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Abstract

Biomotors have been classified into linear and rotational motors. For 35 years, it has been 

popularly believed that viral dsDNA-packaging apparatuses are pentameric rotation motors. 

Recently, a third class of hexameric motor has been found in bacteriophage phi29 that utilizes a 

mechanism of revolution without rotation, friction, coiling, or torque. This review addresses how 

packaging motors control dsDNA one-way traffic; how four electropositive layers in the channel 

interact with the electronegative phosphate backbone to generate four steps in translocating one 

dsDNA helix; how motors resolve the mismatch between 10.5 bases and 12 connector subunits per 

cycle of revolution; and how ATP regulates sequential action of motor ATPase. Since motors with 

all number of subunits can utilize the revolution mechanism, this finding helps resolve puzzles and 

debates concerning the oligomeric nature of packaging motors in many phage systems. This 

revolution mechanism helps to solve the undesirable dsDNA supercoiling issue involved in 

rotation.
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Viral DNA packaging motors—a marvelous field with disputes

The importance of nanomotors for cells or nanotechnology is akin to that of mechanical 

motors to daily life. Mechanical motors power cars to drive us to destinations, and 

nanobiomotors translocate DNA, RNA, and other cargo to facilitate biological functions. 

Extensive studies on nanobiomotors have resulted in many fabulous and marvelous findings, 

but also much wonderment and conjecture, as well as puzzles and mystery, even fervent 

debates and disputes. Historically, nanobiomotors have been found to use two types of motor 

mechanisms: linear and rotational (Grigoriev et al., 2004; Vale, 1993). For 35 years, it has 

been popularly believed that the DNA packaging machines of dsDNA viruses are pentameric 

rotation motors (Hendrix, 1978; Aathavan et al., 2009; Ding et al., 2011; Moffitt et al., 2009; 
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Caspar and Klug, 1962; Morais et al., 2001; Sun et al., 2008; Simpson et al., 2000). 

Recently, the bacteriophage phi29 DNA packaging motor has been described as a 

handicapped pentamer with one non-functional subunit and four rotating subunits (Chistol et 

al., 2012; Moffitt et al., 2009; Yu et al., 2010). Many other models have also been proposed 

for the motor action of dsDNA viruses (Guo et al., 1998; Chen and Guo, 1997; Black and 

Silverman, 1978; Maluf et al., 2006; Moffitt et al., 2009; Aathavan et al., 2009) (for review, 

see (Guo, 1994; Guo and Lee, 2007; Rao and Feiss, 2008; Zhang et al., 2012; Serwer, 

2003)). However, the latest thorough investigation has unexpectedly revealed that the phi29 

DNA packaging motor is a hexameric revolution motor that does not rotate (Guo et al., 

1998; Shu et al., 2007; Zhang et al., 2012; Schwartz et al., 2013b; Schwartz et al., 2013a; 

Zhao et al., in press), a discovery disparate to previous models.

In living organisms, a common fundamental process is the transportation of dsDNA from 

one cellular compartment to another. The AAA+ (ATPases associated with a variety of 

cellular activities) superfamily includes a class of nanomotors that facilitate a wide range of 

functions (Zhang and Wigley, 2008; Snider and Houry, 2008; Snider et al., 2008; 

Ammelburg et al., 2006), many of which are involved in dsDNA riding, tracking, packaging, 

and translocation that are critical to DNA repair, replication, recombination, chromosome 

segregation, DNA/RNA transportation, membrane sorting, cellular reorganization, and other 

processes (Martin et al., 2005; Ammelburg et al., 2006). One common feature of many 

nanomotors is a hexameric arrangement of subunits (Mueller-Cajar et al., 2011; Wang et al., 

2011; Aker et al., 2007; Willows et al., 2004; Chen et al., 2002). Despite their functional 

diversity, the common characteristic of this family is their ability to convert energy obtained 

from the binding or hydrolysis of ATP γ-phosphate bond into mechanical force, usually 

involving a conformational change of the ATPase. The change in conformation generates a 

gain or a loss of affinity for its substrate inducing a mechanical movement that either makes 

or breaks contacts between macromolecules. This results in local/global protein unfolding, 

complex assembly/disassembly, or grabbing/pushing of dsDNA for translocation (McNally 

et al., 2010; Guenther et al., 1997; Schwartz et al., 2012). The hexagonal shape of the motor 

facilitates bottom-up assembly in nanomachine manufacturing and produces stable 

structures, arrangements, and robust machines that may be functionalized in human cells to 

remedy functional defects that will advance the emerging field of RNA nanotechnology 

(Guo, 2010; Zhang et al., 2012; Shu et al., 2013a).

