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Simple Summary: Somatic cell nuclear transfer (SCNT) is a technique used to reproduce individuals
from their somatic cell nucleus, which is commonly known as cloning. In SCNT, viable cell lines
are usually established from living animals and preserved for future use. In the present study,
tissues were collected and cryopreserved (rather than cells) from a suddenly deceased champion
show camel. We established fibroblast cell lines from this decade-old vitrified tissue and used
them as nuclear donors. Both the in vitro and in vivo matured oocytes were used to produce
cloned embryos. Blastocysts were transferred to synchronized recipients to establish pregnancies.
A total of 18 pregnancies (5 from in vitro matured oocytes and 13 from in vivo matured oocytes)
were established, and 11 live offspring were born (2 from in vitro matured oocytes and 9 from
in vivo matured oocytes). We concluded that fibroblast cell lines could be established from long
cryopreserved tissues, and these cells could be used as nucleus donors to clone animals.

Abstract: Somatic cell nuclear transfer (SCNT) provides a unique opportunity to reproduce animals
with superior genetics. Viable cell lines are usually established from tissues collected by biopsy from
living animals in the SCNT program. In the present study, tissues were collected and preserved
from a suddenly deceased champion camel. We established cell lines from these decade-old tissues
and used them as nuclear donors. After 42 h of in vitro maturation, 68.00 ± 2.40% of oocytes
reached the metaphase II (M II) stage while 87.31 ± 2.57% in vivo collected oocytes were matured at
collection (p < 0.05). We observed a higher blastocyst formation rate when in vivo matured oocytes
(43.45 ± 2.07%) were used compared to in vitro matured oocytes (21.52 ± 1.74%). The live birth rate
was 6.45% vs. 16.67% for in vitro and in vivo matured oocytes, respectively. Microsatellite analysis of
13 camel loci revealed that all the SCNT-derived offspring were identical to each other and with their
somatic cell donor. The present study succeeded in the resurrection of 11 healthy offspring from the
decade-old vitrified tissues of a single somatic cell donor individual using both in vitro and in vivo
matured oocytes.

Keywords: cryopreserved tissue; somatic cell nuclear transfer; in vivo matured oocytes; in vitro
matured oocytes; camels
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1. Introduction

Undoubtedly, the camelids are characterized by not only tremendously large-scale
adaptation capacity but also high parameters related to their zootechnical performance in
captivity. The aforementioned phenotypic traits predestine these pseudo-ruminant cloven-
hoofed mammals to be multiplied by such modern assisted reproductive technologies
(ARTs) as cloning by somatic cell nuclear transfer (SCNT). Nonetheless, achieving the satis-
factory efficiency of intra- and inter-species somatic cell cloning both within the taxonomic
family Camelidae and in other representatives of ruminant and non-ruminant artiodactyls
requires comprehensively recognizing the epigenetic and molecular determinants of suc-
cessfully generating SCNT-derived embryos, conceptuses, and progeny. Among those
determinants, the most important ones appear to be the origin of the ex vivo-expanded
nuclear donor cells (NDCs) [1–5], the approaches applied to ectopically synchronize the
mitotic cycle of NDCs [6–9], and the attributes associated with molecular quality of extra-
corporeally proliferating NDCs. The latter can be negatively correlated with the frequencies
of occurrence noticed for programmed cell death and DNA aneuploidy in NDCs and/or
cloned embryos [10–14]. Furthermore, the pivotal factors determining the SCNT efficacy
encompass epigenetic re-programmability of donor cell nuclear genomes [15–19] and their
communication with mitochondrial DNA fractions [20–24] in SCNT-derived oocytes and
corresponding embryos.

Since the production of the first SCNT-derived one-humped dromedary camel [25],
several breeds or utility types of camels, including beauty, dairy, and racing camels,
have been cloned for scientific and commercial purposes [26]. The two-humped Bac-
trian camel has also been produced by interspecies somatic cell nuclear transfer, using the
dromedary camel as both the oocyte donor and surrogate [27]. The success of the SCNT
procedure largely depends on the availability of viable donor cells. For the SCNT proce-
dure, cell lines are usually established from tissues collected by biopsy and systemically
preserved for future use. Similarly, all previous reports on camel cloning have used
cryopreserved somatic cells as a nuclear donor [25–27].

