Antioxidant defense and
hepatoprotection by procyanidins from almond (Prunus amygdalus) skins. J. Agric. Food Chem. 2014,
62, 8668–8678. [CrossRef] [PubMed]

204. Madhujith, T.; Izydorczyk, M.; Shahidi, F. Antioxidant properties of pearled barley fractions.
J. Agric. Food Chem. 2006, 54, 3283–3289. [CrossRef] [PubMed]

205. Park, M.; Cho, H.; Jung, H.; Lee, H.; Hwang, K.T. Antioxidant and anti-inflammatory activities of tannin
fraction of the extract from black raspberry seeds compared to grape seeds. J. Food Biochem. 2013, 38, 259–270.
[CrossRef]

206. Rahman, J.; de Camargo, A.C.; Shahidi, F. Phenolic profiles and antioxidant activity of defatted camelina
and sophia seeds. Food Chem. 2017, 240, 917–925. [CrossRef] [PubMed]

207. Rahman, M.J.; de Camargo, A.C.; Shahidi, F. Phenolic and polyphenolic profiles of chia seeds and their
in vitro biological activities. J. Funct. Foods 2017, 35, 622–634. [CrossRef]

208. Guo, J.; Tao, H.; Cao, Y.; Ho, C.-T.; Jin, S.; Huang, Q. Prevention of obesity and type 2 diabetes with aged
citrus peel (chenpi) extract. J. Agric. Food Chem. 2016, 64, 2053–2061. [CrossRef] [PubMed]

209. Denny, C.; Lazarini, J.G.; Franchin, M.; Melo, P.S.; Pereira, G.E.; Massarioli, A.P.; Moreno, I.A.M.;
Paschoal, J.A.R.; Alencar, S.M.; Rosalen, P.L. Bioprospection of Petit Verdot grape pomace as a source
of anti-inflammatory compounds. J. Funct. Foods 2014, 8, 292–300. [CrossRef]

http://dx.doi.org/10.1111/ijfs.12759
http://dx.doi.org/10.1111/j.1750-3841.2007.00637.x
http://www.ncbi.nlm.nih.gov/pubmed/18298714
http://dx.doi.org/10.1016/j.foodchem.2008.02.060
http://dx.doi.org/10.1016/j.fbio.2015.06.002
http://dx.doi.org/10.1111/1750-3841.13644
http://www.ncbi.nlm.nih.gov/pubmed/28178372
http://dx.doi.org/10.1007/s11746-000-0151-0
http://dx.doi.org/10.1016/j.jfca.2006.04.010
http://dx.doi.org/10.1016/j.jff.2015.05.018
http://dx.doi.org/10.1021/jf503836n
http://www.ncbi.nlm.nih.gov/pubmed/25354220
http://dx.doi.org/10.1016/j.phytochem.2005.05.015
http://www.ncbi.nlm.nih.gov/pubmed/15978641
http://dx.doi.org/10.1016/j.vibspec.2017.02.002
http://dx.doi.org/10.1039/C6AN02135B
http://www.ncbi.nlm.nih.gov/pubmed/27924981
http://dx.doi.org/10.1016/j.foodchem.2016.02.105
http://www.ncbi.nlm.nih.gov/pubmed/26948634
http://dx.doi.org/10.1021/jf5027247
http://www.ncbi.nlm.nih.gov/pubmed/25119859
http://dx.doi.org/10.1021/jf0527504
http://www.ncbi.nlm.nih.gov/pubmed/16637686
http://dx.doi.org/10.1111/jfbc.12044
http://dx.doi.org/10.1016/j.foodchem.2017.07.098
http://www.ncbi.nlm.nih.gov/pubmed/28946362
http://dx.doi.org/10.1016/j.jff.2017.06.044
http://dx.doi.org/10.1021/acs.jafc.5b06157
http://www.ncbi.nlm.nih.gov/pubmed/26912037
http://dx.doi.org/10.1016/j.jff.2014.03.016


Int. J. Mol. Sci. 2018, 19, 3498 41 of 47

210. Lingua, M.S.; Fabani, M.P.; Wunderlin, D.A.; Baroni, M.V. In vivo antioxidant activity of grape, pomace and
wine from three red varieties grown in Argentina: Its relationship to phenolic profile. J. Funct. Foods 2016, 20,
332–345. [CrossRef]

211. Albishi, T.; John, J.A.; Al-Khalifa, A.S.; Shahidi, F. Antioxidative phenolic constituents of skins of onion
varieties and their activities. J. Funct. Foods 2013, 5, 1191–1203. [CrossRef]