DsDNA (double-stranded DNA) viruses translocate their genomic DNA into preformed 

protein shells, termed procapsids, during replication (see reviews (Guo and Lee, 2007; Rao 

and Feiss, 2008; Zhang et al., 2012; Serwer, 2010)). This entropically unfavorable process is 

accomplished by a nanomotor that also uses ATP as an energy source (Guo et al., 1987c; 

Chemla et al., 2005; Hwang et al., 1996; Sabanayagam et al., 2007; Lee et al., 2008). The 

dsDNA packaging motor consists of a protein channel and two packaging molecules that 

carry out its activities. A discovery 25 years ago showed that the larger molecule serves as 

part of the ATPase complex, and that the smaller one is responsible for dsDNA binding and 

cleaving (Guo et al., 1987c); this idea now is well-established for many different viruses. 

Besides the well-characterized connector channel functioning as a portal (Bazinet and King, 

1985), the motor of phage phi29 involves an ATPase protein gp16 (Fig. 1) (Guo et al., 

1987c; Guo et al., 1987b; Huang and Guo, 2003a; Huang and Guo, 2003b; Lee and Guo, 
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2006; Lee et al., 2008; Ibarra et al., 2001; Grimes and Anderson, 1990) and a hexameric 

packaging RNA ring (Guo et al., 1987a; Guo et al., 1998; Shu et al., 2007; Zhang et al., in 

press). The motor connector portal contains a center channel created by 12 circling copies of 

the protein gp10 that provides a pathway for dsDNA translocation (Jimenez et al., 1986; 

Guasch et al., 2002; Badasso et al., 2000).

Cellular proteins that show a strong similarity to the phi29 viral DNA packaging motor 

include FtsK, a hexameric motor that transports DNA and separates intertwined 

chromosomes during cell division, and members of the SpoIIIE family (Lowe et al., 2008; 

Demarre et al., 2013; Barre, 2007), other hexamers responsible for transportation of DNA 

from mother cell to pre-spore during Bacillus subtilis cell division (Bath et al., 2000). FtsK 

contains three components: one for DNA translocation, one for orientation control, and one 

for anchoring to the substrate. Extensive studies suggest that FtsK employs a “rotary 

inchworm” mechanism to transport DNA. During each cycle of ATP binding and hydrolysis 

within each FtsK subunit, one motif acts to tightly bind to the helix while the other 

progresses forward along the dsDNA. This process causes translational movement and is 

repeated by handing off of the helix to an adjacent subunit (Massey et al., 2006).

Many mysteries have been encountered during the course of study of dsDNA translocation 

motors. It was found that the FtsK protein transport closed circular dsDNA without covalent 

bond breakage or DNA topology changes (Grainge, 2013; Demarre et al., 2013), and other 

motors were found to operate as a one-way traffic machine to control DNA movement, 

despite the intrinsic symmetry of the double-stranded DNA helix, and some allow dsDNA to 

cross cell membranes without affecting the hydrophobic or hydrophilic nature of the 

membrane (Demarre et al., 2013). Some motor channel walls display a swirl or pinwheel 

shaped structure, but no physical rotation components have been confirmed. This mini-

review focuses on addressing the following puzzles, primarily focusing on the phi29 

packaging motor: 1. Is the motor pRNA and ATPase a hexamer or a pentamer? 2. How can 

the revolution motors transport a DNA helix with such an unusual strong force without 

rotating, coiling, or torsion? 3. How does the motor execute unidirectional transportation? 4. 

Do positively charged amino acids facilitate movement of negatively charged dsDNA, and 

how does the motor resolve the mismatch between a dsDNA helix of 10.5 bases/360° and 

the 12 subunit connector? 5. Why, in certain cases, does the motor display physical motion 

without ATP hydrolysis?

Puzzle 1. is the motor pRNA a hexamer or a pentamer?

In 1987, an RNA component was discovered in the phi29 DNA packaging motor (Guo et al., 

1987a) and the RNA was shown to be a hexameric ring (Guo et al., 1998; Zhang et al., 

1998). AFM imaging and an RNA crystal structure at 3.05 Å resolution confirmed that 

phi29 pRNA form a hexamer ring on the DNA packaging motor (Fig. 1) (Zhang et al., in 

press; Schwartz et al., 2013a). These findings end the long-term debate regarding whether 

the pRNA is a pentamer or a hexamer. This part of the review serves to comment on why a 

hexamer has also been reported as a pentamer to shed light on future structural studies of 

RNA.
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Why has the hexameric pRNA structure been reported as a pentamer in other 
crystal structure computation?—Phi29 pRNA contain a three-way junction (3WJ) 

core that displays an unusual thermodynamic stability (Shu et al., 2011). This core has a 

primary role in driving the folding of the entire pRNA to produce its mature global structure. 