The show camel, Mabrokan, was arguably the most well-known and historically
valuable camel in the world. He won many beauty competitions over several years,
and while living, remained a champion all the years he competed (Khaleej TimesDh15m
Camel Does His Owner Proud by Winning Big Race-News|Khaleej Times). Mabrokan
weighed over 1000 kg and had a massive head that towered 3 m above his handlers in his
“show stance”. Mabrokan died unexpectedly in 2010 on a day where temperatures reached
an excess of 50 ◦C. There was some foresight to potential use or recovery of the genetic
material at the time of death. However, his carcass was in suboptimal condition for quite a
long time before the practicing Veterinarian conduct skin and testicle biopsies. A decade
later, the decision was made to attempt to recover viable cells from the long dead, but not
forgotten Mabrokan and subsequently resurrect it by SCNT.

Most SCNT studies use somatic cells line established from viable tissues as the integrity
of the genome in the donor nuclei is essential for successful cloning [28]. However, the efforts
that have been undertaken to generate SCNT-derived embryos and/or offspring with
the use of somatic cells originating from tissues frozen in the absence of cryoprotectants
have been successfully accomplished in the mice [29], domestic dogs [30], cattle [31],
and cheetahs [32]. To date, no report on the cloning of camels from vitrified tissues is
known. Here we reported the results of a study aimed at cloning a deceased camel from
decade-old vitrified tissue.

2. Materials and Methods
2.1. Chemicals and Media

All chemicals and reagents were purchased from Sigma (St. Louis, MO, USA), unless
otherwise noted.
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2.2. Oocyte Collection from Slaughterhouse Ovaries

Ovaries were collected from the local slaughterhouse and transported to the laboratory
in lukewarm 0.9% saline solution. Antral follicles with a diameter of 2 to 6 mm were
aspirated with an 18-gauge hypodermic needle attached to a 10 mL disposable syringe to
collect cumulus oocytes complexes (COCs). COCs with dark and homogenous cytoplasm
and having at least three layers of compact cumulus cells were selected for maturation.
COCs were washed three times in Dulbecco’s phosphate-buffered Saline (DPBS; Welgene,
Gyeongsan, KR) supplemented with 5 mg/mL bovine serum albumin (BSA; Thermo fisher
scientific, Waltham, MA, USA) and 1% antibiotic-antimycotic (Thermo fisher scientific,
Waltham, MA, USA). The selected COCs were cultured at 38 ◦C in 5% CO2 in a humidified
atmosphere for 42 h in a commercial IVM media (IVF Bioscience, Falmouth, UK).

2.3. Care and Management of Camel

Experiments were conducted during the local breeding season of the camel, November
2019 to February 2020. Pregnant camels were maintained in the research facility until
parturition. Camels with normal breeding history and without any abnormalities in the
reproductive tract were selected and used as oocyte donors and surrogates. Animals were
daily fed appropriate nutrients and water was given ad libitum. A total of 102 females
(17 egg donors and 85 recipients) that were aged 4–7 years and weighed 400–450 kg were
used in this study.

For ovarian stimulation, a single intramuscular injection of 5000 IU PMSG (Ceva,
Libourne, France) and 500 µg of Closprostenol (Jurox, Rutherford, Australia) was given to
the donor camels and this day is considered as Day 0. The recipients also received a single
intramuscular injection of 1500 IU PMSG and 100 µg of Closprostenol on the same day.
On Day 9, both the donors and recipients were evaluated for super-ovulatory response
by ultrasonography. Camels having at least five follicles with a diameter of 10 mm to
20 mm were finally selected as a donor. Intramuscular injection of 100 µg Gonadorelin
Acetate (Vetoquinol, Paris, France) was given to donors for the final maturation of oocytes.
After 25 to 28 h of injection OPU was performed. The recipient has also received 100 µg of
Gonadorelin Acetate for ovulation and corpus leutium (CL) formation on Day 9.