212. Li, S.; Lo, C.Y.; Ho, C.T. Hydroxylated polymethoxyflavones and methylated flavonoids in sweet orange
(Citrus sinensis) peel. J. Agric. Food Chem. 2006, 54, 4176–4185. [CrossRef] [PubMed]

213. Tatsuno, T.; Jinno, M.; Arima, Y.; Kawabata, T.; Hasegawa, T.; Yahagi, N.; Takano, F.; Ohta, T.
Anti-inflammatory and anti-melanogenic proanthocyanidin oligomers from peanut skin. Biol. Pharm. Bull.
2012, 35, 909–916. [CrossRef] [PubMed]

214. Park, S.; Seok, J.K.; Kwak, J.Y.; Suh, H.-J.; Kim, Y.M.; Boo, Y.C. Anti-inflammatory effects of pomegranate
peel extract in THP-1 cells exposed to particulate matter PM10. Evid.-Based Complement. Altern. Med. 2016.
[CrossRef] [PubMed]

215. Muliterno, M.M.; Rodrigues, D.; de Lima, F.S.; Ida, E.I.; Kurozawa, L.E. Conversion/degradation of
isoflavones and color alterations during the drying of okara. LWT Food Sci. Technol. 2017, 75, 512–519.
[CrossRef]

216. Smith, L.L. Cytokine hypothesis of overtraining: A physiological adaptation to excessive stress? Med. Sci.
Sports Exerc. 2000, 32, 317–331. [CrossRef] [PubMed]

217. Toscano, L.T.; Silva, A.S.; Toscano, L.T.; Tavares, R.L.; Biasoto, A.C.T.; de Camargo, A.C.; da Silva, C.S.O.;
Gonçalves, M.C.R.; Shahidi, F. Phenolics from purple grape juice increase serum antioxidant status and
improve lipid profile and blood pressure in healthy adults under intense physical training. J. Funct. Foods
2017, 33, 419–424. [CrossRef]

218. Leopoldini, M.; Marino, T.; Russo, N.; Toscano, M. Antioxidant properties of phenolic compounds: H-atom
versus electron transfer mechanism. J. Phys. Chem. A 2004, 108, 4916–4922. [CrossRef]

219. Granato, D.; Shahidi, F.; Wrolstad, R.; Kilmartin, P.; Melton, L.D.; Hidalgo, F.J.; Miyashita, K.; Camp, J.V.;
Alasalvar, C.; Ismail, A.B.; et al. Antioxidant activity, total phenolics and flavonoids contents: Should we ban
in vitro screening methods? Food Chem. 2018, 264, 471–475. [CrossRef] [PubMed]

220. Koroleva, O.; Torkova, A.; Nikolaev, I.; Khrameeva, E.; Fedorova, T.; Tsentalovich, M.; Amarowicz, R.
Evaluation of the antiradical properties of phenolic acids. Int. J. Mol. Sci. 2014, 15, 16351. [CrossRef]
[PubMed]

221. Prior, R.L. Oxygen radical absorbance capacity (ORAC): New horizons in relating dietary
antioxidants/bioactives and health benefits. J. Funct. Foods 2015, 18, 797–810. [CrossRef]

222. Shahidi, F.; Zhong, Y. Measurement of antioxidant activity. J. Funct. Foods 2015, 18, 757–781. [CrossRef]
223. Rahman, M.J.; Ambigaipalan, P.; Shahidi, F. Biological activities of camelina and sophia seeds phenolics:

Inhibition of LDL oxidation, DNA damage, and pancreatic lipase and α-glucosidase activities. J. Food Sci.
2018, 83, 237–245. [CrossRef] [PubMed]

224. Iora, S.R.F.; Maciel, G.M.; Zielinski, A.A.F.; da Silva, M.V.; Pontes, P.V.A.; Haminiuk, C.W.I.; Granato, D.
Evaluation of the bioactive compounds and the antioxidant capacity of grape pomace. Int. J. Food Sci. Technol.
2015, 50, 62–69. [CrossRef]

225. Chu, H.; Tang, Q.; Huang, H.; Hao, W.; Wei, X. Grape-seed proanthocyanidins inhibit the
lipopolysaccharide-induced inflammatory mediator expression in RAW264.7 macrophages by suppressing
MAPK and NF-κB signal pathways. Environ. Toxicol. Pharmacol. 2016, 41, 159–166. [CrossRef] [PubMed]