The thermodynamically stable pRNA 3WJ scaffold can be assembled from three RNA 

strands; and various functional small RNA motifs or fragments, when fused to the three arms 

of this pRNA 3WJ, fold into their authentic structures (Shu et al., 2011; Haque et al., 2012; 

Reif et al., 2013; Shu et al., 2013b) in vitro and in vivo, supporting the assumption that the 

fragments used to make the pRNA 3WJ core adopts the same structure as within the full 

pRNA (Shu et al., 2011). The 3WJ displays an unusual thermodynamic stability, is stable in 

serum, remains intact at ultra-low concentrations, and is resistant to 8 M urea. The crystal 

structure by Zhang et al. revealed two divalent metal ions that coordinate four nucleotides of 

the pRNA 3WJ (Fig. 2). The global structure of the resulting pRNA/connector complex is 

similar to a hexamer model derived from biochemical and biophysical data (Hoeprich and 

Guo, 2002). However, different from the authentically folded RNA of Zhang et al., in the 

RNA crystal structure by Ding et al. (2011) the RNA is different, likely because two of the 

four nucleotides responsible for the coordination of Mg2+ are missing. In addition, several 

nucleotides in the 3WJ core region and the procapsid binding domain were mutated (Fig. 

2D). These differences result in an RNA structure that is different from the pRNA folding 

driven by the 3WJ core. Our results suggest that an RNA core with the lowest Gibbs free 

energy (ΔG) is critical for RNA folding, and alteration of nucleotides in the core region will 

change the RNA global folding. It is important to note that the pRNA model derived from 

computational and biochemical methods 11 years ago (Fig. 2F) is very close to the most 

recent one derived from the crystal structure (Fig. 2G).

Why has cryo-EM imaging of the same pRNA complex resulted in a hexamer 
structure in one lab and a pentamer in another lab?—Using similar cryo-EM 

approaches for reconstructions, both hexameric (Ibarra et al., 2000) and pentameric (Morais 

et al., 2001; Simpson et al., 2000) pRNA images have been reported. The possible cause for 

this discrepancy could be due to the special property of RNA that differs from proteins. 

Application of cryo-EM for RNA structural studies remains challenging due to the 

sensitivity of RNA to RNase degradation during sample preparation, as well as structural 

flexibility resulting from different energy landscape in RNA folding (Hofacker et al., 2010; 

Li et al., 2007). Cryo-EM reconstructions depend on computation to average the copy 

number and structure of the complex. Degradation by RNase can result in an apparent lower 

copy number of pRNA per procapsid than found in vivo. RNase degraded during single 

molecule photobleaching studies resulting in an underestimation of the copy number (Shu et 

al., 2007), and a hexamer perceived as pentamer (Chistol et al., 2012; Yu et al., 2010; Morais 

et al., 2008; Comolli et al., 2008). Different environments can also make the computation 

averaging of RNA structure difficult because of the structural flexibility that RNA gains 

from different energy landscapes.

The presence of hexameric folds in the motor have been revealed by biochemical, structural 

studies, nano-fabrication approaches (Guo et al., 1998; Zhang et al., 1998; Hendrix, 1998; 

Bourassa and Major, 2002; Shu et al., 2007; Xiao et al., 2008; Moll and Guo, 2007; Ibarra et 
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al., 2000; Xiao et al., 2010; Zhang et al., in press; Fang et al., 2005), and activity assays 

(Chen et al., 1999; Chen et al., 2000). Single molecule imaging revealed that a fully active 

ring can be formed by either a pure dimer or pure trimer (Xiao et al., 2008). The least 

common multiple of two and three is six, a stoichiometry comparable to the phi29 motor 

portal vertex that contains 12 subunits (Badasso et al., 2000; Guasch et al., 1998). 

Proponents of a pentameric or hexameric pRNA disagree on important aspects of phage and 

motor structure. Hexamer supporters believe that pRNA binds to the dodecameric connector, 

a shape that exhibits 6-fold symmetry. Pentamer supporters suggest that pRNA binds the 5-

fold procapsid shell, but cross-linking approaches have shown that pRNA binds the 

connector protein gp10 and not the procapsid protein (Garver and Guo, 2000; Garver and 

Guo, 1997). Furthermore, pRNA binds to three basic amino acids, Arg–Lys–Arg, near the 

gp10 N-terminus (Xiao et al., 2005; Atz et al., 2007). Proponents of a pentamer have also 

suggested that pRNA hexamers are formed initially, but after binding, one monomer 

dissociates from the procapsid due to a conformational change and leaves behind a bound 

pentamer (Morais et al., 2008; Morais et al., 2001; Ding et al., 2011). However, single 

molecule photobleaching assays show that an active motor still contains six copies of pRNA 

(Shu et al., 2007).

Puzzle 2: is the motor ATPase a hexamer or a pentamer?

Many AAA+ superfamily members are found to be hexamers (Mueller-Cajar et al., 2011; 

Wang et al., 2011; Aker et al., 2007; Willows et al., 2004; Chen et al., 2002; Happonen et al., 

2013; Snider et al., 2008), some are assembled from three dimers (Sim et al., 2008; 

Skordalakes and Berger, 2006; Ziegelin et al., 2003). However, there is disagreement as to 

the oligomeric state of the phi29 DNA packaging motor. Phi29 gp16 ATPase was reported to 

be a pentamer by cryo-EM (Morais et al., 2008), but single molecule packaging experiments 

have led to the contradictory finding that four steps, rather than the expected five, of motor 

action are sufficient to package a single helical turn of DNA (Chistol et al., 2012; Moffitt et 

al., 2009) (Fig. 3). In contrast, multiple approaches have concluded gp16 to be hexameric, 

including native gel shift assays, capillary electrophoresis (CE), Hill constant determination, 

and titration of mutant subunits using computational binomial distribution (Schwartz et al., 

2013a). All these assays revealed that assembly of gp16 followed a 

monomer→dimer→tetramer→hexamer pathway.