2.4. Collection and Cryopreservation of Mabrokan Tissue

Postmortem skin tissues were collected aseptically and vitrified following the previ-
ously described report [33]. Briefly, tissues were washed three times with DPBS (Life Technologies,
Carlsbad, CA, USA) containing 1% (w/v) penicillin-streptomycin solution (Invitrogen).
After that, tissues were cut into small pieces (1 cm3) using surgical blades at room tempera-
ture. The pieces were transferred to Dulbecco’s modified Eagle’s medium (DMEM; Thermo
Fisher Scientific, Waltham, MA, USA) supplemented with 20% ethylene glycol (EG) and
10% fetal bovine serum (FBS; Invitrogen, Waltham, MA, USA) for 1 min and subsequently
transferred to DMEM supplemented with 40% EG and 10% FBS into cryo-vials (Nunc,
Roskilde, Denmark). The tissues were then immediately transferred to liquid nitrogen
(−196 ◦C).

2.5. Establishment of Skin Fibroblast Cell Line

The vitrified tissue was thawed as previously reported with minor modifications [33].
Briefly, to remove the cryoprotectant, tissues were kept at room temperature for 5 min then
transferred to DMEM supplemented with 0.3 M sucrose and 10% FBS at 38 ◦C for 5 min
followed by DMEM supplemented with 0.15 M sucrose and 10% FBS for 5 min. Tissues
were then washed 3 times with DMEM supplemented with 10% FBS. After that, samples
were minced into small pieces with a scissor and digested in DMEM supplemented with
0.1% collagenase type II (Thermo Fisher Scientific, Waltham, MA, USA) at 38 ◦C in a
humidified atmosphere with 5% CO2 for 2 h. The dispersed cells were washed with DMEM
by centrifugation at 300× g for 5 min and filtered through a 40 µm nylon strainer (Falcon,
Franklin, NJ, USA). The cell pellets were cultured in DMEM supplemented with 10% FBS
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(Thermo Fisher Scientific, Waltham, MA, USA), 1% nonessential amino acid (Thermo
Fisher Scientific, Waltham, MA, USA), 1% antibiotic-antimycotic (Thermo Fisher Scientific,
Waltham, MA, USA), and 0.1% β-mercaptoethanol (Thermo Fisher Scientific, Waltham,
MA, USA) at 38 ◦C in a humidified atmosphere with 5% CO2. The culture media was
changed every two days until confluence reached 80% and passaged using 0.25% trypsin
EDTA solution.

2.6. Somatic Cell Nuclear Transfer (SCNT)

SCNT was performed following previously described techniques with minor modifica-
tions [25]. In brief, cumulus cell layers were removed from the oocytes by gentle pipetting
with 0.1% hyaluronidase. After being denuded, M II oocytes were stained with 5 µg/mL
bisbenzimide for 3 min to detect the genetic materials. The nucleus and polar bodies were
aspirated from the oocytes and a single fibroblast cell was microinjected into the periv-
itelline space of the oocytes. Non-starved donor cells at their early passage (3 to 5 passage;
70% to 90% confluent) were used as donor nucleus. After that, these reconstructed oocytes
were fused in fusion media composed of 0.26 M mannitol, 0.1 mM MgSO4, 0.5 mM HEPES,
and 0.05% (w/v) BSA with two DC pulses of 1.8 kV/cm for 15 µsec using BTX Electro Cell
Manipulator (BTX Inc., San Diego, CA, USA). After that, the fused oocytes were activated
chemically using 5 µM ionomycin for 3 min and 2.0 mM 6-dimethylaminopurine (6-DMAP)
in BO-IVC (IVF Bioscience, Falmouth, UK) in a humidified incubator of 5% CO2 at 39 ◦C
for 4 h.

2.7. Embryo Culture and Transfer to the Recipient

After activation, reconstructed oocytes were cultured in a commercial embryo culture
media, BO-IVC. A group of 6 to 8 oocytes were cultured in a 30 µL oil-covered droplet at
38 ◦C in a humidified atmosphere with 5% CO2 and 5% O2. Embryos were evaluated at
2 and 7 days for developmental competency to cleavage and blastocyst stage. On day 7,
blastocysts were transferred transvaginally to the left horn of synchronized recipients.

2.8. Pregnancy Diagnosis

Serum progesterone level was measured using Chemiluminescence Immunoassay
(Roche, Basel, Switzerland) after 16 days of blastocyst transfer. An initial rise of serum
progesterone level to >1 ng/mL was considered as pregnant. On day 30, real-time ultra-
sonography was performed at a standing position to confirm the pregnancies. Second
ultrasonography was performed 90 days after ET.