226. Park, J.S.; Park, M.K.; Oh, H.J.; Woo, Y.J.; Lim, M.A.; Lee, J.H.; Ju, J.H.; Jung, Y.O.; Lee, Z.H.; Park, S.H.;
et al. Grape-seed proanthocyanidin extract as suppressors of bone destruction in inflammatory autoimmune
arthritis. PLoS ONE 2012, 7, e51377. [CrossRef] [PubMed]

227. Bao, L.; Zhang, Z.; Dai, X.; Ding, Y.; Jiang, Y.; Li, Y. Effects of grape seed proanthocyanidin extract on renal
injury in type 2 diabetic rats. Mol. Med. Rep. 2015, 11, 645–652. [CrossRef] [PubMed]

228. Denny, C.; Melo, P.S.; Franchin, M.; Massarioli, A.P.; Bergamaschi, K.B.; de Alencar, S.M.; Rosalen, P.L. Guava
pomace: A new source of anti-inflammatory and analgesic bioactives. BMC Complement. Altern. Med. 2013,
13, 235. [CrossRef] [PubMed]

229. Albishi, T.; John, J.A.; Al-Khalifa, A.S.; Shahidi, F. Antioxidant, anti-inflammatory and DNA scission
inhibitory activities of phenolic compounds in selected onion and potato varieties. J. Funct. Foods 2013, 5,
930–939. [CrossRef]

http://dx.doi.org/10.1016/j.jff.2015.10.034
http://dx.doi.org/10.1016/j.jff.2013.04.002
http://dx.doi.org/10.1021/jf060234n
http://www.ncbi.nlm.nih.gov/pubmed/16756344
http://dx.doi.org/10.1248/bpb.35.909
http://www.ncbi.nlm.nih.gov/pubmed/22687483
http://dx.doi.org/10.1155/2016/6836080
http://www.ncbi.nlm.nih.gov/pubmed/27247608
http://dx.doi.org/10.1016/j.lwt.2016.09.031
http://dx.doi.org/10.1097/00005768-200002000-00011
http://www.ncbi.nlm.nih.gov/pubmed/10694113
http://dx.doi.org/10.1016/j.jff.2017.03.063
http://dx.doi.org/10.1021/jp037247d
http://dx.doi.org/10.1016/j.foodchem.2018.04.012
http://www.ncbi.nlm.nih.gov/pubmed/29853403
http://dx.doi.org/10.3390/ijms150916351
http://www.ncbi.nlm.nih.gov/pubmed/25229820
http://dx.doi.org/10.1016/j.jff.2014.12.018
http://dx.doi.org/10.1016/j.jff.2015.01.047
http://dx.doi.org/10.1111/1750-3841.14007
http://www.ncbi.nlm.nih.gov/pubmed/29278656
http://dx.doi.org/10.1111/ijfs.12583
http://dx.doi.org/10.1016/j.etap.2015.11.018
http://www.ncbi.nlm.nih.gov/pubmed/26708200
http://dx.doi.org/10.1371/journal.pone.0051377
http://www.ncbi.nlm.nih.gov/pubmed/23251512
http://dx.doi.org/10.3892/mmr.2014.2768
http://www.ncbi.nlm.nih.gov/pubmed/25351255
http://dx.doi.org/10.1186/1472-6882-13-235
http://www.ncbi.nlm.nih.gov/pubmed/24063346
http://dx.doi.org/10.1016/j.jff.2013.02.005


Int. J. Mol. Sci. 2018, 19, 3498 42 of 47

230. Singh, R.P.; Murthy, K.N.C.; Jayaprakasha, G.K. Studies on the antioxidant activity of pomegranate (Punica
granatum) peel and seed extracts using in vitro models. J. Agric. Food Chem. 2002, 50, 81–86. [CrossRef]
[PubMed]

231. Braughler, J.M.; Duncan, L.A.; Chase, R.L. The involvement of iron in lipid peroxidation. Importance of
ferric to ferrous ratios in initiation. J. Biol. Chem. 1986, 261, 10282–10289. [PubMed]

232. Troncoso, J.C.; Costello, A.C.; Kim, J.H.; Johnson, G.V.W. Metal-catalyzed oxidation of bovine neurofilaments
in vitro. Free Radic. Biol. Med. 1995, 18, 891–899. [CrossRef]

233. Tournour, H.H.; Segundo, M.A.; Magalhães, L.M.; Barreiros, L.; Queiroz, J.; Cunha, L.M. Valorization of
grape pomace: Extraction of bioactive phenolics with antioxidant properties. Ind. Crops Prod. 2015, 74,
397–406. [CrossRef]
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