Natural DNA or RNA translocation motors contain P-loop NTPase components for 

contacting DNA or RNA that mostly display a hexameric configuration. Structural 

computation for P-loop ATPases identified a FtsK–HerA superfamily that is predominantly 

involved in translocation of DNA and peptides through membrane pores (Iyer et al., 2004; 

Burroughs et al., 2007). Crystal structures revealed that members of this subfamily, such as 

FtsK and SpoIIIE, display a hexameric arrangement (Lowe et al., 2008; Demarre et al., 

2013; Barre, 2007; Bath et al., 2000; Massey et al., 2006) (Fig. 1E). Structural and sequence 

computations have led to the conclusion that the DNA-packaging ATPases of various 

dsDNA viruses belong to this hexameric FtsK–HerA superfamily (Iyer et al., 2004; 

Burroughs et al., 2007). Crystal structures of the DNA packaging motors from Sulfolobus 

virus B204 (Happonen et al., 2013) reveal a hexameric structure. These studies lead to a 
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conclusion that all ATPase of viral DNA packaging motors assemble into hexameric but not 

pentameric structure.

Puzzle 3: how can the revolution motors transport a DNA helix with such an unusual 
strong force without rotating, coiling, or torsion?

Packaging has been found to proceed even when the connector is covalently linked to the 

capsid protein of the procapsid (Baumann et al., 2006; Maluf and Feiss, 2006) (Fig. 4). 

Single-molecule force spectroscopy has demonstrated that the connector does not rotate 

(Hugel et al., 2007). Since the phi29 connector does not rotate, there is no reason to believe 

that the ATPase motor rotates because the gp16 ring is tightly bound to the pRNA ring (Lee 

and Guo, 2006) that is immobilized at the external end of the stationary connector. Single 

molecule studies also revealed that when the end of the phi29 dsDNA was tethered to the 

beads, the motor was still active in packaging (Shu et al., 2007; Chang et al., 2008), 

indicating that dsDNA does not rotate during packaging. If the motor components do not 

rotate, then what is the mechanism of a motor that translocates a dsDNA helix? 

Unidirectional movement by a “push through a one-way valve” model was recently 

proposed (Schwartz et al., 2012; Fang et al., 2012; Zhao et al., 2013; Zhang et al., 2012; Jing 

et al., 2010) and solves this puzzle. Pushing DNA through the connector channel by the 

ATPase is entropically unfavorable, requiring the connector to function like a valve to 

prevent DNA from slipping out during DNA packaging (Black, 1989; Casjens, 2011; Guo 

and Lee, 2007). This model is compatible with the previously proposed ratchet (Serwer, 

2003) and compression (Ray et al., 2010b; Ray et al., 2010a; Dixit et al., 2012) models of 

DNA packaging, but cannot be easily reconciled with the T4 gp17 ATPase structure (Sun et 

al., 2008). The recent findings of a revolution without rotation mechanism (Zhao et al., 

2013; Schwartz et al., 2013b; Schwartz et al., 2013a) solves many puzzles pondered for 

many years.

It has long been revealed that the motor subunits work sequentially (Chen and Guo, 1997). 

The phi29 packaging motor is one of the strongest biomotors, providing forces up to 57 pN 

(Smith et al., 2001). The phi29 motor contains six copies of the ATPase gp16 (Puzzle 2), and 

the binding of ATP to one ATPase subunit stimulates it to adopt a conformational change 

with an associated 40-fold enhancement in affinity for dsDNA (Schwartz et al., 2013b). 

Following ATP hydrolysis, the ATPase subunit assumes a new conformation with higher 

entropy, but lower affinity for dsDNA, thereby pushing dsDNA away and transferring it to 

an adjacent subunit (Schwartz et al., 2013b; Schwartz et al., 2013a). Communication from 

one subunit to the adjacent subunit is mediated by Arginine Finger domain (unpublished 
data) where the Arginine Finger of the subunit will turn to the adjacent subunit after the 

hydrolysis of ATP and the release of DNA to promote another round of ATP hydrolysis. 