2.9. Microsatellite Analysis

Cloned calf parentage was confirmed using the standard procedure of short tandem
repeats (STR) profiling. Microsatellite analysis was carried out using 13 specific loci for
Camelus dromedarius, as shown in Table 1. The genomic DNA was isolated from individual
donor cells, venous blood of cloned calves, and recipients using the DNA isolation kit from
Qiagen (Qiagen DNeasy Blood and Tissue kit; Qiagen, Hilden, Germany).

2.10. Statistical Analysis

Statistical analysis was performed using SPSS (version 15; SPSS Inc., Chicago, IL,
USA). The student’s t-test was performed to analyze the differences in the development
of embryos between the groups. Pearson Chi-square test and Fisher’s exact test were
conducted to compare the pregnancy rates. Data were represented as mean ± standard
error (SE) and p values less than 0.05 were considered statistically significant.
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Table 1. Characteristics of 13 microsatellite loci for Camelus dromedarius.

Markers Allele Range doi

VOLP10 240–269 https://doi.org/10.1046/j.1365-2052.1999.00526-19.x

VOLP67 145–208 https://doi.org/10.1046/j.1365-2052.1999.00526-19.x

LCA63 198–232 https://doi.org/10.1046/j.1365-2052.1999.00382-8.x

LCA66 224–242 https://doi.org/10.1046/j.1365-2052.1999.00382-8.x

LCA90 234–246 https://doi.org/10.1046/j.1365-2052.1999.00526-21.x

CVRL01 188–253 https://doi.org/10.1046/j.1365-2052.2002.00896_6.x

CVRL05 155–185 https://doi.org/10.1046/j.1365-2052.2002.00896_6.x

CVRL07 270–230 https://doi.org/10.1046/j.1365-2052.2002.00896_6.x

LGU49 224–260 https://doi.org/10.1046/j.1365-294x.2000.01077-3.x

LGU75 184–230 https://doi.org/10.1046/j.1365-294x.2000.01077-3.x

YWLL44 86–120 https://doi.org/10.1111/j.1365-2052.1996.tb00502.x

P149 256–284 https://doi.org/10.1016/j.smallrumres.2009.07.012

PCTD17 172–204 https://doi.org/10.1016/j.smallrumres.2009.07.012

3. Results
3.1. Effect of the Source of Oocytes on Oocyte Maturation

A total of 348 COCs were collected from 26 ovaries obtained from the local slaugh-
terhouse, and 68.00 ± 2.40% of oocytes reached to metaphase II (M II) stage after 42 h
of IVM (Figure 1a). A total of 292 oocytes were collected from 17 camels that received
superstimulation treatment by the ovum pick up (OPU) method. The mean oocyte number
of oocytes per camel was 17.18 ± 1.98% while 87.31 ± 2.57% was at the MII stage during
collection. We observed significantly (p < 0.05) higher maturation potential of the collected
oocytes derived from OPU compared with oocytes from the slaughterhouse.
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Figure 1. (a). In vivo and in vitro maturation rate of camel oocytes. (b) Developmental rate of SCNT-derived camel embryos
using in vitro and in vivo matured oocytes, * in the same group indicates a significant difference (p < 0.05).

3.2. Developmental Competence of SCNT-Derived Embryos

The developmental competence of reconstructed embryos with in vitro or in vivo
matured oocytes is presented in Figure 1b. The percentage of fused oocytes was 61.52% and
69.31% in in vitro and in vivo matured oocytes group, respectively. These differences were
not significant (p > 0.05). The percentage of cleaved oocytes was 62.12% and 78.31%, and the
blastocyst formation rate was 21.52% and 43.45% in in vitro and in vivo matured oocytes
group, respectively (p < 0.05). The representative photograph of blastocysts produced by
in vitro and in vivo matured oocytes are shown in Figure 2.
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Figure 2. Representative photographs of blastocysts produced by SCNT using (a) in vitro matured
oocytes (b) in vivo matured oocytes.