DNA revolves unidirectionally around both the channel wall of the connector and the gp16 

ATPase, but neither the dsDNA nor the ATPase rotates. It has been shown that the binding of 

only one bound ATP is sufficient to induce strong DNA-binding as one ATP is hydrolyzed in 

each step and six ATPs are consumed in one cycle to translocate the dsDNA through one 

helical turn. Sequential binding of the same phosphodiester backbone strand to the 

hexameric ATPase requires dsDNA to move 1.8 bp (base pairs) each step (10.5 bp per turn ÷ 

6 ATP=1.8 bp/ATP) (Fig. 5). This agrees with the empirical data demonstrating that one ATP 
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is used to package 2 bp (Guo et al., 1987c) or 1.8 bp (Morita et al., 1993) of DNA. The 

cooperativity and sequential action among hexameric ATPase subunits (Chen and Guo, 

1997; Moffitt et al., 2009) also promotes the revolution of dsDNA around the connector 

channel (Fig. 6). The contact between the connector and the dsDNA chain is transferred 

from one point on the phosphate backbone to another on the same strand in a 5′ to 3′ 

direction (Moffitt et al., 2009; Aathavan et al., 2009; Zhao et al., 2013).

The anti-parallel arrangement between the dsDNA helix and the channel subunits of the 

connector dodecamer (Fig. 6) also contributes to the revolution of DNA without rotating, 

coiling, or torsional strain. The connector helices that interact with DNA are tilted as 30° 

(Jing et al., 2010; Zhao et al., 2013; Schwartz et al., 2013b), relative to the long axis of the 

dsDNA. The dsDNA shifts +30° each time it goes through one of the 12 subunits (360° ÷ 

12=30°), is perfectly compensated by the −30° tilting of the helices lining the connector 

channel wall, and results in a net change of “0°”. The “+” and the “−” result from the anti-

parallel arrangement of DNA and connector helices. This model explains how the motor can 

transport dsDNA without involving rotation, coiling, or a torsional force. Revolution 

mechanism might reconcile the stoichiometric inconsistency among many bacteriophages 

whose ATPases have been reported to be tetrameric (Chang et al., 2012; Medina et al., 2011; 

Fuller et al., 2007; Ortega and Catalano, 2006), pentameric (see above), hexameric (Guo et 

al., 1998; Zhang et al., 1998; Hendrix, 1998; Shu et al., 2007; Xiao et al., 2008; Moll and 

Guo, 2007; Shu et al., 2007; Xiao et al., 2010; Zhang et al., 2012), and nonameric (Roy et 

al., 2011).

The viral DNA packaging motor rotation mechanism has been proposed long time ago 

(Hendrix, 1978). However, the long quest for motor mechanism to overcome the super 

coiling issue of the lengthy DNA during packaging has been in vain. Fortunately, motors 

with any number of subunits can utilize this revolution mechanism that solves the 

supercoiling issue regarding the transportation of dsDNA helices. During the revolution of 

dsDNA through the channel, dsDNA will advance by touching the channel wall instead of 

proceeding through the center of the channel (Guo et al., 2013). This is in agreement with 

the recent finding by cryo-EM-imaging showing that the T7 dsDNA core is tilted from its 

central axis (Fig. 6C). The clear pattern indicates that the DNA core stack does have a small 

offset and tilt that is only detected clearly when the gp15 layer of the core stack is truly 

resolved (Guo et al., 2013). The authors also found evidence of a counterclockwise motion 

of the dsDNA viewed from the T7 top of the connector, as observed from the N-terminus 

shown in fig. 6C (Guo et al., 2013). This is in agreement with the clockwise revolution of 

dsDNA viewed from the wider end to the narrower end of the phi29 connector, as observed 

from the C-terminus (Zhao et al., 2013; Zhang et al., 2012; Jing et al., 2010; Schwartz et al., 

2013b).

Puzzle 4: how does the motor execute unidirectional transportation?

The phi29 motor has been shown to use a “push through one-way valve” mechanism to 

translocate dsDNA (Jing et al., 2010; Zhang et al., 2012). The direction of translocation is 

controlled by five actions (Schwartz et al., 2013; Zhao et al., 2013; Fang et al., 2012): (1) 

motor ATPase undergoing a series of entropy transition and conformational changes when 
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binding ATP or dsDNA; (2) the 30° angle of each subunit of the dodecameric connector 

channel, that run anti-parallel to the dsDNA helix, facilitating the one-way traffic of the 

dsDNA and coinciding with the 12 subunits of the connector; (3) internal channel loops of 

the connector protein serving as a ratchet valve to prevent dsDNA reversal; (4) the 5′→3′ 

movement of one strand of dsDNA through the phi29 motor connector channel wall 

ensuring unidirectional movement of the DNA; and (5) four lysine layers interacting with 

the DNA phosphate backbone, resulting in four steps of forward transition and pausing 

during DNA translocation.

The anti-parallel arrangement between the α-helices and the dsDNA argues against a nut and 

bolt rotation model, since the corresponding whorl would display a parallel arrangement in 

this scenario. A mutant connector in which the internal loop was deleted allowed packaged 

dsDNA to reverse direction and slip out of the mutant procapsid (Fang et al., 2012; Geng et 

al., 2011; Grimes et al., 2011; Serwer, 2010; Isidro et al., 2004), lending support to the 

theory that the channel loops may act as a ratchet, preventing packaged DNA from leaking 

(Fig. 7) and supporting the “push through one-way valve” model (Fang et al., 2012). When 

the internal loops were deleted, the one way channel became two-way, allowing both ssRNA 

or ssDNA to pass through (Zhao et al., 2013; Geng et al., 2013).

Gaps created in single-stranded Phi29 and T4 DNA have been found to halt packaging (Moll 

and Guo, 2005; Oram et al., 2008). A 3′ end extension with a 12-base overhang had little 

effect, but a 20 base extension blocked T4 DNA packaging (Oram et al., 2008). Chemical 

modification of the phosphate backbone of the 3′-5′ strand did not inhibit DNA 

translocation, and modification of 10 bases of the 5′-3′ strand being packaged was found to 

be tolerated, but a change of 11 bases of the 5′-3′ strand resulted in severe reduction in 

packaging activity (Aathavan et al., 2009). These results support the notions that the motor 

can complete one turn of 360° with single-stranded DNA and that DNA revolves along the 

motor using the single strand of the dsDNA that is packaged in the 5′→3′ direction. If the 

connector is a one-way valve that does not allow dsDNA to reverse direction during DNA 

packaging, how does dsDNA come out of the capsid from the one-way-inward motor to 

enter the host cell? Significant conformational changes in the motor channel occur after 

genomic dsDNA been packaged, as evidenced in different bacteriophages including SPP1 

(Cuervo et al., 2007; Lhuillier et al., 2009), phi29 (Geng et al., 2011; Tao et al., 1998), λ 

(Petrov and Harvey, 2011), and T7 (Hu et al., 2013; Kemp et al., 2004; Chang et al., 2010). 

These conformational changes will alter the one-way inward property of the motor channel 

and allow ejection of the genome during infection (Molineux and Panja, 2013).

Puzzle 5: do positively charged amino acids facilitate movement of negatively charged 
dsDNA, and how does the motor resolve the mismatch between a dsDNA helix of 10.5 
bases/360° and the 12 subunit connector?(Fig. 3)

The negatively charged phi29 connector interior channel surface is decorated with four rings 

of positively charged lysine residues that have been proposed to have a role in DNA 

translocation (Guasch et al., 2002; Badasso et al., 2000). The mismatch between 10.5 bp and 

12 subunits per turn suggest that there are only four perfect contacts for the positively 

charged lysine to meet the negatively charge phosphate at each cycle (Fig. 3B). The 
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transition from a mismatch to four static contacts will generate four steps of change in DNA 

packaging speed. Examination of the phi29 crystal structure reveals that the length of the 

connector channel is 7 nm and the four lysine layers span half the channel length, ~3.5 nm. 

Thus, the average distance between each lysine layer is about ~0.9 nm (Fig. 3B). Since the 

axial rise of each bp of B DNA is about 0.34 nm, 2.6 bp is the necessary step size to cross 

the lysine layer (0.9 ÷ 0.34=2.6), and four steps of transition will occur during packaging 

one helical turn (Schwartz et al., 2013a; Schwartz et al., 2013b; Zhao et al., 2013). This 

number agrees with the finding of four discrete steps per cycle and translocation of 2.5 bp 

per step in single molecule studies using optical tweezers (Fig. 3A).

The 2.6 bp per lysine layer agrees with calculations those based on the pitch size and 

connector stoichiometry. During DNA revolution, the negatively charged phosphate 

backbone of dsDNA makes contact with the positively charged lysine layer located inside 

the channel (Guasch et al., 2002; Guasch et al., 2002). A 360° revolution equals one pitch of 

dsDNA with 10.5 bp, and one revolution cycle goes around 12 connector subunits. Thus, 

0.875 bp will pass one connector subunit (10.5 bp per cycle). On average, each of the four 

lysine layers is responsible for contact with three subunits (12 subunits ÷ 4 layers=3 

subunits). Thus, for each lysine layer or three connector subunits, 2.6 bp will translocate 

through the connector (Fig. 3C) (Schwartz et al., 2013a; Schwartz et al., 2013b; Zhao et al., 

2013). This number also agrees with the finding of four discrete steps per cycle and 

translocation of 2.5 bp per step in single molecule studies using optical tweezers, although 

the authors interpreted the data differently using a handicapped pentameric motor as 

mentioned earlier in this review (Chistol et al., 2012; Moffitt et al., 2009). It has been 

reported that mutation of one lysine ring does not significantly affect motor packaging 

activity (Fang et al., 2012) and the mutation of two or more lysines results in a motor that 

packages, but cannot hold onto the dsDNA, resulting in DNA reversal (Fang et al., 2012; 

Grimes et al., 2011). Mutating more lysines inhibits phage production. Since the location 

and the number of lysine are not critical, the data suggest that the lysine layers are not 

essential to the mechanism, but are auxiliary components that may improve efficiency.