3.3. Efficiency of Pregnancy Rate and Parental Analysis of Cloned Camel

A total of 61 blastocysts derived from in vivo-matured oocytes were transferred to
54 surrogates, and 35 blastocysts derived from in vitro-matured oocytes were transferred
to 31 recipients. Among the 54 surrogates in the in vivo matured oocytes group, 13 (24.07%)
pregnancies were detected, and 9 (16.67%) live births were obtained. Among the 35 recipients
in in vitro maturation group, 5 (16.12%) pregnancies were detected, and 2 (6.45%) live
births were obtained (Figure 3a). There was no significant difference in the efficiencies of
pregnancy and live birth in the in vivo-matured oocyte group compared with the in vitro
matured group.
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Figure 3. (a). Pregnancy and live birth rate following SCNT-derived ET (b) Pregnancy loss following SCNT-derived ET.
The differences were not significant (p > 0.05).

Among the 5 pregnancies in the in vitro group, 2 (40%) pregnancies were lost before
90 days of pregnancy and 1 (20%) late abortion was observed at 24 weeks of pregnancy
(Figure 3b). Among the 13 pregnancies in the in vivo group, 4 (30.76%) pregnancies were
lost before 90 days of pregnancy, and no late abortion was observed in this group.

Microsatellite analysis of 13 camel loci revealed that all the SCNT-derived offspring
were identical to each other and with their somatic cell donor (Table 2). The representative
photograph of cloned offspring is shown in Figure 4.
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Table 2. Microsatellite analysis of donor cells, cloned offspring, and surrogates.

Markers Donor Cells Cloned Offspring Surrogates

VOLP10 259/265 259/265 249/259, 251/259, 249/259, 249/249, 249/259,
249/251, 251/259, 251/251, 249/259, 249/251, 249/259

VOLP67 147/147 147/147 178/178, 155/186, 176/190, 176/186, 153/192,
153/153, 178/188, 153/155, 155/188, 153/178, 153/155

LCA63 212/220 212/220 216/220, 214/216, 216/218, 216/220, 214/220,
212/214, 218/220, 216/220, 214/220, 214/220, 214/220

LCA66 240/240 240/240 238/240, 238/240, 238/240, 238/238, 234/234,
234/240, 234/238, 238/240, 238/238, 234/238, 234/238

LCA90 238/240 238/240 240/242, 240/240, 238/238, 240/240, 240/240,
240/240, 240/240, 238/240, 240/242, 238/240, 240/240

CVRL01 228/234 228/234 204/234, 226/234, 212/214, 202/214, 212/214,
218/224, 226/246, 234/234, 234/234, 228/228, 214/214

CVRL05 163/171 163/171 159/169, 171/179, 159/171, 159/159159/169, 159/159,
159/171, 171/171, 159/159, 159/171, 159/169

CVRL07 295/295 295/295 285/285, 281/285, 285/285, 273/277, 273/277,
273/281, 295/295, 281/285, 281/281, 273/273, 277/277

LGU49 223/235 223/235 223/239, 239/242, 239/242, 221/231, 225/225,
223/229, 223/225, 225/225, 223/225, 225/229, 225/229

LGU75 188/226 188/226 194/204, 204/228, 188/204, 192/204, 192/204,
204/224, 188/230, 208/208, 188/230, 188/204, 192/224

YWLL44 148/167 148/167 135/179, 163/169, 135/163, 148/176, 135/135,
135/163, 135/163, 135/135, 135/167, 135/167, 148/163

P149 268/284 268/284 260/284, 260/284, 268/268, 260/260, 260/268,
260/284, 260/268, 260/284, 260/284, 260/260, 260/268

PCTD17 184/184 184/184 184/192, 188/192, 188/192, 192/192, 184/192,
188/192, 184/188, 188/188, 184/188, 184/188, 192/192

Microsatellite analysis was performed on genomic DNA from cloned offspring, surrogate, and donor cells. The values of all markers were
confirmed identically in all cloned offspring. Values represent the base pairs of the amplified microsatellite DNA markers in each sample.
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4. Discussion

In the present study, we have demonstrated that healthy cloned offspring could
be obtained by nuclear transfer using donor nuclei obtained from decade-old vitrified
tissues of a suddenly deceased champion show camel named Mabrokan. Generally, tissue
biopsy is taken ante-mortem and cell lines are established and cryopreserved at their
early passage for future use as a nuclear donor in the SCNT program [25–27]. Here,
we established a primary fibroblast cell line from deceased and vitrified dermal tissues and
produced 11 viable offspring from those somatic cells. To our best knowledge, this is the
first large-scale report of a cloned camel from cryopreserved tissue collected from a single
deceased animal.