Puzzle 6: why, in certain cases, does the motor display physical motion without ATP 
hydrolysis?

Classical dogma posits that nanobiomotors are powered by the energy released from ATP 

hydrolysis. Although the process of converting the chemical energy stored in ATP to 

physical motion is still unknown, several reports have indicated that the onset of motion can 

be linked to ATP binding, rather than ATP hydrolysis (Kinosita et al., 2000; Chang et al., 

2012; Acharya et al., 2003; Gradia et al., 1997; Gradia et al., 1999). Similar to AAA+ motor 

proteins that undergo a cycle of conformational changes between two distinct states during 

their interaction with ATP, the phi29 motor ATPase gp16 (Guo et al., 1987c; Ibarra et al., 

2001; Lee et al., 2008) also displays high and low affinity states for DNA (Fig. 5). Recently, 

it has been qualitatively demonstrated via EMSA (Electrophoretic Mobility Shift Assay) that 

gp16 exhibits binding to dsDNA and exhibiting stronger binding to DNA in the presence of 

γ-S-ATP, a non-hydrolysable ATP analog (Schwartz et al., 2012). This finding was further 

validated by Förster Resonance Energy Transfer (FRET) analysis and sucrose gradient 

sedimentation, both demonstrated how a motor promotes motion without ATP hydrolysis.
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The motor undergoes a cycle of conformational changes between two distinct states during 

its interaction with ATP; the initial step is the binding of ATP that results in a reduction of 

entropy in the ATPase by a conformational change (Guo et al., 1987c; Ibarra et al., 2001; 

Lee et al., 2008). The entropy lost is compensated by a subsequent step of ATP hydrolysis 

resulting in entropy increase with another conformational change. Thus, coupling motion to 

a change in entropy is an intrinsic property of the protein. Both a DNA binding domain and 

a Walker-A motif are present in ATPase gp16 (Guo et al., 1987c; Schwartz et al., 2012). 

Generally, the Walker A motif of AAA+ ATPases is responsible for ATP binding, while the 

Walker B motif initiates ATP hydrolysis (Story and Steitz, 1992). This conformational 

change induced by ATP binding disappeared when a mutation was introduced to the Walker 

A motif.

Conclusion and Perspectives

The model of action of the phi29 DNA packaging motor revolves without rotating, coiling, 

or generating torque (Schwartz et al., 2013b), offers a model for revolution motors of 

differing stoichiometry. The topics discussed in this review offer a series of applications in 

nanotechnology. The riding system along one strand of dsDNA relates to cargo 

transportation at the nanoscale level and a tool for studying force generation mechanisms in 

a moving world.
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Fig. 1. 
Illustration of the phi29 DNA-packaging motor hexameric structure. (A) Side view (left) and 

top view (right) of the phi29 packaging motor and pRNA hexamer. The 30° tilt of the helix 

of the channel subunit is depicted in both external and internal views. (Bottom) Side and 

bottom views of hexameric pRNA derived from 3WJ crystal structures (Zhang et al., in 

press). (B, C) The contact at every 30° for twelve 30° transitions translocates dsDNA one 

helical turn through the connector. (D) AFM images of pRNA hexamer. (E) Hexameric 

motor models of helicase FtsK and B204 NTPase. (A) and (C), adapted from Zhao et al. 

(2013), © 2013 with permission from American Chemical Society; (B) and (D), adapted 

from Schwartz et al. (2013b), © 2013 with permission from Elsevier; (E) upper panel, 

adapted from Happonen et al. (2013), © 2013 with permission from American Society for 

Microbiology, and lower panel, adapted from Massey et al. (2006), © 2006 with permission 

from Elsevier.
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Fig. 2. 
Comparison of the two RNA molecules used in crystallization to produce hexamer and 

pentamer. (A) The sequence of the hexameric pRNA used in (Zhang et al., in press). (B) 

Crystal structure of pRNA 3WJ with two metal binding sites (Me2+, magenta), shown as 

sphere. A close-up of the metal binding sites superposed on the 2Fo-Fc electron density map 

(blue mesh contoured at 1.0 σ) and the anomalous difference map (red mesh contoured at 4.5 

σ) are shown in the inset. (C) Schematic representation of the 3WJ structure with metal 

coordinating nucleotides in red. Numbers in blue represent the nucleotide locations in the 

wild-type pRNA sequence. (D) The 3WJ core in the RNA fragment sequence used in (Ding 

et al., 2011), the mutated and deleted bases are shown in different colors as indicated. (E) 

Superposition of the pRNA25–95 (Ding et al., 2011) (blue) and 3WJ domain (Zhang et al., in 

press) (gold) crystal structures with the left- (red) and right-hand (green) loops highlighted. 

The motor model with the pRNA derived from computational and biochemical methods in 
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(Hoeprich and Guo, 2002) (F) and the one derived from crystallization in (Zhang et al., in 

press) (G) are shown as side view (left) and bottom view (right). (A)–(E) and (G), adapted 

from Zhang et al. (in press), © 2013 with permission from Cold Spring Harbor Laboratory 

Press; (F), adapted from Hoeprich and Guo, (2002), © 2002 with permission from The 

American Society for Biochemistry and Molecular Biology. (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version of this 

article.)
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Fig. 3. 
Single-molecule experiment revealing the four pauses during DNA packaging and the 

illustration of the effect of lysine layers resulting in the pauses. (A) Design and data showing 

four transition steps of 2.5 bp, 5.0 bp, 7.5 bp, and 10 bp. (B) Structure of the phi29 DNA 

packaging motor showing the four lysine rings lining the inner wall of the phi29 connector 

channel: lysine rings K200 (yellow) and K209 (green), with 229 (cyan) and 246 (red) 

representing the boundary of the connector inner flexible loops that harboring the other two 

lysine rings K234 and K235. (C) A detailed schema of DNA revolution through the 

connector channel showing that the negatively-charged phosphate backbone of dsDNA 

contacts the four lysine layers leading to 4 discrete pauses during packaging of 10.5 bp of 

genomic dsDNA. See text for details. (A), adapted from Chistol et al. (2012), © 2012 with 

permission from Elsevier; (B) and (C), adapted from Zhao et al. (2013), © 2013 with 

permission from American Chemical Society. (For interpretation of the references to color in 

this figure legend, the reader is referred to the web version of this article.)
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Fig. 4. 
Data showing that no DNA (A and B) or connector (C) rotates during active packaging of 

viral DNA. (A) Design (upper) and temporal micrographs (lower) of tethered DNA being 

packaged. The phi29 genome ends are covalently bound to the terminal protein gp3. Only 

one bead is bound to DNA in (a), while a cluster of beads are bound in (b). (B) Experimental 

design and sequential images of the direct observation of DNA packaging. Both (A) and (B) 

show that the motor is still active in packaging with the end of the DNA tethered with beads. 

(C) The T4 portal does not rotate during packaging is shown by normal DNA packaging into 

T4 phage heads with half the portal dodecamers assembled as C-terminal GFP fusion 

proteins, and with N-terminal portal fusions to T4 Hoc (Highly antigenic outer capsid 

binding protein) tethered to its protease immune binding site on the expanded capsid without 

blocking packaging in vitro or in vivo. (A), adapted from Chang et al. (2008), © 2008 with 

permission from American Institute of Physics; (B), adapted from Shu et al. (2007), © 2007 

with permission from Nature Publishing Group; (C), adapted from Baumann et al. (2006), © 

2006 with permission from John Wiley and Sons.

Guo et al. Page 21

Virology. Author manuscript; available in PMC 2014 March 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. 
Mechanism of sequential revolution in translocating genomic dsDNA within ATPase ring. 

(A) Binding of ATP to one gp16 subunit stimulates it to adapt a conformation with higher 

affinity for dsDNA. ATP hydrolysis forces gp16 to assume a new conformation with lower 

affinity for dsDNA, thus pushing dsDNA away from this subunit and transferring it to an 

adjacent subunit. (B) Gel images showing interaction of eGFP-gp16 with 40bp Cy3-dsDNA 

in the presence or absence of ATP or γ-S-ATP. (C) The revolution of dsDNA along the 

ATPase hexameric ring. (A) and (C), adapted from Schwartz et al. (2013b), © 2013 with 

permission from Elsevier; (B), adapted from Schwartz et al. (2013a), © 2013 with 

permission from Elsevier.
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Fig. 6. 
DNA revolves and transports through 30° tilted connector subunits. Translocation is 

facilitated by the anti-parallel arrangement between right-handed dsDNA helices and the 

left-handed 30° tilted connector channel (A, B). (C) The offset of tilted T7 dsDNA core 

around the DNA packaging channel revealed by cryo-EM. When viewed from top to bottom 

in this illustration, the core stack will process counterclockwise. (D) A planar view showing 

how DNA advances and travels along the circular wall of the connector channel with no 

torsion or coiling force and continues through the connector channel, touching each subunit, 

translocating 12 discrete steps at 30° integrals per subunit. (A), (B) and (D), adapted from 

Schwartz et al. (2013b), © 2013 with permission from Elsevier; (C), adapted from Guo et al. 

(2013), © 2013 with permission from National Academy of Sciences.
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Fig. 7. 
The role of the flexible inner channel loop in DNA one-way traffic. Illustration of the ratchet 

model in phi29 bacteriophage (A) and the superimposition of the connector subunit of SPP1 

(cyan) and phi29 (yellow) (B). The conservation of the three-helical substructure (α3, α5 

and α6) in the portal proteins of bacteriophages SPP1 and phi29 strongly suggest that this 

substructure is important for DNA translocation. (A), adapted from Zhao et al. (2013), © 

2013 with permission from American Chemical Society; (B), adapted from Lebedev et al. 

(2007), © 2007 with permission from Nature Publishing Group. (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version of this 

article.)
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