The developmental capacity of reconstructed embryos is influenced by the intrinsic
quality of oocytes [34]. Proper nuclear and cytoplasmic maturation is the key element
of a good quality oocyte. In vivo matured oocytes are generally considered superior in
quality compared with in vitro matured oocytes, as they contain a higher concentration of
glutathione, which is an important indicator of cytoplasmic maturation [35,36]. We have
observed a greater blastocyst formation rate (43.45%) when in vivo matured oocytes were
used compared to in vitro matured oocytes (21.52%). In a previous study involving camels,
Wani et al. [9] reported greater cleavage and blastocyst production rate following SCNT
using in vivo matured oocytes compared with in vitro matured oocytes. Akagi et al. [37]
reported an improvement of developmental competence of bovine SCNT-derived embryos
by using in vivo-matured oocytes. These low developmental competencies of in vitro
matured oocytes may be due to the inferior quality of cytoplasmic maturation. However,
the cellular mechanism involved in cytoplasmic maturation in the oocyte is unclear. Mat-
uration medium or intrinsic quality of oocytes or both may be responsible for improper
cytoplasmic maturation and decreased potential of embryonic development [38].

In vitro developmental parameters of reconstructed embryos such as blastocyst pro-
duction rate significantly varies according to the source of oocytes, no differences were
observed in the efficiency of pregnancy and live birth rates. The mean live birth rate ranges
from 6.45% to 16.67% in different groups. This cloning efficiency is comparable to that using
cell lines established using live normal tissues [25–27]. We have reported to our earlier
study that fibroblast cell lines established from vitrified tissues showed similar growth
patterns, apoptosis rate, and mitochondrial metabolism with cells from fresh tissues [39].
Furthermore, the blastocyst production rate after SCNT was also similar in both groups.

A higher rate of pregnancy loss compared to other domestic animals was observed in
the present study. Pregnancy loss varied from 30.76% to 60.0% in in vivo and in vitro
matured oocyte groups. Wani et al. [25] reported a higher rate of pregnancy losses
(33% to 100%) within the first 3 months of pregnancy following transfer of blastocyst
produced by SCNT using different cell lines. Even in natural breeding higher incidence of
early embryonic loss (30% to 40%) was reported in camels [40]. No pregnancy loss was
observed after 90 days of pregnancy in in vivo matured oocyte group, whereas 20% (1 out
of 5 pregnancies) abortion was observed at 168 days of gestation. Vettical et al. [41] re-
ported a similar pattern of pregnancy loss in camel following the transfer of SCNT-derived
embryos; they observed 18% pregnancy loss within 60 days of pregnancy, and 7% (1 out of
15 pregnancies) of pregnancy loss after 90 days of gestation. Determine the exact causes
of higher embryonic loss in camel is difficult, as numerous factors may complicate the
diagnosis. However, the intrinsic quality of reconstructed embryos, abnormal epigenetic
reprogramming of somatic cell nucleus, chromosomal abnormalities, and luteal deficiency
in surrogates may be the important causes of pregnancy loss in camel [42].

5. Conclusions

The present study succeeded in the resurrection of 11 healthy offspring from decade-
old vitrified tissues of a single somatic cell donor individual. Although the in vivo and
in vitro matured oocytes differ in the ability to generate blastocysts, the source of oocytes
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does not appear to differ in the production of healthy offspring, hence in vivo and in vitro
oocytes could be used in camel cloning.
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Abbreviation Meaning
6-DMAP 6-dimethylaminopurine
BSA Bovine serum albumin
CL Corpus leutium
COC Cumulus oocytes complex
DMEM Dulbecco’s modified Eagle’s medium
DPBS Dulbecco’s phosphate-buffered saline
EG Ethylene glycol
FBS Fetal bovine serum
NDC Nuclear donor cell
SCNT Somatic cell nuclear transfer
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